
CARPATHIAN J. MATH.
Volume 41 (2025), No. 2,
Pages 525-541

Online version at https://www.carpathian.cunbm.utcluj.ro/

ISSN 1584-2851 (Print edition); ISSN 1843-4401 (Electronic)

DOI: https://doi.org/10.37193/CJM.2025.02.17

Two generalized cyclic projection algorithms for solving a
class of the split feasibility problem in real Hilbert spaces

PHAN THI VAN HUYEN1, NGUYEN SONG HA2, AND TRUONG MINH TUYEN3

ABSTRACT. In the present paper, we propose two new cyclic projection algorithms for solving a class of
the split feasibility problem and analyse their strong convergence. Our algorithms are based on the hybrid or
shrinking projections methods and use the general index control mapping. Our algorithm can be implemented
without any need for information about the norm of the transfer mappings or the cost operators’ inverse strong
monotone coefficient.

1. INTRODUCTION

In the present paper, we concern the split common solution problem for monotone
operator equations (SCSP-MOE, for short), which is to find an element p ∈ Ξ under the
following assumptions:

(O1) i ∈ J = {0, 1, 2, . . . , N}, Hi is a real Hilbert space and fi ∈ Hi is a given element.
(O2) For each i ∈ J , Fi : Hi → Hi is a γi-cocoercive operator on Hi.
(O3) L0 = I0 is the identity mapping on H0, Lj : H0 → Hj (j = 1, 2, 3, . . . , N) are

bounded linear operators on Hj with the adjoint operator L∗
j : Hj → H0, respec-

tively.
(O4) Ξ := ∩i∈JΞAi

̸= ∅, where ΞAi
= {p ∈ H0 : Fi(Li(p)) = fi} for each i ∈ J .

The operators Li and Fi are called the transfer mapping and the cost operator, respectively.
It is easy to see that the SCSP-MOE is a generalized split problem (see, for example,

[10]) and covers various important known split problems. We mention, for instance, the
split feasibility problem with multiple output sets (see, [11, 14, 15, 17, 19]), the split com-
mon fixed point problem with multiple output sets (see, [7, 8, 18, 20]) and the split com-
mon minimum point problem with multiple output sets (see, [10, 16]).

To find a solution to the SCSP-MOE, Ha et al. [10] proposed three algorithms using
the combination of the inertial proximal point algorithm with the hybrid and shrinking
projection methods. They have first proved the weak convergence of the sequence {xn}
generated by

(1.1) F(xn+1) +
N∑
i=1

L∗
iFi(Li(xn+1))− f −

N∑
i=1

L∗
i fi + xn+1 = xn + θ(xn − xn−1),

for all n ≥ 1 and with arbitrary initial points x0 and x1 belong to H0. To arrive at strong
convergence, they have constructed the second and third algorithms by combining the
iterative method (1.1) with the hybrid and shrinking projection methods, respectively.
However, these proposed projection algorithms need to know the cost operators’ inverse
strong monotone coefficient information. Besides, defining xn+1 in equation (1.1), we

Received: 15.06.2024. In revised form: 05.11.2024. Accepted: 10.11.2024
2020 Mathematics Subject Classification. 47H05, 47H09, 49J53, 90C25.
Key words and phrases. Hilbert space, cyclic algorithms, metric projection, cocoercive operator.
Corresponding author: Truong Minh Tuyen (tuyentm@tnus.edu.vn) and Nguyen Song Ha

(hans@tnus.edu.vn)

525

526 P.T.V. Huyen, N.S. Ha and T.M. Tuyen

need to solve an equation concerning all operators Fi and Li per each iteration. This may
be cause to consume more time and cost to compute in the implementation process. We
also note that the equation (1.1) implicit includes a one-step inertial component on the
right side. This has improved and accelerated part of the convergence rate more than
algorithms without this factor. Additionally, in some recent related literature, replacing
one-step inertial extrapolation with more-step inertial extrapolation has also shown that
this could be more beneficial numerically and provide acceleration over the one-step in-
ertial extrapolation (see, for instance, [9, 12] and references therein). Thus, there are two
natural questions which are posed as follows:

(Q1) Can we construct a new algorithm only concerning operators Fi and Li at each
iteration step?

(Q2) Can we include multiple inertial components to accelerate the algorithm’s conver-
gence rate?

This paper aims to answer affirmative about two questions above. To this end, we
propose a new equation to replace equation (1.1) by using the cyclic iterative method
with the generalized index control mapping. Note that the cyclic iterative method is an
efficient and powerful method for solving some important problems, see, for instance, the
common fixed point problem (see, [3, 4]), the split multiple-set split feasibility problem
(see, [21]). Moreover, we also use multiple inertial components in the proposed algorithm
to speed up the convergence rate.

The paper is organized as follows. In the next section, we provide concepts related to
the SCSP-MOS and lemmas used in the proofs of the main theorems. In Section 3, we
propose two cyclic projection algorithms using the proximal point algorithm with multi-
ple inertial components and the hybrid or shrinking projection method. We respectively
prove the strong convergence of the first and the second algorithms in Theorem 3.1 and
Theorem 3.2. Our algorithms do not depend on the norm of the transfer mappings and the
cost operators’ inverse strong monotone coefficient. Next, we introduce new algorithms
for solving some related problems, such as the split common fixed point problem, the split
common null point problem and the split common minimum point problem with multi-
ple output sets. Section 4 presents two numerical experiments and compares them with
several known algorithms in [8, 10, 15, 20] to illustrate the effectiveness of the proposed
algorithms.

2. PRELIMINARIES

We denote by ⟨·, ·⟩ and ∥ · ∥ the inner product and the induced norm, respectively, on
a real Hilbert space H. The symbols → and ⇀ are for strong and weak convergence,
respectively.

Let C be a nonempty closed and convex subset of H. As we know, for each a ∈ H, there
is a unique point PC(a) ∈ C which has the following property

(2.2) ∥a− PC(a)∥ = inf
w∈C
∥a− w∥.

Thus, we can define the mapping PC : H → C by (2.2). This mapping is called the
metric projection of H onto C. It is well known that a mapping PC : H→ C is the metric
projection of H onto C if and only if the following inequality holds true [6, Theorem 3.4]:

(2.3) ⟨a− PC(a), b− PC(a)⟩ ≤ 0, ∀a ∈ H, b ∈ C.

Definition 2.1. An operator F : H→ H is called
(i) monotone if

⟨F(a)− F(b), a− b⟩ ≥ 0, ∀a, b ∈ H;

Two generalized cyclic projection algorithms 527

(ii) β-strongly monotone if there exists β ∈ (0,∞) such that

⟨F(a)− F(b), a− b⟩ ≥ β∥a− b∥2, ∀a, b ∈ H;

(iii) γ-cocoercive (or γ-inverse strongly monotone) if there exists γ ∈ (0,∞) such that

⟨F(a)− F(b), a− b⟩ ≥ γ∥F(a)− F(b)∥2, ∀a, b ∈ H.

Definition 2.2. An operator F : H→ H is said to be L-Lipschitz continuous if there exists
a real number L > 0 such that

∥F(a)− F(b)∥ ≤ L∥a− b∥, ∀a, b ∈ H.

In the case that L = 1, F is called a nonexpansive mapping, and if 0 ≤ L < 1 then F is
called a strictly contraction mapping.

Remark 2.1. It is easy to see that a γ-cocoercive operator is a γ−1-Lipschitz continuous
operator.

Definition 2.3. An operator F : H → H is called hemicontinuous if for every a, b, c ∈ H,
we have

lim
α↓0
⟨c,F(a+ αb)⟩ = ⟨c,F(a)⟩.

Definition 2.4. A set-valued operator G : H→ 2H is called

(i) monotone if

⟨u− v, a− b⟩ ≥ 0, ∀(a, u) ∈ gra(G), ∀(b, v) ∈ gra(G),

where gra(G) = {(a, u) ∈ H×H : u ∈ G(a)}, the graph of G.
(ii) maximal monotone if it is monotone and there exists no monotone operator Ĝ :

H → H such that graph of Ĝ properly contains graph of G, i.e., for all (a, u) ∈
H×H,

(a, u) ∈ gra(G)⇔ ⟨a− b, u− v⟩ ≥ 0, ∀(b, v) ∈ gra(G).

The following lemmas are used in the sequel in the proofs of the main results.

Lemma 2.1. [6, Corollary 2.42 and Lemma 2.35] Let {an} be a sequence in H. Then the
following statements hold true:

(i) If an ⇀ a and ∥an∥ → ∥a∥ as n→∞, then an → a as n→∞.
(ii) If an ⇀ a as n→∞, then ∥a∥ ≤ lim infn→∞ ∥an∥.

Lemma 2.2. (see [13, Lemma 2.1]) Let H be a real Hilbert space and let C be a nonempty, closed
and convex subset of H . Then for all a ∈ H and b ∈ C, we have

∥a− PC(a)∥2 + ∥b− PC(a)∥2 ≤ ∥a− b∥2.

Lemma 2.3. (see, [2, Theorem 1.7.5] and [6, Proposition 20.24]) If F : H→ H is a monotone,
hemicontinuous and coercive operator then R(F) = H, where R(F) is the range of F.

Lemma 2.4. (see, [10, Lemma 2.8] If F : H → H is γ-cocoercive operator in H, then the set
S = {a ∈ H : F(a) = f} is convex and closed for every f ∈ R(F).

528 P.T.V. Huyen, N.S. Ha and T.M. Tuyen

3. MAIN RESULTS

We first recall the definition of index control mapping. Let J = {0, 1, 2, . . . , N}. A
mapping c : N→ J is called an index control mapping if for each i ∈ J , there is a natural
number Mi such that

i ∈ {c(n), c(n+ 1), . . . , c(n+Mi − 1)}, ∀n ∈ N.

Example 3.1. The mapping c : N→ J defined by

c(n) = n mod (N + 1), ∀n ∈ N
is an index control mapping (see, for example, [5]).

Remark 3.2. Ξ is a closed and convex subset of H0 thanks to Lemma 2.4.

3.1. Hybrid projection algorithm. To find a solution to the SCSP-MOE, we first propose
the following algorithm.

Algorithm 1.

Step 1. Choose bounded real sequences {ϱt,n} for all t ∈ {1, 2, 3, . . . , k}. Select arbitrary
points x−k, x−(k−1), x−(k−2), . . . , x0 ∈ H0 and set n := 0.
Step 2. Compute

yn = xn +

k∑
t=1

ϱt,n(xn+1−t − xn−t).

Step 3. Define zn from the following equation:

L∗
c(n)Fc(n)(Lc(n)(zn))− L∗

c(n)fc(n) + zn = yn.(3.4)

Step 4. Define subsets An and Bn as follows:

An = {a ∈ H0 : ∥zn − a∥ ≤ ∥yn − a∥},(3.5)

Bn = {b ∈ H0 : ⟨x0 − xn, b− xn⟩ ≤ 0}.(3.6)

Step 5. Compute xn+1 as follows:

xn+1 = PAn∩Bn(x0).(3.7)

Step 6. Set n← n+ 1 and go to Step 2.

We first prove the following proposition to confirm the unique existence of zn.

Proposition 3.1. For each n ∈ N, the equation (3.4) has a unique solution zn.

Proof. For each x ∈ H0, we define the operator G : H0 → H0 as follows:

G(x) = L∗
c(n)Fc(n)(Lc(n)(x)) + I0(x),

where I0 is the identity mapping on H0.
It follows from (O2) that

⟨G(x)−G(y), x− y⟩ = ⟨L∗
c(n)Fc(n)(Lc(n)(x))− L∗

c(n)Fc(n)(Lc(n)(y)), x− y⟩

+ ∥x− y∥2

= ⟨Fc(n)(Lc(n)(x))− Fc(n)(Lc(n)(y)),Lc(n)(x)− Lc(n)(y)⟩
+ ∥x− y∥2

≥ γc(n)∥Fc(n)(Lc(n)(x))− Fc(n)(Lc(n)(y))∥2 + ∥x− y∥2 ≥ 0,

Two generalized cyclic projection algorithms 529

which implies that G is a monotone operator on H0.
In view of Remark 2.1, we find that

∥G(x)−G(y)∥ = ∥L∗
c(n)Fc(n)(Lc(n)(x))− L∗

c(n)Fc(n)(Lc(n)(y)) + x− y∥
≤ ∥L∗

c(n)∥∥Fc(n)(Lc(n)(x))− Fc(n)(Lc(n)(y))∥+ ∥x− y∥

≤ 1

γc(n)
∥Lc(n)∥∥Lc(n)(x))− Lc(n)(y)∥+ ∥x− y∥

≤
(

1

γc(n)
∥Lc(n)∥2 + 1

)
∥x− y∥,

which yields to G is a L-Lipschitz operator on H0 with L :=
1

γc(n)
∥Lc(n)∥2 + 1.

On the other hand, we observe that

⟨G(x), x⟩ = ⟨G(x)−G(0), x− 0⟩+ ⟨G(0), x⟩
= ⟨L∗

c(n)Fc(n)(Lc(n)(x))− L∗
c(n)Fc(n)(Lc(n)(0)), x− 0⟩+ ∥x∥2 + ⟨G(0), x⟩

= ⟨Fc(n)(Lc(n)(x))− Fc(n)(Lc(n)(0)),Lc(n)(x)− Lc(n)(0)⟩
+ ∥x∥2 + ⟨G(0), x⟩
≥ ∥x∥2 − ∥G(0)∥∥x∥.

This leads to

lim
∥x∥→∞

⟨G(x), x⟩
∥x∥

≥ lim
∥x∥→∞

(∥x∥ − ∥G(0)∥) =∞,

which shows that G is a coercive operator on H0.
From the above facts, we can conclude that for each n ∈ N, the equation (3.4) always

has solution zn thanks to Lemma 2.3.
We now prove the uniqueness of zn. Indeed, suppose that wn is also a solution to (3.4),

that is,
L∗
c(n)Fc(n)(Lc(n)(wn))− L∗

c(n)fc(n) + wn = yn.

Combining this with (3.4), we obtain

L∗
c(n)Fc(n)(Lc(n)(zn))− L∗

c(n)Fc(n)(Lc(n)(wn)) + (zn − wn) = 0.

This implies that

0 = ⟨zn − wn,L∗
c(n)Fc(n)(Lc(n)(zn))− L∗

c(n)Fc(n)(Lc(n)(wn)) + (zn − wn)⟩

= ∥zn − wn∥2 + ⟨zn − wn,L∗
c(n)Fc(n)(Lc(n)(zn))− L∗

c(n)Fc(n)(Lc(n)(wn))⟩

= ∥zn − wn∥2 + ⟨Lc(n)zn − Lc(n)wn,Fc(n)(Lc(n)(zn))− Fc(n)(Lc(n)(wn))⟩
≥ ∥zn − wn∥2 + γc(n)∥Fc(n)(Lc(n)(zn))− Fc(n)(Lc(n)(wn))∥2.

This shows that zn = wn. □

We now prove the following proposition to confirm the existence of the sequence {xn}.

Proposition 3.2. The sequence {xn} generated by Algorithm 1 is well defined.

Proof. We divide the proof into several steps.
Claim 1. An and Bn are two closed half-spaces of H0. It follows that they are closed and
convex subset of H0.

530 P.T.V. Huyen, N.S. Ha and T.M. Tuyen

It is easy to see that (3.5) and (3.6) can be rewritten in the following forms

An =

{
a ∈ H0 : ⟨yn − zn, a⟩ ≤

∥yn∥2 − ∥zn∥2

2

}
,

Bn = {b ∈ H0 : ⟨x0 − xn, b⟩ ≤ ⟨x0 − xn, xn⟩}.

Thus, both of them are two closed half-spaces of H0 for each n ∈ N.
Claim 2. Ξ ⊂ An ∩ Bn for all n ∈ N.

We first take any p ∈ Ξ, that is

Fi(Li(p)) = fi, ∀i ∈ J.(3.8)

We now observe that

⟨zn − p, yn − p⟩ = 1

2

(
∥zn − p∥2 + ∥yn − p∥2 − ∥zn − yn∥2

)
.(3.9)

On the other hand, it follows from (3.4), (3.8) and (O2) that

⟨zn − p, yn − p⟩ = ⟨zn − p,L∗
c(n)Fc(n)(Lc(n)(zn))− L∗

c(n)fc(n) + zn − p⟩

= ⟨zn − p,L∗
c(n)Fc(n)(Lc(n)(zn))− L∗

c(n)fc(n)⟩+ ∥zn − p∥2

= ⟨Lc(n)(zn)− Lc(n)(p),Fc(n)(Lc(n)(zn))− Fc(n)(Lc(n)(p))⟩
+ ∥zn − p∥2

≥ γc(n)∥Fc(n)(Lc(n)(zn))− Fc(n)(Lc(n)(p))∥2 + ∥zn − p∥2.(3.10)

Using (3.9) and (3.10), we infer that

∥zn − p∥2 ≤ ∥yn − p∥2 − ∥zn − yn∥2 − 2γc(n)∥Fc(n)(Lc(n)(zn))− fc(n)∥2(3.11)

≤ ∥yn − p∥2,(3.12)

which implies that p ∈ An for all n ∈ N.
Next, with n = 0, it is clear that Ξ ⊂ B0 = H0. Suppose that Ξ ⊂ Bn for some n ≥ 0.

Using (3.7) and (2.3), we have

⟨x0 − xn+1, w − xn+1⟩ ≤ 0, ∀w ∈ An ∩ Bn.

Thus, it follows from p ∈ An ∩ Bn that

⟨x0 − xn+1, p− xn+1⟩ ≤ 0,

which implies that p ∈ Bn+1. By employing mathematical induction, we now conclude
that p ∈ Bn for all n ≥ 0, that is, Ξ ⊂ Bn for all n ≥ 0. Therefore, we infer that Ξ ⊂ An∩Bn
for all n ∈ N, as claimed.

Furthermore, these also show that the sequence {xn} is well defined. □

The strong convergence of the sequence {xn} generated by Algorithm 1 is established
in the following theorem.

Theorem 3.1. The sequence {xn} generated by Algorithm 1, converges strongly to PΞ(x0) as n
tends to infinite.

Proof. We divide the proof into several steps. We first take any p ∈ Ξ .
Claim 1. The sequences {xn}, {yn} and {zn} are bounded.

It follows from (3.6) that xn = PBn
(x0). Thus, we infer that

∥xn − x0∥ ≤ ∥x0 − p∥, ∀n ≥ 0(3.13)

thanks to (2.2) and p ∈ Bn (Claim 2 in Proposition 3.2). This ensures that the sequence
{xn} is bounded. Hence, the sequences {yn} and {zn} are also bounded thanks to (3.4)

Two generalized cyclic projection algorithms 531

and (3.12).
Claim 2. The sequence {xn} is asymptotically regular, that is,

lim
n→∞

∥xn+1 − xn∥ = 0.

Since xn+1 ∈ Bn and xn = PBn(x0), using Lemma 2.2, we have

∥xn+1 − xn∥2 ≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2, ∀n ≥ 0,(3.14)

which implies that the sequence {∥xn − x0∥} is increasing for all n ≥ 0. Because of the
boundedness of {xn}, we can infer that there exists the finite limit

lim
n→∞

∥xn − x0∥ = l.

Combining this fact with (3.14), we obtain the desired.
Claim 3. The following limits exist:

lim
n→∞

∥xn+1 − yn∥ = 0,(3.15)

lim
n→∞

∥xn − zn∥ = 0,(3.16)

lim
n→∞

∥yn − zn∥ = 0.(3.17)

Using the definition of yn, we find that

∥xn+1 − yn∥ = ∥xn+1 − xn +

k∑
t=1

ϱt,n(xn+1−t − xn−t)∥

≤ ∥xn+1 − xn∥+
k∑

t=1

|ϱt,n|∥xn+1−t − xn−t∥.

Using Claim 2 and the boundedness of the real number sequences {ϱt,n}, we obtain the
existence of the limit (3.15), as asserted.

On the other hand, since xn+1 ∈ An, we have

∥zn − xn+1∥ ≤ ∥yn − xn+1∥,

which implies that

∥zn − xn+1∥ → 0.(3.18)

Using Claim 2, (3.15) and (3.18) and the following estimates

∥xn − zn∥ ≤ ∥xn+1 − xn∥+ ∥xn+1 − zn∥,
∥yn − zn∥ ≤ ∥xn+1 − yn∥+ ∥xn+1 − zn∥,

we also get the limits (3.16) and (3.17), as claimed.
Claim 4. All weak cluster points of the sequence {xn} belong to Ξ.

Assume that p̂ is an arbitrary cluster point of the sequence {xn}. Then there exists a
subsequence {xmn} of {xn} such that

xmn ⇀ p̂.

For any i ∈ J , there exists a natural number Mi such that

i ∈ {c(mn), c(mn + 1), c(mn + 2), . . . , c(mn +Mi − 1)}, ∀n ∈ N.

We can remove some elements of the subsequence {xmn}, if necessary, to obtain a new
subsequence, which is also denoted by {xmn

} such that

mn+1 ≥ mn +Mi.

532 P.T.V. Huyen, N.S. Ha and T.M. Tuyen

Then there is another subsequence {xpn
} of {xn} for which

mn ≤ pn ≤ mn +Mi − 1 < mn+1 ≤ pn+1, i = c(pn).

Furthermore, we can see that

∥xpn − xmn∥ ≤
mn+Mi−2∑

j=mn

∥xj+1 − xj∥ ≤ (Mi − 1) max
mn≤j≤mn+Mi−2

∥xj+1 − xj∥.

Using Claim 2, we find that
∥xpn

− xmn
∥ → 0,

which yields to xpn
⇀ p̂, and, thus, we have zpn

⇀ p̂ thanks to (3.16). Since Li is bounded
linear operator, we also have

Li(zpn) ⇀ Li(p̂).(3.19)

Next, we note that Fc(pn) = Fi, Lc(pn) = Li for all n ≥ 1 and

0 ≤ γi∥Fi(Li(zpn
))− Fi(Li(p̂))∥2

≤ ⟨Fi(Li(zpn
))− Fi(Li(p̂)),Li(zpn

)− Li(p̂)⟩
= ⟨Fi(Li(zpn

))− fi,Li(zpn
)− Li(p̂)⟩+ ⟨fi − Fi(Li(p̂)),Li(zpn

)− Li(p̂)⟩
≤ ∥Fi(Li(zpn))− fi∥∥Li(zpn)− Li(p̂)∥+ ⟨fi − Fi(Li(p̂)),Li(zpn)− Li(p̂)⟩
≤ K1∥Li∥∥Fi(Li(zpn))− fi∥+ ⟨fi − Fi(Li(p̂)),Li(zpn)− Li(p̂)⟩,(3.20)

where K1 = supn ∥zpn − p̂∥. On the other hand, it follows from (3.11) that

γi∥Fi(Li(zpn
))− fi∥2 ≤

1

2

(
∥ypn

− p∥2 − ∥zpn
− p∥2

)
=

1

2
(ypn

− p∥ − ∥zpn
− p∥)(ypn

− p∥+ ∥zpn
− p∥)

≤ K2∥ypn
− zpn

∥,

where K2 =
1

2
supn{(ypn

− p∥+ ∥zpn
− p∥)}. Combining this with (3.17), we obtain

∥Fi(Li(zpn
))− fi∥ → 0.(3.21)

Thus, from (3.19), (3.20) and (3.21), we infer that

∥Fi(Li(zpn
))− Fi(Li(p̂))∥ → 0.

Combining this with (3.21), we obtain that Fi(Li(p̂)) = fi. Since i ∈ J is an arbitrary
element, we infer that p̂ ∈ Ξ.
Claim 5. The sequence {xn} converges strongly to x⋆ = PΞ(x0).

Suppose that {xqn} is a subsequence of {xn} converges weakly to q. Because of Claim
4, we find that q ∈ Ξ. Moreover, since x⋆ = PΞ(x0) and q ∈ Ξ, using (3.13) and Lemma 2.1
(ii), we have

∥x⋆ − x0∥ ≤ ∥q − x0∥ ≤ lim inf
k→∞

∥xqn − x0∥

≤ lim sup
k→∞

∥xqn − x0∥ ≤ ∥x⋆ − x0∥.

Using the uniqueness of the nearest point x⋆, we infer that x⋆ = q. Moreover, we also
have

∥xqn − x0∥ → ∥x⋆ − x0∥.
In view of Lemma 2.1 (i), we obtain xqn → x⋆. Using again the uniqueness of x⋆, we
conclude that xn → x⋆ as n→∞. □

Two generalized cyclic projection algorithms 533

3.2. Shrinking projection algorithm. We now propose a modification of Algorithm 1 us-
ing the shrinking projection method to solve the SCSP-MOE.

Algorithm 2.

Step 1. Choose bounded real sequences {ϱt,n} for all t ∈ {1, 2, 3, . . . , k}. Select arbitrary
points x−k, x−(k−1), x−(k−2), . . . , x0 ∈ H0, C−1 = H0 and set n := 0.
Step 2. Compute yn as in Step 2 of Algorithm 1.
Step 3. Define zn as in Step 3 of Algorithm 1.
Step 4. Define subset Cn as follows:

Cn = {a ∈ Cn−1 : ∥zn − a∥ ≤ ∥yn − a∥}.

Step 5. Compute xn+1 as follows:

xn+1 = PCn(x0).

Step 6. Set n← n+ 1 and go to Step 2.

Theorem 3.2. The sequence {xn} generated by Algorithm 2 converges strongly to PΞ(x0) as n
tends to infinite.

Proof. We will break down the proof into multiple steps.
Claim 1. We have Ξ ⊂ Cn for all n ≥ 0.

It is easy to see that Cn is a closed and convex subset of H0 for all n ≥ 0. Employing an
argument similar to the one used in the proof of Claim 2 of the proof of Proposition 3.2,
and using mathematical induction, we also conclude that Ξ ⊂ Cn for all n ≥ 0. Hence, the
sequence {xn} is well defined.
Claim 2. The sequence {xn} converges strongly to x† ∈ H0.

For each p ∈ Ξ ⊂ Cn, it follows from xn+1 = PCn(x0) that

∥xn+1 − x0∥ ≤ ∥p− x0∥,(3.22)

which ensures that the sequence {xn} is bounded.
For any m ≥ n ≥ 1, since xm ∈ Cm−1 ⊂ Cn−1 and xn = PCn−1

(x0), in view of Lemma
2.2, we have

(3.23) ∥xm − xn∥ ≤ ∥xm − x0∥2 − ∥xn − x0∥2 → 0

when n,m→∞. This implies that {xn} is a Cauchy sequence. Hence, the sequence {xn}
converges strongly to an element x†, as asserted.
Claim 3. The following limits exist:

lim
n→∞

∥xn+1 − xn∥H = 0,(3.24)

lim
n→∞

∥xn+1 − yn∥H = 0,(3.25)

lim
n→∞

∥xn − yn∥H = 0,(3.26)

lim
n→∞

∥yn − zn∥H = 0.(3.27)

Using (3.23), we get the limit (3.24), as claimed. Furthermore, by employing an argu-
ment similar to the one used in the proof of Claim 3 of the proof of Theorem 3.1, we also
obtain the limits (3.25), (3.26) and (3.27), as asserted.
Claim 4. The sequence {xn} converges strongly to x⋆ = PΞ(x0).

534 P.T.V. Huyen, N.S. Ha and T.M. Tuyen

Since xn → x†, we have yn → x† and zn → x† thanks to (3.26). Employing an argument
similar to the one used in the proof Claim 4 of the proof of Theorem 3.1, we also infer that
x† ∈ Ξ.

Finally, in (3.22), letting n → ∞, we infer that ∥x† − a0∥ ≤ ∥x⋆ − a0∥. It now follows
from (2.2) that x† = x⋆. □

Remark 3.3. Let Ti : Hi → Hi be a nonexpansive mapping on Hi and Ii be the identity
mapping on Hi for each i ∈ J = {0, 1, 2, . . . , N}. Observe that if we take Fi = Ii − Ti and
fi = 0 for all i ∈ J , then the SCSP-MOE becomes the following split common fixed point
problem with multiple output sets (SCFPP-MOS, for short):

Find p ∈ Ξ̂ := Fix(T0) ∩ (∩Ni=1L
−1
i (Fix(Ti))).

It is also easy to see that Ii − Ti is 0.5-cocoercive operator on Hi for all i ∈ J (see, for
instance, [10]). Therefore, from Algorithms 1 and 2, we arrive at the following algorithms
concerning the SCFPP-MOS.

The following algorithm is established from Algorithm 1.

Algorithm 3.

Step 1. Choose {ϱt,n} (t = 1, 2, 3, . . . , k) as in Step 1 Algorithm 1. Select arbitrary points
x−k, x−(k−1), x−(k−2), . . . , x0 ∈ H0 and set n := 0.
Step 2. Compute yn as in Step 2 of Algorithm 1.
Step 3. Define zn from the following equation:

L∗
c(n)(Ic(n) − Tc(n))(Lc(n)(zn)) + zn = yn.

Step 4. Define subsets Ân and B̂n as follows:

Ân = {a ∈ H0 : ∥zn − a∥ ≤ ∥yn − a∥},

B̂n = {b ∈ H0 : ⟨x0 − xn, b− xn⟩ ≤ 0}.

Step 5. Compute xn+1 as follows:

xn+1 = PÂn∩B̂n
(x0).

Step 6. Set n← n+ 1 and go to Step 2.

Corollary 3.1. The sequence {xn} generated by Algorithm 3 converges strongly to PΞ̂(x0) as n
tends to infinite.

The following algorithm is obtained from Algorithm 2.

Algorithm 4.

Step 1. Choose {ϱt,n} (t = 1, 2, 3, . . . , k) as in Step 1 Algorithm 1. Select arbitrary points
x−k, x−(k−1), x−(k−2), . . . , x0 ∈ H0 and set n := 0.
Step 2. Compute yn as in Step 2 of Algorithm 1.
Step 3. Define zn as in Step 3 of Algorithm 3.
Step 4. Define subset Ĉn as follows:

Ĉn = {a ∈ Cn−1 : ∥zn − a∥ ≤ ∥yn − a∥}.

Two generalized cyclic projection algorithms 535

Step 5. Compute xn+1 as follows:

xn+1 = PĈn
(x0).

Step 6. Set n← n+ 1 and go to Step 2.

Corollary 3.2. The sequence {xn} generated by Algorithm 4 converges strongly to PΞ̂(x0) as n
tends to infinite.

Remark 3.4. Let Ui be a nonempty closed and convex subsets of Hi for each i ∈ J =
{0, 1, 2, . . . , N}. Let PUi

be the metric projections from Hi onto Ui for each i ∈ J . It is
well known that PUi

is a nonexpansive mapping and Fix(PUi
) = Ui for all i ∈ J (see,

for example, [6, Proposition 4.8]). Thus, in Remark 3.3, if we replace Ti by PUi
, then the

SCSP-MOS reduce to the split feasibility problem with multiple output sets (SFP-MOS,
for short) which is introduced and studied in [15] and take the following form:

Find p ∈ Ξ := U0 ∩ (∩Ni=1L
−1
i (Ui)).

Accordingly, we can use Algorithms 3 and 4 to solve the SFP-MOS.

Remark 3.5. Let i ∈ J = {0, 1, 2, . . . , N} and Θi : Hi → 2Hi be a maximal monotone
operator on Hi. For each ri > 0, let JΘi

ri be the resolvent of Θi, that is, JΘi
ri := (Ii+riΘi)

−1.
As we know, JΘi

ri is a nonexpansive mapping and Zer(Θi) = Fix(JΘi
ri) (see, for instance, [6,

Corollary 23.10 and Proposition 23.38]), where Zer(Θi) = {a ∈ Hi : 0 ∈ Θi(a)}, the zero
point set of Θi. Thus, in Remark 3.3, if we replace Ti by JΘi

ri , then the SCSP-MOS becomes
following split common zero point problem with multiple output sets (SCZP-MOS, for
short):

Find p ∈ Ξ◦ := Zer(Θ0) ∩ (∩Ni=1L
−1
i (Zer(Θi))).

Hence, we also can apply Algorithms 3 and 4 to find a solution to the SCZP-MOS.
Let Φi : Hi → (−∞,∞] be a proper, lower semicontinuous and convex function. The

subdifferential of Φi is the set-valued operator ∂Φi : Hi → 2Hi defined by

∂Φi(x) := {a ∈ Hi : ⟨a, y − x⟩ ≤ Φi(y)− Φi(x), ∀y ∈ Hi},

for each x ∈ Hi. It is known that ∂Φ is a maximal monotone operator and

x0 ∈ Arg min
x∈Hi

Φi(x) if and only if ∂Φi(x0) ∋ 0, that is, x0 ∈ Zer(Φi),

(see, for instance, [6, Theorem 16.2 and Theorem 21.2]). Thus, we can apply Algorithms
3 and 4 for solving the split common minimum point problem with multiple output sets
(SCMP-MOS, for short), that is,

Find p ∈ Ξ⋆ := ArgminΦ0 ∩
(
∩Ni=1L

−1
i (ArgminΦi)

)
.

4. NUMERICAL EXPERIMENTS

In this section, all methods are implemented in MATLAB 14a running on the
DESKTOP-8LDGIN0, Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz with 2.40 GHz and
16GB RAM.

Example 4.2. We now consider the SCMP-MOS for which the following details the hy-
potheses:

536 P.T.V. Huyen, N.S. Ha and T.M. Tuyen

(a) Φ0 : R5 → R, Φ1 : R4 → R,Φ2 : R3 → R and Φ3 : R2 → R are convex and Fréchet
differentiable functions defined as follows:

Φ0(a) = (a1 + 2a2 + a3 + 2a4 + a5 − 1)2, ∀a = (a1, a2, a3, a4, a5) ∈ R5;

Φ1(b) = (b1 + 2b2 − b3 + b4 − 1)2, ∀b = (b1, b2, b3, b4) ∈ R4;

Φ2(c) = (2c1 − c2 + c3 − 1)2, ∀c = (c1, c2, c3) ∈ R3;

Φ3(d) = (d1 + d2 − 1)2, ∀d = (d1, d2) ∈ R2;

(b) L0 = I0 is the identity mapping on R5 while the linear bounded operators L1 :
R5 → R4,L2 : R5 → R3 and L3 : R5 → R2 are respectively defined by

L1(a) = (a1 + a2 − 4a5, 2a3 − a4 + a5, a1 + 2a2 + a3 − a4, 2a2 + 3a5);

L2(a) = (a1 − a2 + a4,−2a3 + 2a4 − a5,−2a1 + 2a2 − a3 − a4);

L3(a) = (a1 − a2 − a3 + a4 + a5,−a1 + a2 + a3 − 2a5);

for all a = (a1, a2, a3, a4, a5) ∈ R5.
It is not difficult to show that

Ξ⋆ = {x = (5− 3t,−4, 2, 1 + t, t) ∈ R5 : t ∈ R}.

We now test the convergence of the sequence {xn} generated by Algorithms 3 and 4
with

Ti = J∂Φi = (Ii + ∂Φi)
−1, i = 0, 1, 2, 3,

where I1, I2 and I3 are identity mappings on R4, R3 and R2, respectively. For this experi-
ment, we use Algorithms 1 and 2 and select the initial points as follows:

x−3 = (3, 0, 3, 0, 3), x−2 = (2, 1, 2, 1, 2),

x−1 = (1, 2, 1, 2, 1), x0 = (−4, 0, 4, 0,−4).

It is also easy to see that x⋆ = PΞ⋆(x0) = (−1,−4, 2, 3, 2).
We also compare our algorithms with some known algorithms (Algorithms 2 and 3 in

[10] (ALGO-H1 and ALGO-H2, for short, respectively). The stopping rule for all algo-
rithms was taken as

err = ∥xn − x⋆∥ < TOL,
where TOL is a given tolerance.

The numerical results are presented in Table 1 and Table 2.

Example 4.3. We now consider the SFP-MOS for which the following details the hypothe-
ses:

(a) Hi = L2[0, 1] (i = 0, 1, 2, 3) with the inner product ⟨x, y⟩ =
∫ 1

0
x(t)y(t)dt and the

induced norm ∥x∥ =
(∫ 1

0
x2(t)dt

) 1
2

for all x = x(t) ∈ L2[0, 1] and y = y(t) ∈
L2[0, 1].

(b) The set Ui (i = 0, 1, 2, 3) are given by

Ui = {x ∈ L2[0, 1] : ⟨ai, x⟩ = bi},

where ai = cos((i+1)t) and bi =
(i+ 1) sin(i+ 1) + cos(i+ 1)− 1

(i+ 1)3
, for all t ∈ [0, 1].

(c) L0 = I0 is the identity mapping on L2[0, 1]. For each i = 1, 2, 3, the linear bounded

operator Li : L2[0, 1] → L2[0, 1] is defined by Li(x)(t) =
x(t)

i+ 1
for all x = x(t) ∈

L2[0, 1].

Two generalized cyclic projection algorithms 537

TOL θn Algorithms n err CPU-time (s)

10−4

50
ALGO-H1 1607 9.9735e− 05 5.3989
ALGO-H2 303 9.9301e− 05 1.6858

100
ALGO-H1 3202 9.9604e− 05 11.3877
ALGO-H2 325 8.8377e− 05 2.1084

1000/n
ALGO-H1 263 9.1738e− 05 1.5724
ALGO-H2 319 9.6868e− 05 2.1917

10−5

50
ALGO-H1 1826 9.9617e− 06 5.9028
ALGO-H2 362 9.9748e− 06 2.4305

100
ALGO-H1 3638 9.9611e− 06 13.3407
ALGO-H2 384 9.8051e− 06 3.0366

1000/n
ALGO-H1 281 9.1894e− 06 1.6091
ALGO-H2 373 9.0063e− 06 2.9550

10−6

50
ALGO-H1 2040 9.9300e− 07 7.3342
ALGO-H2 448 9.6430e− 07 3.9373

100
ALGO-H1 4065 9.9030e− 07 14.9199
ALGO-H2 474 9.4845e− 07 5.0596

1000/n
ALGO-H1 298 9.2445e− 07 1.6584
ALGO-H2 431 8.3679e− 07 3.7227

TABLE 1. Table of numerical results with different choices of θn

It is easy to see that Ξ := U0 ∩ (∩3i=1L
−1
i (Ui)) is a nonempty set because t ∈ Ξ. For this

experiment, we use Algorithms 3 and 4 with the initial points

x−3 = sin t, x−2 = cos t, x−1 = et, x0 =
√
t, ∀t ∈ [0, 1].

We also compare our algorithms with some previous algorithms (Algorithm 5.2 in [8]
(ALGO-C, for short), Algorithms 1.5 and 1.6 in [15] (ALGO-R1 and ALGO-R2, for short,
respectively), Algorithm 4.10 in [20] (ALGO-W, for short)). The data for each algorithm
are chosen as follows:
• ALGO-C: αn =

1

n
, τ =

0.05

1 +
∑3

i=1 ∥Li∥2
and u := u(t) = t+ 1 for all t ∈ [0, 1].

• ALGO-R1: γn =
0.0005

3max0≤i≤3{∥Li∥2}
.

• ALGO-R2: γn =
0.1

3max0≤i≤3{∥Li∥2}
, αn =

1

n0.75
and f(x)(t) = 0.5x(t) for all x = x(t) ∈

L2[0, 1].

• ALGO-W: γn =
1

n0.75
and f(x)(t) = 0.5x(t) for all x = x(t) ∈ L2[0, 1].

The stopping rule for all algorithms was taken as

err =
∑3

i=0 ∥Li(xn)− PUi(Li(xn))∥2

4
< TOL,

where TOL is a given tolerance. The numerical results are showed in Table 3 and Table 4.

Remark 4.6. Tables 1, 2, 3 and 4 show that our proposed algorithms outperform several
known algorithms proposed in [8, 10, 15, 20] concerning the number of iterations and the
CPU time.

538 P.T.V. Huyen, N.S. Ha and T.M. Tuyen

TOL Algorithm 1 Algorithm 2

ϱ1,n = 1
ϱ2,n = −3
ϱ3,n = 2

10−4
n 114 72
err 9.9000e− 05 9.9920e− 05
CPU-time (s) 0.2854 0.4212

10−5
n 130 83
err 9.9781e− 06 7.7280e− 06
CPU-time (s) 0.3011 0.5535

10−6
n 146 95
err 9.3456e− 07 6.5143e− 07
CPU-time (s) 0.3232 0.7336

ϱ1,n = 50
ϱ2,n = −25
ϱ3,n = 100

10−4
n 134 123
err 9.0839e− 05 8.4315e− 05
CPU-time (s) 0.2949 0.6706

10−5
n 150 135
err 9.1640e− 06 7.6039e− 06
CPU-time (s) 0.3569 0.8289

10−6
n 166 147
err 8.8274e− 07 7.1771e− 07
CPU-time (s) 0.3900 0.9956

ϱ1,n = 100
ϱ2,n = −30
ϱ3,n = −10

10−4
n 164 151
err 9.3564e− 05 4.7631e− 05
CPU-time (s) 0.3636 1.1650

10−5
n 188 161
err 8.0723e− 06 9.8930e− 06
CPU-time (s) 0.4018 1.3968

10−6
n 206 175
err 9.9109e− 07 6.4223e− 07
CPU-time (s) 0.4511 1.6950

ϱ1,n = 1000/n
ϱ2,n = −50
ϱ3,n = 25

10−4
n 119 95
err 9.0477e− 05 6.7640e− 05
CPU-time (s) 0.2712 0.4592

10−5
n 135 106
err 9.1169e− 06 8.0157e− 06
CPU-time (s) 0.3115 0.5611

10−6
n 151 115
err 8.4995e− 07 8.7889e− 07
CPU-time (s) 0.3393 0.6583

TABLE 2. Table of numerical results with different choices of ϱt,n

5. CONCLUSIONS

We have studied the split common solution problem for monotone operator equations.
To solve this problem, we have introduced two new cyclic projection algorithms, which
are based on the hybrid or shrinking projections methods and use the general index con-
trol mapping. Our algorithm can be implemented without any need for information about

Two generalized cyclic projection algorithms 539

TOL Algorithm 3 Algorithm 4

ϱ1,n = −1
ϱ2,n = −2
ϱ3,n = −3

10−4
n 52 36
err 9.5057e− 05 7.8498e− 05
CPU-time (s) 0.2188 0.2664

10−5
n 70 65
err 8.7951e− 06 9.4747e− 06
CPU-time (s) 0.2639 0.5076

10−6
n 171 106
err 9.8082e− 07 9.4637e− 07
CPU-time (s) 0.4298 1.2527

ϱ1,n = 1
ϱ2,n = 2
ϱ3,n = 3

10−4
n 12 11
err 7.7042e− 05 6.4461e− 05
CPU-time (s) 0.1527 0.1730

10−5
n 25 25
err 9.5718e− 06 9.4475e− 06
CPU-time (s) 0.1782 0.2365

10−6
n 322 41
err 9.5877e− 07 6.1331e− 07
CPU-time (s) 0.7363 0.3728

ϱ1,n = −10
ϱ2,n = 20
ϱ3,n = −3

10−4
n 42 36
err 5.9390e− 05 7.8754e− 05
CPU-time (s) 0.2031 0.2928

10−5
n 61 50
err 3.0716e− 06 9.5896e− 06
CPU-time (s) 0.2363 0.4035

10−6
n 160 76
err 9.4149e− 07 9.1679e− 07
CPU-time (s) 0.4026 0.7797

ϱ1,n = −10
ϱ2,n = 20
ϱ3,n = 3

10−4
n 37 32
err 4.9442e− 05 9.0814e− 05
CPU-time (s) 0.1873 0.2751

10−5
n 89 48
err 4.3360e− 06 8.7057e− 06
CPU-time (s) 0.2877 0.4083

10−6
n 269 72
err 9.7636e− 07 8.7536e− 07
CPU-time (s) 0.6195 0.7357

TABLE 3. Table of numerical results with different choices of ϱt,n

the norm of the transfer mappings or the cost operators’ inverse strong monotone coef-
ficient. Thus, we can avoid the difficult task of estimating them. Two numerical exper-
iments also show that our proposed algorithms have effectively performed better than
several previous existing algorithms proposed in [8, 10, 15, 20].

540 P.T.V. Huyen, N.S. Ha and T.M. Tuyen

TOL Algorithms n err CPU-time (s)

10−4

ALGO-C 18980 9.9994e− 05 0.4136
ALGO-R1 35148 9.9999e− 05 1.2278
ALGO-R2 16733 9.9993e− 05 1.1826
ALGO-W 572 9.9985e− 05 0.2361

10−5

ALGO-C 60420 9.9998e− 06 1.3188
ALGO-R1 304782 9.9999e− 06 10.4006
ALGO-R2 81820 9.9998e− 06 2.9567
ALGO-W 2686 9.9959e− 06 1.0471

10−6

ALGO-C 191291 9.9999e− 07 4.1379
ALGO-R1 577617 9.9999e− 07 19.8820
ALGO-R2 411309 9.9999e− 07 14.7744
ALGO-W 13288 9.9997e− 07 5.0946

TABLE 4. Table of numerical results

ACKNOWLEDGMENTS

The authors sincerely thank the editor and two anonymous referees for their careful
reading, constructive comments and useful suggestions which helped us improve our pa-
per. The first author was supported by the Science and Technology Fund of Thai Nguyen
University of Technology.

REFERENCES

[1] Agarwal, R. P.; O’Regan, D.; Sahu, D. R. Fixed Point Theory for Lipschitzian-type Mappings with Applications,
Springer, 2009.

[2] Alber, Y.; Ryazantseva, I. Nonlinear ill posed problems of monotone type, Springer, Dordrecht, 2006.
[3] Bauschke, H.H. The approximation of fixed points of compositions of nonexpansive mappings in Hilbert

space. J. Math. Anal. Appl. 202 (1996), no. 1, 150–159 .
[4] Bauschke, H.H.; Borwein, J.M. On projection algorithms for solving convex feasibility problems. SIAM Rev.

38 (1996), no. 3, 367–426.
[5] Bauschke, H.H.; Combettes, P.L. Construction of best Bregman approximations in reflexive Banach spaces.

Proc. Amer. Math. Soc. 131 (2003), no. 12, 3757–3766.
[6] Bauschke, H.H.; Combettes, P.L. Convex analysis and monotone operator theory in Hilbert spaces. Springer, New

York, 2011.
[7] Cui, H. An approach for solving split common fixed point problems with multiple output sets that uses

dynamic step sizes. Numer. Funct. Anal. Optim. 44 (2023), no. 15-16, 1669–1683 .
[8] Cui, H.; Wang, F. The split common fixed point problem with multiple output sets for demicontractive

mappings. Optimization. 73 (2024), no. 6, 1933–1947, .
[9] Dong, Q.L.; Huang, J.Z.; Li, X.H.; Cho, Y.J.; Rassias, Th.M. MiKM: multi-step inertial Krasnosel’skii–Mann

algorithm and its applications. J. Global Optim. 73 (2019), 801—824
[10] Ha, N.S.; Tuyen, T.M.; Huyen, P.T.V. Inertial proximal point algorithm for the split common solution prob-

lem of monotone operator equations. Comp. Appl. Math. 42 (2023), Art. ID 303.
[11] Hao, Y.; Zhao, J. Two-step inertial Bregman projection iterative algorithm for solving the split feasibility

problem. Applicable Nonlinear Analysis. 1 (2024), 64–78.
[12] Jolaoso, L.O.; Shehu, Y.; Yao, J.C. Strongly convergent inertial proximal point algorithm without on-line

rule. J. Optim. Theory Appl. 200 (2024), no. 2, 555–584.
[13] Kopecká, E.; Reich, S. A note on alternating projections in Hilbert space. J. Fixed Point Theory Appl. 12 (2012),

41–47.
[14] Okeke, C.C.; Jolaoso, L.O.; Shehu, Y. Inertial accelerated algorithms for solving split feasibility with multi-

ple output sets in Hilbert spaces. Int. J. Nonlinear Sci. Numer. Simul. 24 (2023), no. 2, 769–790.
[15] Reich, S.; Tuyen, T.M.; Ha, M.T.N. The split feasibility problem with multiple output sets in Hilbert spaces.

Optim. Lett. 14 (2020), 2335–2353 .
[16] Reich, S.; Tuyen, T.M.; Ha, N.S. Variational inequalities over the solution sets of split variational inclusion

problems. Appl. Numer. Math. 192 (2023), 319–336 .

Two generalized cyclic projection algorithms 541

[17] Taddele, G.H.; Kumam, P.; Sunthrayuth, P.; Gebrie, A.G. Self-adaptive algorithms for solving split feasibil-
ity problem with multiple output sets. Numer. Algorithms. 92 (2023), no. 2, 1335–1366.

[18] Taiwo, A.; Reich, S.; Izuchukwu, C. Strong convergence of two regularized relaxed extragradient schemes
for solving the split feasibility and fixed point problem with multiple output sets. Appl. Anal. 102 (2023),
no. 18, 5132–5156.

[19] Tong, X.; Ling, T.; Shi, L. Self-adaptive relaxed CQ algorithms for solving split feasibility problem with
multiple output sets. J. Appl. Math. Comput. 70 (2024), 1441–1469.

[20] Wang, F. The split feasibility problem with multiple output sets for demicontractive mappings. J. Optim.
Theory Appl. 195 (2022), 837–853.

[21] Xu, H-K. A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse
Problems. 22 (2006), 2021–2034 .

1 THAINGUYEN UNIVERSITY OF TECHNOLOGY, THAINGUYEN, VIETNAM

Email address: phanthivanhuyen@tnut.edu.vn

3 THAINGUYEN UNIVERSITY OF SCIENCES, THAINGUYEN, VIETNAM

Email address: hans@tnus.edu.vn

3 THAINGUYEN UNIVERSITY OF SCIENCES, THAINGUYEN, VIETNAM

Email address: tuyentm@tnus.edu.vn

