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A fractional reduced differential transform method for
solving time fractional Black Scholes American option
pricing equation

MANZOOR AHMAD1, RAJSHREE MISHRA2 and RENU JAIN1

ABSTRACT. In this paper, fractional reduced differential transform method (FRDTM) is operated to solve
time fractional Black-Scholes American option pricing equation paying no dividends.The Black-Scholes model
plays a significant role in the evaluation of European or American call and put options. The advantage of the
proposed method to other existing methods is that it finds the solution without discretization or transformation.
While using this method, no recommended assumptions are needed and hence the computational work reduces
to a greater extent. Numerical experiments prove that the proposed method is efficient and valid for obtaining
the solution of time fractional Black-Scholes equation governing American options. This method proves to be
powerful for solving general fractional order partial differential equations (PDEs) existing in the field of Science,
Engineering and other related fields.

1. INTRODUCTION

An option over an underlying asset is defined as a contract that provides the holder
the right to sell or buy the underlying asset at a specific price on or before a specified date
known as the expiry date. Financial derivatives notably options have been studied exten-
sively during the past two or three decades. Thus, the pricing of options have attained
enough attention and evolved as an essential and key subject in applied Mathematics. In
this response, Black and Scholes in the year 1973, derived a very important mathematical
formula for the pricing of options and their assessment [5]. This formula is popularly
known as the Black-Scholes model and is employed to valuate options of both European-
type and American-type. European options may be exercised only at the time of expiry.
On the other hand American options can be exercised at any date up to expiry and hence
are more valuable and have gained a lot of attention. Various researchers have premedi-
tated different analytical and numerical methods to arrive at the solution of Black-Scholes
equation [2, 3, 4, 6, 10, 12, 13, 16, 20].

With the growth of fractal structure for financial markets, fractional calculus and frac-
tional differential equations have witnessed remarkable development over the years. Many
important phenomenon containing fractional order derivatives can be well used to model
a variety of systems like electro-magnetic waves, diffusion equations, visco-elasticity, elec-
tro chemistry, heat conduction and material sciences.

In recent times, fractional partial differential equations have been introduced to finan-
cial theory. Fractional Black-Scholes models are derived in this field. Kumar et al. man-
aged to obtain the analytic solution of fractional Black-Scholes equation for European op-
tions by extending the application of homotopy analysis method (HAM) and homotopy
perturbation method (HPM) [25]. Akrami et al. implemented the modified version of
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variational iteration method known as the reconstruction of variational iteration method
to find the solution of time fractional Black-Scholes equation [1]. Jumarie applied the
fractional Taylor formula to solve time and space fractional Black-Scholes equation and
derived the optimal fractional Merton’s portfolio [23]. The numerical solution of vari-
ous heat and wave partial differential equations have been obtained through fractional
reduced diferential transform method (FRDTM) [26].

The regular Black-Scholes equation used for the pricing of options is stated as:

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, (1.1)

where C(S, t) denotes the price of option or option premium at asset price S and time t,
S(t) is the asset price at time t, r denotes the short term interest rate, and σ represents the
volatility.

Options are categorized into two main brands as call options and put options. The right
to buy the underlying asset is known as a call option. On the other hand, put option is
the right or option to sell the underlying asset. Thus, the payoff functions for call options
and put options are given as:

Cc(S, t) = max (S −K, 0) and Cp(S, t) = max (K− S, 0), (1.2)

where Cc(S, t) and Cp(S, t) are the values of call option and put option respectively.
In this paper we consider the following time fractional Black-Scholes equation given

as:
∂αC

∂tα
+

1

2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, 0 < α ≤ 1 (1.3)

The option pricing problem is usually solved in two ways; numerically and analyti-
cally. Researchers have applied different mathematical methods to obtain the numerical
and analytical solution of European options. The focus is to find the numerical and ana-
lytical solution of American options. Macmilan and Johnson obtained the analytical ap-
proximation of American puts on a non dividend paying stock [22], [27]. While Geske and
Johnson [19] gave the analytical solution of American options on a dividend paying stock.
The obtained solution is given in a series form. Cox, Ross and Rubinstein [14] proposed
a simple and easier numerical method known as the Binomial method to solve American
options numerically. Brennan and Schwartz [7, 8] and Schwartz [33] introduced the finite
difference methods for obtaining the numerical solution of American options.

Researchers have proposed various analytical and semi-analytical methods to arrive
at the solution of fractional Black-Scholes equation. The important ones are listed as,
fractional Green function method [18], Mellin transform method [30], finite difference
method [34], He’s variational iteration method [35], Laplace transform method [24], ho-
motopy analysis method and homotopy perturbation method [25] and differential trans-
form method [11, 38].

In this paper, we have applied the fractional reduced differential transform method
(FRDTM) to obtain the approximate analytical solution of time fractional Black Scholes
equation governing American options paying no dividends on underlying assets. The
rest part of the paper is organized as follows: The basic definitions, mathematical prelimi-
naries, main notations of fractional calculus and analysis of fractional reduced differential
transform method (FRDTM) are given in section 2. In section 3 the solution of time frac-
tional Black-Scholes equation for American options is carried out through FRDTM. The
results and discussion are presented in section 4. Moreover, the graphical presentation for
interpretation of results is given in this section. Finally, the concluding remarks are given
in section 5.
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2. FRACTIONAL CALCULUS AND FRACTIONAL REDUCED DIFFERENTIAL TRANSFORM
METHOD

The basic definitions of Riemann-Liouville and Caputo fractional order integrals and
derivatives used in this work are given as follows [15, 32]:

Definition 2.1. The Riemann-Liouville definition of fractional order integral operator
Jαa f(z) is given as [32]:

Jαa f(z) =
1

Γα

∫ z

a

(z − t)α−1f(t)dt, α > 0, z > 0 (2.4)

Definition 2.2. The Riemann-Liouville fractional differential operator Dα
a f(z) of order

α > 0 is stated as [32]:

Dα
a f(z) =

{
1

Γ(m−α)
dm

dtm

∫ z
a

(z − t)m−α−1f(t)dt, m− 1 < α < m ∈ N
( ddz )

m
f(z), α = m ∈ N

}
(2.5)

Definition 2.3. The Caputo definition of fractional order derivative Dα
a (α > 0) of f(z) is

given as [9]:

Dα
a f(z) =

{
1

Γ(m−α)

∫ z
a

(z − t)m−α−1f (m)(t)dt, m− 1 < α < m ∈ N
( ddz )

m
f(z), α = m ∈ N

}
, (2.6)

where a is the initial value of function f and α defines the order of the derivative.

Definition 2.4. The Caputo definition of time fractional derivative of order α > 0 is given
as:

Dα
t v(x, y, z, t)=

∂αv(x, y, z, t)

∂tα
=


1

Γ(m−α)

∫ t
0
(t− ξ)(m−α−1) ∂

mv(x,y,z,ξ)
∂ξm dξ, m−1 <α<m

∂mv(x,y,z,t)
∂tm , α = m ∈N


(2.7)

Some important properties of Caputo’s fractional derivative are listed below:

Dα
aC = 0,

where C is constant.

Dα
a z

γ =

{
0, γ ≤ α− 1

Γ(γ+1)
Γ(γ−α+1)z

γ−α, γ > α− 1

}
(2.8)

2.1. Fractional reduced differential transform method.

Definition 2.5. Let v(x, t) be an analytic and continuously differentiable function with
respect to time variable t, then the Taylor series expansion of function v(x, t) with respect
to t = t0 is given by,

v(x, t) =

∞∑
h=0

1

Γ(αh+ 1)
[(Dα

t )hv(x, t)]t=t0(t− t0)αh (2.9)

The fractional reduced differential transform V αh (x) of v(x, t) at t = t0 is given as

V αh (x) =
1

Γ(αh+ 1)
[(Dα

t )hv(x, t)]t=t0 , (2.10)

where 0 < α ≤ 1 and Dα
t represents the fractional differential operator with respect to

time of order α. The fractional reduced differential inverse transform of V αh (x) is given as

v(x, t) =

∞∑
h=0

V αh (x)(t− t0)αh (2.11)
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Substituting equation (2.10) in equation (2.11)

v(x, t) =

∞∑
h=0

(t− t0)αh

Γ(αh+ 1)
[(Dα

t )hv(x, t)]t=t0 (2.12)

In real application the function v(x, t) can be approximated by a finite series

v∗m(x, t) =

m∑
h=0

V αh (x)(t− t0)αh, (2.13)

where m denotes the order of the approximation. Therefore the exact solution is obtained
by the following relation

v(x, t) = lim
m→∞

v∗m(x, t) =
∞∑
h=0

V αh (x)(t− t0)αh (2.14)

In above equation (2.14) if we put α = 1, the fractional reduced differential transform
method (FRDTM) converts to regular differential transform method (DTM) [11, 17, 21, 38].

Theorem 2.1. From above definitions , some basic properties and fundamental operations of
FRDTM are listed below [29, 31].
(a) If v(X, t) = u(X, t)± w(X, t), then V αh (X) = Uαh (X)±Wα

h (X).

(b) If v(X, t) = λu(X, t), then V αh (X) = λUαh (X).

(c) If v(X, t) = ∂u(X,t)
∂x , then V αh (X) =

∂Uαh (X)
∂x .

(d) If v(X, t) = Dα
t0u(X, t), then V αh (x) = Γ(α(h+1)+1)

Γ(αh+1) Uαh+1(X).

(e) If v(X, t) = xl11 x
l2
2 x

l3
3 t
m, then V αh (X) = xl11 x

l2
2 x

l3
3 δ(αh−m), where

δ(αh−m) =

{
1 ifαh = m
0 ifαh 6=m

}
.

(f) If v(X, t) = DNα
t0 u(X, t), then V αh (X) = Γ(αh+Nα+1)

Γ(αh+1) Uαh+N (X).

(g) If v(X, t) = ( ∂β

∂xiβ
)u(X, t), then V αh (X) = ( ∂β

∂xiβ
)Uαh (X).

3. TIME FRACTIONAL BLACK-SCHOLES EQUATION GOVERNING AMERICAN OPTIONS

In this section, the proposed method is employed on time fractional Black-Scholes
equation governing American options with non dividend paying assets. As it is evident
that the Mittag-Leffler function exists in the solution of the problem. The fair price of
American options on a single underlying asset is given by the following time fractional
Black-Scholes partial differential equation.

∂αC

∂tα
+

1

2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, 0 < α ≤ 1, (3.15)

where C(S, t) denotes the option price or option premium, S(t) denotes the asset price at
time t, σ represents the volatility, r denotes the risk free rate of interest.
The pay off functions for American call and put options are given by:

Cc(S, t) = max (S −K, 0) and Cp(S, t) = max (K− S, 0), (3.16)

where K denotes the strike price.
The early exercise constraint for call and put options is given as:

Cc(S, t) ≥ max (S −K, 0) and Cp(S, t) ≥ max (K− S, 0) (3.17)
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Equation (3.15) can be turned into a forward equation by making certain transformations.
We set:

x = ln(
S

K
), τ =

1

2
σ2(T − t) and C(S, t) = kυ(x, τ)

Applying the above transformations in equations (3.15) to (3.17) the Black-Scholes model,
Eq. (3.15) reduces to:

∂αυ

∂τα
=
∂2υ

∂x2
+ (k − 1)

∂υ

∂x
− kυ, 0 < α ≤ 1, where k =

2r

σ2
(3.18)

with initial condition

υ(x, 0) =

{
max(ex − 1, 0), for call options
max(1− ex, 0), for put options

}
(3.19)

and early exercise constraints

υ(x, 0) ≥
{

max(ex − 1, 0), for call options
max(1− ex, 0), for put options

}
(3.20)

By putting

υ(x, t) = exp

[
−1

2
(k − 1)x− 1

4
(k + 1)2τ

]
u(x, t)

equation (3.18) reduces to

∂αu

∂τα
=
∂2u

∂x2
, −∞ < x <∞, α > 0 (3.21)

with initial condition

u(x, 0) =

{
max(exp[ 1

2 (k + 1)x]− exp[ 1
2 (k − 1)x], 0), for call options

max(exp[ 1
2 (k − 1)x]− exp[ 1

2 (k + 1)x], 0), for put options

}
(3.22)

and early exercise constraints

u(x, τ)≥

{
exp{ 1

4 (k+1)2τ}max(exp[ 1
2 (k+1)x]−exp[ 1

2 (k−1)x], 0), for call options

exp{ 1
4 (k+1)2τ}max(exp[ 1

2 (k−1)x]−exp[ 1
2 (k+1)x], 0), for put options

}
(3.23)

The option price in terms of financial variables can be obtained by

V (S, t) = Kυ(x, τ) = K exp[−1

2
(k − 1)x− 1

4
(k + 1)2τ ]u(x, τ) (3.24)

Applying the fractional reduced differential transform method on equation(3.21) we have

Uαh+1(x) =
Γ(αh+ 1)

Γ(α(h+ 1) + 1)
[
∂2

∂x2
Uαh (x)] (3.25)

Here we consider the initial condition as

Uα0 (x) = exp[
1

2
(k + 1)x]− exp[

1

2
(k − 1)x], x > 0 (3.26)

For h = 0, 1, 2, 3, ... using recurrence relation, equation (3.25) and transformed initial con-
dition, equation (3.26) we get,
for h = 0;

Uα1 (x) =
1

Γ(α+ 1)
[
∂2

∂x2
Uα0 (x)] =

1

Γ(α+ 1)
[
∂2

∂x2
{exp[

1

2
(k + 1)x]− exp[

1

2
(k − 1)x]}]

or
Uα1 (x) =

1

4

1

Γ(α+ 1)
[(k + 1)2e

1
2 (k+1)x − (k − 1)2e

1
2 (k−1)x], (3.27)
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for h = 1;

Uα2 (x) =
1

Γ(α+ 1)
[
∂2

∂x2
Uα1 (x)] =

1

16

1

Γ(2α+ 1)
[(k+ 1)4e

1
2 (k+1)x− (k−1)4e

1
2 (k−1)x] (3.28)

for h = 2;

Uα3 (x) =
1

Γ(α+ 1)
[
∂2

∂x2
Uα2 (x)] =

1

64

1

Γ(3α+ 1)
[(k+ 1)6e

1
2 (k+1)x− (k−1)6e

1
2 (k−1)x] (3.29)

for h = 3;

Uα4 (x) =
1

Γ(α+ 1)
[
∂2

∂x2
Uα3 (x)]

Uα4 (x) =
1

256

1

Γ(4α+ 1)
[(k + 1)8e

1
2 (k+1)x − (k − 1)8e

1
2 (k−1)x] (3.30)

In this way, we get,

Uαn (x) =
1

22n

1

Γ(nα+ 1)
[(k + 1)2ne

1
2 (k+1)x − (k − 1)2ne

1
2 (k−1)x] (3.31)

Using fractional reduced differential inverse transform as

u(x, τ) =

∞∑
n=0

Uαn (x)ταn (3.32)

The solution of the problem (3.15) through fractional reduced differential transform method
is given as;

u(x, τ) =

∞∑
n=0

τnα

22nΓnα+ 1
[(k + 1)2ne

1
2 (k+1)x − (k − 1)2ne

1
2 (k−1)x] (3.33)

= e
1
2 (k+1)x

∞∑
n=0

τnα

Γnα+ 1
(
(k + 1)

2
)2n − e 1

2 (k−1)x
∞∑
n=0

τnα

Γnα+ 1
(
(k − 1)

2
)2n

= epxEα(p2tα)− eqxEα(q2tα), (3.34)

where p = (k+1)
2 and q = (k−1)

2 . Moreover Eα(x) is the one parameter Mittag-Leffler
function defined in [28].

Equation (3.34) gives the closed form solution of equation (3.15). It is well known that
the above solution is obtained from a recursive relation and the exact solution can be
obtained by adding more terms to the series. Once the solution is obtained and the option
value is calculated we implement Bellman’s principle to ensure that

u(x, τ)≥

{
exp{ 1

4 (k+1)2τ}max(exp[ 1
2 (k+1)x]−exp[ 1

2 (k−1)x], 0), for call options

exp{ 1
4 (k+1)2τ}max(exp[ 1

2 (k−1)x]−exp[ 1
2 (k+1)x], 0), for put options

}
(3.35)

4. RESULTS AND DISCUSSION

In this section, the graphical view of the series solution given in equation (3.34) for
time fractional Black-Scholes equation governing American options paying no dividends
are presented. The graphical solutions are computed using MATLAB programming. In
figures 1 and 2, the interval used for parameters for x and τ is same while different values
of α and k are taken. Figures 3 and 4, show the graphical representation of the solution
given in equation (3.34). For each case, different intervals are used for the time parameter
τ , α and k while the same interval is used for x.

Figure 1, represents the surface plot of call option u(x, τ) corresponding to asset price
x and time τ . Effects of fractional order α on option price are shown in Figure 1, left and
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TABLE 1. Numerical solution of American Call options through FRDTM

τ x α = 1, k = 1 α = 0.9, k = 1 α = 1, k = 2 α = 0.9, k = 2

0.25 0.3 0.3375 0.4030 0.8095 0.9669
0.6 0.4555 0.5440 1.2990 1.5515
0.9 0.6148 0.7343 2.0715 2.4741

0.50 0.3 0.6749 0.7521 1.6190 1.8042
0.6 0.9110 1.0152 2.5981 2.8952
0.9 1.2297 1.3703 4.1430 4.6168

0.75 0.3 1.0124 1.0883 2.4286 2.5988
0.6 1.3665 1.4623 3.8971 4.1703
0.9 1.8445 1.9738 6.2144 6.6501

1.0 0.3 1.3498 1.4035 3.2381 3.3668
0.6 1.8220 1.8944 5.1961 5.4027
0.9 2.4594 2.5571 8.2859 8.6153

right. The comparison analysis show that for greater order of α, call option has a lower
value, while for lower orders of α call option has a higher value.

In Figure 2, the surface plot of option value is identical to that of Figure 1. It is noted
that for higher value of k, the option value increases exponentially. Moreover for a higher
value of α, the value of option price decreases and increases for lower value of α.

In Figures 3 and 4, prices are investigated for various orders of α = 0.1, 0.2, ..., 1. Ef-
fects of fractional order α are shown. It can be deduced from the comparison test that the
a lower call option value is obtained for higher order of α and a higher call option value
is obtained for lower value of α. Moreover, in Figures 3 and 4 (left and right), the time
parameter τ and k also varies, the option price increases with increasing k and τ .

The numerical solution at different values of α, k, x and τ are shown in Table 1 given be-
low. Table 2 lists the computational values of American call options through fractional re-
duced differential transform method (FRDTM) and is compared with the results obtained
by other numerical methods such as the Laplace transform method (LTM) developed by
Wong and Zhao [36] and finite difference method (FDM) [7, 33, 37]. At maturity τ = 3, it
can be well observed that option price decreases with decreasing α. By comparison with
other methods, the advantages of this method can be observed.

FIGURE 1. demonstrates the solution of equation (3.15): (Left) for α = 1,
k = 1, (Right) for α = 0.9, k = 1.
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FIGURE 2. demonstrates the solution of equation (3.15): (Left) for α = 1,
k = 2, (Right) for α = 0.9, k = 2.

FIGURE 3. demonstrates the solution of equation (3.15): (Left) for α =
0.1, 0.2, ..., 1, k = 1, τ = 1, (Right) for α = 0.1, 0.2, ..., 1, k = 1, τ = 0.5.

FIGURE 4. demonstrates the solution of equation (3.15): (Left) for α =
0.1, 0.2, ..., 1, k = 2, τ = 1 (Right) for α = 0.1, 0.2, ..., 1, k = 2, τ = 0.5.
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TABLE 2. Numerical solution of American Call options through FRDTM,
LTM and FDM

τ = 3 x = 0.5 k=1
α FRDTM LTM FDM

0.2 2.2368 2.2376 2.2398
0.4 2.8835 2.8712 2.8762
0.5 3.2221 3.2168 3.2213
0.7 3.9149 3.8926 3.9014
0.9 4.6075 4.5834 4.5891
1.0 4.9459 4.7987 4.8165

5. CONCLUSION

With the growth of fractional order differential equations in different fields of applied
Mathematics, it is necessary to modify solution techniques to approach such problems.
In this work we have introduced the fractional reduced differential transform method
coupled with Bellman’s principle of optimality to obtain the solution of American option
pricing problem based on time fractional Black-Scholes equation. By using FRDTM, the
solution can be obtained in a series form and the Mittag-Leffler function appears in the
solution. The successful application of the FRDTM proves that this technique is effec-
tive and requires less computational work to solve fractional partial differential equation.
The advantage of using FRDTM is that it enhances the effectiveness of the computational
work without utilizing linearization, discretization and restrictive assumptions. Numeri-
cal results show that FRDTM is an efficient and useful technique in order to find the exact
and approximate solutions of fractional differential equations. Numerical results are pre-
sented to illustrate the efficacy and performance of the proposed method.

REFERENCES

[1] Akrami, M. H. and Erjaee, G. H., Examples of Analytical Solutions by means of Mittag-Leffler Function of Frac-
tional Black-Scholes Option Pricing Equation, Frac. Calc. Appl. Anal., 18 (2015), No. 1, 38–47

[2] Amster, P., Averbuj, C. G. and Mariani, M. C., Solutions to a stationary non-linear Black-Scholes type equation,
J. Math. Anal. Appl., 276 (2002), No. 1, 231–238

[3] Amster, P., Averbuj, C. G. and Mariani, M. C., Stationary solutions for two nonlinear Black-Scholes type equations,
Appl. Numer. Math., 47 (2003), No. 3-4, 275–280

[4] Ankudinova, J. and Ehrhardt, M., On the numerical solution of nonlinear Black-Scholes equations, Comput.
Math. Appl., 56 (2008), No. 3, 799–812

[5] Black, F. and Scholes, M., The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), No. 3, 637–654
[6] Bohner, M. and Zheng, Y., On analytical solution of the Black-Scholes equation, Appl. Math. Lett., 22 (2009), No.

3, 309–313
[7] Brennan, M. J. and Schwartz, E. S., The valuation of American put options, J. Finance, 32 (1977), No. 2, 449–462
[8] Brennan, M. J. and Schwartz, E. S., Finite difference methods and jump processes arising in the pricing of contingent

claims: A synthesis, J. Financ. Quant. Anal., 13 (1978), No. 3, 461–474
[9] Caputo, M., Elasticita e Dissipazione, Bologna, Zani-Chelli, 1969

[10] Cen, Z. and Le, A., A robust and accurate finite difference method for a generalized Black-Scholes equation, J.
Comput. Appl. Math., 235 (2011), No. 13, 3728–3733

[11] Chen, C. K. and Ho, S. H., Solving partial differential equations by two-dimensional differential transform method,
Appl. Math. Comput., 106 (1999), No. 2-3, 171–179

[12] Company, R., Navarro, E., Pintos, J. R. and Ponsoda, E., Numerical solution of linear and nonlinear Black-Scholes
option pricing equations, Comput. Math. Appl., 56 (2008), No. 3, 813–821

[13] Company, R., Jodar, L. and Pintos, J. R., A numerical method for European option pricing with transaction costs
nonlinear equation, Math. Comput. Modelling, 50 (2009), No. 5-6, 910–920

[14] Cox, J. C., Ross, S. A. and Rubinstein, M., Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), No.
3, 229–263



10 M. Ahmad, R. Mishra and R. Jain

[15] Dalir, M. and Bashour, M., Applications of Fractional Calculus, Appl. Math. Sci., 4 (2010), No. 21-24, 1021–1032
[16] Fabiao, F., Grossinho, M. R. and Simoes, O. A., Positive solutions of a Dirichlet problem for a stationary nonlinear

Black-Scholes equation, Nonlinear Anal., 71 (2009), No. 10, 4624–4631
[17] Figen, K.O. and Ayaz, F., Solitary wave solutions for the KdV and mKdV equations by differential transform method,

Chaos Solitons Fractals 41 (2009), no. 1, 464-72.
[18] Gepreel, K. A., The Homotopy Perturbation Method Applied to the Nonlinear Fractional Kolmogorov-Petrovskii-

Piskunov Equations, Appl. Math. Lett., 24 (2011), No. 8, 1428–1434
[19] Geske, R. and Johnson, H.E., The American put options valued analytically, J. Finance, 39 (1984), No. 5,

1511–1524
[20] Gulkac, V., The homotopy perturbation method for the Black-Scholes equation, J. Stat. Comput. Simul., 80 (2010),

No. 12, 1349–1354
[21] Jang, M. J., Chen, C. L. and Liu, Y. C., Two dimensional differential transform for partial differential equations,

Appl. Math. Comput., 121 (2001), No. 2-3, 261–70
[22] Johnson, H. E., An analytic approximation for the American put price, J. Financ. Quant. Anal., 18 (1983), No. 1,

141–148
[23] Jumarie, G., Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time.

Application to Merton’s optimal portfolio, Comput. Math. Appl., 59 (2010), No. 3, 1142–1164
[24] Kumar, S., Yildirim, A., Khan, Y., Jafari, H., Sayevand, K. and Wei, L., Analytical solution of fractional Black-

Scholes European option pricing equation by using Laplace transform, J. Frac. Calc. Appl., 2 (2012), No. 8, 1–9
[25] Kumar, S., Kumar, D. and Singh, J., Numerical computation of fractional Black-Scholes equation arising in financial

market, Egypt. J. Basic Appl. Sci., 1 (2014), No. 3-4, 177–183
[26] Lu, D., Wang, J. Arshad, M., Abdullah and Ali, A., Fractional Reduced Differential Transform Method for Space-

Time Fractional Order Heat-Like and Wave-Like Partial Differential Equations, J. Adv. Phys., 6 (2017), No. 4,
598–607

[27] Macmillan, L. W., An analytic approximation for the American put price, Adv. Fut. Opt. Res., 1 (1986), 119–139
[28] Mittag-Leffler, G. M., Sopra la funzione Eα(x), Rend. Acad. Lincei., 13 (1904), No. 5, 3–5
[29] Momani, S., Odibat, Z. and Erturk, V. S., Generalized differential transform method for solving a space and time-

fractional diffusion wave equation, Phys. Lett. A., 370 (2007), No. 5-6, 379–87
[30] Odibat, Z. and Momani, S., A Reliable Treatment of Homotopy Perturbation Method for Klein-Gordon Equations,

Phys. Lett. A., 365 (2007), No. 5-6, 351–357
[31] Odibat, Z. and Momani, S., A generalized differential transform method for linear partial differential equations of

fractional order, Appl. Math. Lett., 21 (2008), No. 2, 194–99
[32] Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999
[33] Schwartz, E. S., The valuation of warrants: Implementing a new approach, J. Financ. Econ., 4 (1977), No. 1, 79–93
[34] Song, L. and Wang, W., Solution of the fractional Black-Scholes option pricing model by finite difference method,

Abstr. Appl. Anal. 2013, Art. ID 194286, 10 pp.
[35] Wazwaz, A. M., The Variational Iteration method for solving linear and non linear ODEs and scientific models with

variable coefficients, Cent. Eur. J. Eng., 4 (2014), 64–71
[36] Wong, H.Y. and Zhao, J., Valuing American options under the CEV model by Laplace-Carson transforms, Oper.

Res. Lett., 38 (2010), No. 5, 474–481
[37] Wu, L. and Kwok, Y. K., A front-fixing finite difference method for the valuation of American options, J. Financ.

Eng., 6 (1997), No. 2, 83–97
[38] Zhou, J. K., Differential Transformation and Its Application for Electrical Circuits, Huazhong University Press,

Wuhan, China, 1986

1SCHOOL OF MATHEMATICS AND ALLIED SCIENCES

JIWAJI UNIVERSITY

GWALIOR, 474011, INDIA

Email address: ju somaas.mz@jiwaji.edu
Email address: renujain3@rediffmail.com

2GOVT. MODEL SCIENCE COLLEGE

GWALIOR, 474011, INDIA

Email address: rajshreemishraa@gmail.com


