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Global-fixed-point property of gyrogroup actions

TEERAPONG SUKSUMRAN

ABSTRACT. The notion of a gyrogroup action generalizes that of a group action. This work, inspired by
the Extended Cartan Fixed Point Theorem, is devoted to a fixed-point property of gyrogroup actions. In the
case when a gyrogroup G acts on a non-empty set X , X is said to have the global-fixed-point property if there
exists an element x in X such that a · x = x for all a ∈ G. In this paper, several conditions for X to have the
global-fixed-point property are determined. A few examples regarding the results are also discussed.

1. INTRODUCTION

A fixed-point property may be appropriately used in the investigation of the structure
of a mathematical object such as groups, vector spaces, topological spaces, graphs, func-
tions, and so on. For instance, the proof of Sylow’s Theorems for finite groups in a modern
approach makes use of a fixed-point property. More precisely, the proof that two Sylow
subgroups P and Q of a finite group G are conjugate in G (known as the Second Sylow
Theorem; see, for example, Section 4.5 of [2]) can be done by considering the action of Q
on G/P = {gP : g ∈ P} by left multiplication and then proving that the set of fixed points
of this action, {X ∈ G/P : g ·X = X for all g ∈ Q}, is non-empty; that is, this action has
a fixed-point property. Furthermore, the concept of fixed-points appears frequently in
several important theorems, as discussed below, and becomes one of the most important
branches in mathematics with applications in real-world problems. In this paper, we aim
to study a fixed-point property of a gyrogroup action, which generalizes the notion of
group actions.

2. PRELIMINARIES

Basic definitions and notations used in the paper can be found in [1–3,5,6,10,12,13]. In
this section, we recall relevant definitions and notations for easy reference.

A pair (G,⊕), where G is a non-empty set and ⊕ is a binary operation on G, is called
a gyrogroup if (i) there is an element e in G such that e ⊕ a = a for all a ∈ G; (ii) for each
b ∈ G, there is an element a ∈ G such that a⊕ b = e; (iii) for all elements a, b ∈ G, there is a
(unique) automorphism gyr [a, b] of (G,⊕) such that a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c) for
all c ∈ G (called the left gyroassociative law); and (iv) gyr [a⊕ b, b] = gyr [a, b] for all a, b ∈ G
(called the left loop property). In fact, the element e in (i) is the unique two-sided identity of
G, and the element a in (ii) is the unique two-sided inverse of b in G denoted by ⊖b. The
automorphism gyr [a, b] is called the gyroautomorphism generated by a and b.

Let G be a gyrogroup. A subset H of G is called a subgyrogroup of G if H forms a
gyrogroup under the operation inherited from G and gyr[a, b](H) = H for all a, b ∈ H . A
subgyrogroup H of G is called an L-subgyrogroup if gyr[a, h](H) = H for all a ∈ G,h ∈ H .
Furthermore, for each a ∈ G, the set a ⊕ H is defined as a ⊕ H = {a⊕ h : h ∈ H}. The
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index of H in G is defined as the size of G/H = {a⊕H : a ∈ G} and is denoted by [G : H].
For each a ∈ G, the cyclic subgyrogroup generated by a is given by ⟨a⟩ = {ma : m ∈ Z}.

Recall that an action of a group Γ on a non-empty set X is a map Γ ×X ! X , written
(g, x) 7! g ·x, such that 1 ·x = x for all x ∈ X and g · (h ·x) = (gh) ·x for all g, h ∈ Γ, x ∈ X .
It turns out that this notion can be generalized to the case of gyrogroups, which are non-
associative algebraic structures having common properties with groups, as mentioned in
[6]. In fact, a gyrogroup action of a gyrogroup G on a non-empty set X is a map G×X ! X ,
written (a, x) 7! a · x, such that e · x = x for all x ∈ X and a · (b · x) = (a ⊕ b) · x for all
a, b ∈ G, x ∈ X , where e is the identity of G. In this case, X is called a G-set. The gyrogroup
action induces the equivalence relation on X given by x ∼ y if and only if y = a · x for
some element a in G. The equivalence class containing a point x ∈ X is called the orbit of
x, denoted by G · x, given by the formula

(2.1) G · x = {y ∈ X : y ∼ x} = {a · x : a ∈ G}.

Moreover, the action of G on X induces the permutation σa, a ∈ G, of X defined by
σa(x) = a · x for all x ∈ X so that we can consider the set of fixed points of σa, denoted by
Xa (instead of Fix (σa) for simplicity), is given by the formula

(2.2) Xa = {x ∈ X : a · x = x}.

The set of common fixed-points of σa, where a ∈ G, denoted by XG, is defined as XG =∩
a∈G

Xa. Therefore,

(2.3) XG = {x ∈ X : a · x = x for all a ∈ G}.

An element of XG (if any) is called a global fixed-point of the action of G on X . A duality of
a fixed-point set is a stabilizer subgyrogroup of G, which is defined as

(2.4) Gx = {a ∈ G : a · x = x}

for all x ∈ X . Also, a duality of XG is the kernel of the action given by GX =
∩
x∈X

Gx.

Therefore,

(2.5) GX = {a ∈ G : a · x = x for all x ∈ X}.

It is clear by definition that if x ∈ X , then the orbit of x is a singleton set if and only if x is
a global fixed-point; that is, G · x = {x} if and only if x ∈ XG. Recall that a gyrogroup G
acts isometrically or acts by isometry on a metric space X if the induced permutation σa is a
surjective isometry of X for all a ∈ G.

Suppose that a gyrogroup G acts on a non-empty set X . Then Gx is a subgyrogroup
invariant under all the gyroautomorphisms of G. In particular, if c ∈ G and c · x = x,
then gyr[a, b](c) · x = x. This implies that Gx forms an L-subgyrogroup of G so that the
index formula holds: |G| = [G : Gx]|Gx| whenever G is finite. Hence, if G is finite, then
the order of Gx divides the order of G for all x ∈ X . The following proposition lists basic
properties of fixed-point sets and stabilizer subgyrogroups.

Proposition 2.1 (Proposition 3.26, [9]). Suppose that a gyrogroup G acts on a non-empty set
X , let x ∈ X , and let a ∈ G.

(1) Then a ∈ GX if and only if Xa = X .
(2) Then Xa = X⊖a.
(3) If b ∈ ⟨a⟩, then Xa ⊆ Xb.
(4) Then a ∈ Gx if and only if x ∈ Xa.
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The following theorem, called the Orbit-Stabilizer Theorem for Gyrogroup Actions,
states that the product of |G · x| and |Gx| is constant no matter what x is.

Theorem 2.1 (Theorem 3.9, [6]). Let G be a gyrogroup acting on a non-empty set X . For each
x ∈ X , there exists a bijection from the orbit of x to the set G/Gx of left cosets of the stabilizer of
x. In particular, if G is finite, then

(2.6) |G| = |G · x||Gx|.

The previous theorem is applied to establish the following theorem, which yields a
numerical formula relating the size of X , the number of global fixed-points, and the sum
of indices of stabilizer subgyrogroups, referred to as the Orbit Decomposition Theorem
for Gyrogroup Actions.

Theorem 2.2 (Theorem 3.10, [6]). Let G be a gyrogroup acting on a finite non-empty set X . Let
x1, x2, . . . , xn be representatives for the distinct non-singleton orbits in X (if any). Then

(2.7) |X| = |XG|+
n∑

i=1

[G : Gxi
].

Finally, we quote a theorem that emphasizes the importance of fixed-point sets, referred
to as the Orbit Counting Theorem for Gyrogroup Actions. This theorem shows that the
number of distinct orbits of G is related to the number of fixed-points in X in a fascinating
way.

Theorem 2.3 (Theorem 3.11, [6]). Let G be a finite gyrogroup acting on a finite non-empty set

X . Then the number of distinct orbits in X is equal to
1

|G|
∑
a∈G

|Xa|.

3. MAIN RESULTS

As noted in the introduction, the concept of fixed points is crucial, and the set of global
fixed-points can be used to examine the structure of a finite group whenever it is not
empty. Therefore, in this section, we focus on the problem of determining whether the
set of global fixed-points in X is empty for a given G-set X , where G is a gyrogroup. In
some cases, the set of global fixed-points is non-empty, and in some cases, it is empty. This
motivates the following definition.

Definition 3.1. Let G be a gyrogroup, and let X be a G-set. We say that X has the global-fixed-
point property (with respect to G) if the set of global fixed-points in X is not empty, that is, if
XG ̸= ∅.

Example 3.1. Here is a concrete example showing that a G-set may have no the global-fixed-
point property. Let (B,⊕E) be the n-dimensional Einstein gyrogroup (see [11]). Let de be the
gyronorm metric induced by the Euclidean norm on B (see [8, p. 534]), given by the formula
de(u,v) = ∥ − u ⊕E v∥ for all u,v ∈ B. Define B̂ = {Lv : v ∈ B}, where Lv is the left
gyrotranslation by v defined by Lv(w) = v⊕Ew, let Sym (B) be the set of permutations of B, and
let Iso (B) be the set of isometries of (B, de). Also, define Sym0(B) = {ρ ∈ Sym (B) : ρ(0) = 0}.
Then Sym (B) forms a gyrogroup under the operation defined by the formula

(3.8) (La ◦ α)⊕ (Lb ◦ β) = La⊕Eb ◦ (α ◦ β)
for all a,b ∈ B, α, β ∈ Sym0(B). Furthermore, Iso (B) is a subgyrogroup of Sym (B). As a
consequence of the results in Section 5.2 of [6], Iso (B) acts on Sym (B)/B̂ by the formula

(3.9) σ · (τ ⊕ B̂) = (σ ⊕ τ)⊕ B̂
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for all σ ∈ Iso (B), τ ∈ Sym (B). As shown in [4], the set of global fixed-points of Sym (B)/B̂ is
empty. Hence, Sym (B)/B̂ has no the global-fixed-point property.

Example 3.2. This example gives a family of gyrogroup actions whose corresponding G-sets have
the global-fixed-point property. Let G be a gyrogroup, and let X be a non-empty set. Define

L(G,X) = {f : f is a function from G to X}.
A function f in L(G,X) is said to be gyro-invariant if f(a ⊕ gyr[x, y](z)) = f(a ⊕ z) for all
a, x, y, z ∈ G. Let Lgyr(G,X) be the set of gyro-invariant functions in L(G,X), that is,

(3.10) Lgyr(G,X) = {f ∈ L(G,X) : f is gyro-invariant}.
Then, as in Section 4 of [7], G acts on Lgyr(G,X) by the formula

(3.11) a · f = f ◦ L⊖a

for all a ∈ G, f ∈ Lgyr(G,X), called the left standard action of G on Lgyr(G,X). For each
α ∈ X , define fα by the formula fα(x) = α for all x ∈ G, called a constant function in L(G,X).
As in the proof of Theorem 4.6 of [7], one can show that the set of global fixed-points in Lgyr(G,X)
is indeed

(3.12) Lgyr(G,X)G = {fα : α ∈ X}.
Therefore, Lgyr(G,X)G ̸= ∅, and so Lgyr(G,X) has the global-fixed-point property.

In light of Example 3.2, we obtain an interesting consequence of the fact that Lgyr(G,X)
has the global-fixed-point property: the action of G on Lgyr(G,X) is neither transitive nor
free (and hence is not regular) whenever X has at least two distinct elements. In contrast
to Example 3.1, we obtain a characterization of the global-fixed-point property in the case
when a gyrogroup acts isometrically on a complete CAT(0) space as a consequence of the
Extended Cartan Fixed Point Theorem (see Theorem 3.4 of [4]).

Theorem 3.4 (Proposition 3.7, [4]). Let G be a gyrogroup acting on a complete CAT(0) space
X by isometry. Then the following conditions are equivalent:

(i) X has the global-fixed-point property.
(ii) Each orbit of G is bounded.

(iii) G has a bounded orbit.

In Section 4 of [6], the author gives a sufficient and necessary condition for an arbitrary
gyrogroup G to act on its left coset space G/H = {a⊕H : a ∈ G} by left gyroaddition:
a · (x⊕H) = (a⊕ x)⊕H . Here, we show that this action induces a G-set that has no the
global-fixed-point property, in general. In fact, we obtain the following result.

Proposition 3.2. Let G be a gyrogroup, and let H be a subgyrogroup of G satisfying the property
that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b, x ∈ G. Then G acts on G/H by left gyroaddition, and
G/H has the global-fixed-point property if and only if H = G.

Proof. That G acts on G/H by left gyroaddition was proved in Theorem 4.3 of [6]. Suppose
that H = G. Then G/H = {e⊕H}. Let a ∈ G. Then

a · (e⊕H) = (a⊕ e)⊕H = a⊕H = e⊕H

since a ∈ G = H implies a ⊕ H = e ⊕ H . This shows that G/HG = {e ⊕ H} ̸= ∅, and
so G/H has the global-fixed-point property. To prove the converse, suppose that H ̸= G.
Hence, there is an element in G \H , say y ∈ G \H . Thus, e⊕H ̸= y ⊕H . Let X ∈ G/H .
Then X = x ⊕ H for some x ∈ G. In the case when x ∈ H , we obtain that X = e ⊕ H .
Hence, y ·X = y · (e⊕H) = (y⊕ e)⊕H = y⊕H ̸= X . In the case when x ̸∈ H , we obtain
that X ̸= e ⊕ H . Note that ⊖x · X = ⊖x · (x ⊕ H) = (⊖x ⊕ x) ⊕ H = e ⊕ H ̸= X . This
shows that G/HG = ∅, and so G/H has no the global-fixed-point property. □
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The next proposition shows that a free action induces a G-set that has no the global-
fixed-point property. Recall that a gyrogroup action of G on X is free if Gx = {e} for all
x ∈ X .

Proposition 3.3. Suppose that a non-trivial gyrogroup G acts on a non-empty set X . If the action
of G on X is free, then X has no the global-fixed-point property.

Proof. We prove the contrapositive: if X has the global-fixed-point property, then the ac-
tion of G on X is not free. Suppose that XG ̸= ∅, say x ∈ XG. Let a be a non-identity
element of G. Then a ̸= e and a · x = x. Thus, a ∈ Gx, and so Gx ̸= {e}. This shows that
the action of G on X is not free. □

Fortunately, any action of a non-degenerate gyrogroup (which is a gyrogroup having
a non-identity gyroautomorphism) is never free, as proved in Theorem 3.1 of [9]. More-
over, the converse of Proposition 3.3 is not generally true. In fact, let Γ be a non-trivial
group, and suppose that Ξ is a proper non-trivial subgroup of Γ (for example, let Γ be
the symmetric group S3, and let Ξ be the subgroup of S3 generated by (1 2 3)). Then, by
Proposition 3.2, Γ acts on Γ/Ξ by the formula g · (xΞ) = (gx)Ξ such that Γ/Ξ has no the
global-fixed-point property. This action is not free because ΓxΞ = xΞx−1 ̸= {1} for all
x ∈ Γ.

Next, we give a characterization of the global-fixed-point property via the notion of
Schreier graphs and Schreier digraphs (see [9] for relevant definitions). This provides
visualization of the global-fixed-point property. Recall that any gyrogroup action gives
rise to a digraph as well as a graph. In fact, if G is a gyrogroup and if X is a finite G-
set, then for each subset A of G, the Schreier digraph

−!
Γ (X,A) is defined to be a digraph

consisting of the vertex set X and the arc set E = {(x, a · x) : x ∈ X, a ∈ A}. The Schreier
graph Γ(X,A) may be defined as the underlying graph of

−!
Γ (X,A). We are now in a

position to state the aforementioned characterization in the following proposition.

Proposition 3.4. Suppose that a gyrogroup G acts on a finite non-empty set X , and let A be a left
generating set for G. Then X has the global-fixed-point property if and only if the Schreier digraph
−!
Γ (X,A) (or the Schreier graph Γ(X,A)) contains a bouquet (which is a connected component
with one vertex whose arc is a self-loop).

Proof. Suppose that X has the global-fixed-point property. Hence, XG ̸= ∅, say x ∈ XG.
Hence, a ·x = x for all a ∈ A. This implies that the connected component of

−!
Γ (X,A) con-

taining the vertex x is a bouquet. Conversely, suppose that the Schreier digraph
−!
Γ (X,A)

contains a bouquet whose vertex is x. Therefore, a · x = x for all a ∈ A. Let g ∈ G. By
assumption, there exist elements a1, a2, . . . , an in A such that

g = an ⊕ (an−1 ⊕ (· · · ⊕ (a2 ⊕ a1) · · · )).

It follows that

g · x = an ⊕ (an−1 ⊕ (· · · ⊕ (a2 ⊕ a1) · · · )) · x = an · (an−1 · (· · · (a1 · x))) = x.

This shows that x ∈ XG, and so XG ̸= ∅. Thus, X has the global-fixed-point property. □

Example 3.3. In Example 1 of [5], the gyrogroup G8 = {0, 1, 2, 3, 4, 5, 6, 7} is given. Its gyro-
addition and gyration tables are given in Tables 3 and 4 of [5], respectively. We have by inspection
that A = {1, 6} is a left generating set for G8, similar to Example 3.10 of [9]. Let F2 = {0, 1} be
the field of two elements. Identifying a function from G8 to F2 with an 8-tuple, we obtain that

(3.13) Lgyr(G8,F2) = {(α, β, β, α, γ, δ, γ, δ) : α, β, γ, δ ∈ F2}.
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As in Example 3.2, G8 acts on Lgyr(G8,F2) by formula (3.11). To depict the Schreier digraph
−!
Γ (Lgyr(G8,F2), {1, 6}), set

x1 = (0, 0, 0, 0, 0, 0, 0, 0), x2 = (0, 0, 0, 0, 0, 1, 0, 1),

x3 = (0, 0, 0, 0, 1, 0, 1, 0), x4 = (0, 0, 0, 0, 1, 1, 1, 1),

x5 = (0, 1, 1, 0, 0, 0, 0, 0), x6 = (0, 1, 1, 0, 0, 1, 0, 1),

x7 = (0, 1, 1, 0, 1, 0, 1, 0), x8 = (0, 1, 1, 0, 1, 1, 1, 1),

x9 = (1, 0, 0, 1, 0, 0, 0, 0), x10 = (1, 0, 0, 1, 0, 1, 0, 1),

x11 = (1, 0, 0, 1, 1, 0, 1, 0), x12 = (1, 0, 0, 1, 1, 1, 1, 1),

x13 = (1, 1, 1, 1, 0, 0, 0, 0), x14 = (1, 1, 1, 1, 0, 1, 0, 1),

x15 = (1, 1, 1, 1, 1, 0, 1, 0), x16 = (1, 1, 1, 1, 1, 1, 1, 1).

The Schreier digraph
−!
Γ (Lgyr(G8,F2), {1, 6}) is represented pictorially in Figure 1. According to

Proposition 3.4, Lgyr(G8,F2) has the global-fixed-point property for the corresponding Schreier
digraph has a bouquet. In fact, we also know that the set of global fixed-points in Lgyr(G8,F2) is
{x1, x16}.

x7x6

x11 x10

x1 x4

x13x16

x2

x5

x3

x9

x8 x12

x14 x15

FIGURE 1. The Schreier digraph
−!
Γ (Lgyr(G8,F2), {1, 6}).

We close this section with the following proposition, which is a nice application of the
Orbit-Stabilizer Theorem, together with the Orbit Decomposition Theorem. This result is
motivated by the proof of the Third Sylow Theorem for finite groups. Let p be a prime.
We say that a finite gyrogroup is a p-gyrogroup if its order is a power of p (that is, its order
is of the form pn for some non-negative integer n).

Proposition 3.5. Suppose that a finite non-trivial gyrogroup G acts on a finite non-empty set X .
If G is a p-gyrogroup, then

(3.14) |X| ≡ |XG| (mod p).

Proof. Let x ∈ X . By Theorem 2.1, |G| = |G ·x||Gx|, and so [G : Gx] = |G ·x| is a divisior of
|G|. Hence, if x is a representative for a non-singleton orbit in X , that is, if |G ·x| > 1, then
[G : Gx] is of the form pk for some k ∈ N. In the case when there is no non-singleton orbit,



Global-fixed-point property of gyrogroup actions 523

|X| = |XG|. Otherwise, we obtain from Theorem 2.2 that |X|−|XG| =
n∑

i=1

[G : Gxi
], where

x1, x2, . . . , xn are representatives for the distinct non-singleton orbits in X . As above, p

divides
n∑

i=1

[G : Gxi
]. Thus, |X| ≡ |XG| (mod p), which completes the proof. □

We immediately obtain a sufficient condition for a finite G-set, where G is a finite p-
gyrogroup, to have the global-fixed-point property.

Corollary 3.1. Suppose that a non-trivial p-gyrogroup G acts on a finite non-empty set X . If p is
not a divisor of |X|, then X has the global-fixed-point property.

Proof. We prove the contrapositive. Suppose that XG = ∅. Then, by Proposition 3.5,
|X| ≡ 0 (mod p), and so p divides |X|. □

We remark that the converse of Corollary 3.1 is not generally true. In fact, as in Exam-
ple 3.3, G8 is a 2-gyrogroup that acts on Lgyr(G8,F2) by formula (3.11), and Lgyr(G8,F2)
has the global-fixed-point property (see Example 3.2). However, 2 divides |Lgyr(G8,F2)|
because |Lgyr(G8,F2)| = 16.
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