An area formula for the triangle of residual centroids and its generalizations

Szilárd András and SÁndor Nagydobai Kiss

Abstract

In this paper we consider an inscribed triangle $X Y Z$ to a triangle $A B C$ and we establish a relation between the area of these two triangles and the area of the triangle determined by the centroids of the residual triangles $A Z Y, B X Z$ and $C Y X$. Moreover we generalize this relation to the case of a general barycenter instead of centroid and also to quadrilaterals.

1. Introduction

In this paper we consider the points X, Y, Z on the sides $B C, C A$ and $A B$ of an arbitrary triangle $A B C$ and we denote by G_{A}, G_{B}, G_{C} the centroids of the residual triangles $A Z Y, B X Z$ and $C Y X$ respectively. We establish a relation (see Theorem 2) between the area of the triangles $G_{A} G_{B} G_{C}, X Y Z$ and $A B C$. This is motivated by some earlier results published by M. Dalcín in [3] and E. Eckart in [5] and [6] concerning triangle centers of residual triangles. More exactly in [3] the author asserted the following property without proof:

Theorem 1.1 (Proposition 8). An inscribed triangle and its triangle of residual orthocenters have equal areas.

This is a consequence of a general property of hexagons having three pairs of parallel sides:

Theorem 1.2. If the pairs of opposite sides of the hexagon $A B C D E F$ are parallel, then the triangles $A C E$ and $B D F$ have equal area.

This property was a contest problem in 1958 at the famous József Kürschák Mathematical Competition and the solution can be found in [2].

In this paper we establish a relation between the area of the initial triangle $A B C$, the inscribed triangle $X Y Z$ and the triangle determined by the centroids of the residual triangles $A Z Y, B X Z$ and $C Y X$. Moreover we give a possible generalization for quadrilaterals.

2. Main results

Theorem 2.3. The area of the triangle of residual centroids satisfies the following relation:

$$
\begin{equation*}
9 \cdot \operatorname{Area}\left(G_{A} G_{B} G_{C}\right)=2 \cdot \operatorname{Area}(A B C)+\operatorname{Area}(X Y Z) . \tag{2.1}
\end{equation*}
$$

Proof. Let $x, y, z \in \mathbb{R}$ such that the normalized barycentric coordinates of the points X, Y, Z are

$$
X=(0,1-x, x), Y=(y, 0,1-y), Z=(1-z, z, 0) .
$$

[^0]

Figure 1. The centroids of the residual triangles

With these notations we have

$$
\begin{align*}
\operatorname{Area}(X Y Z) & =\operatorname{Area}(A B C) \cdot\left|\begin{array}{ccc}
0 & 1-x & x \\
y & 0 & 1-y \\
1-z & z & 0
\end{array}\right| \\
& =\operatorname{Area}(A B C) \cdot(x y z+(1-x)(1-y)(1-z)) . \tag{2.2}
\end{align*}
$$

The barycentric coordinates of the centroid G_{A}, G_{B} and G_{C} can be expressed as follows:

$$
G_{A}=\frac{1}{3}(2+y-z, z, 1-y), G_{B}=\frac{1}{3}(1-z, 2+z-x, x), G_{C}=\frac{1}{3}(y, 1-x, 2+x-y)
$$

so the area of the triangle $G_{A} G_{B} G_{C}$ is

$$
\begin{align*}
\operatorname{Area}\left(G_{A} G_{B} G_{C}\right) & =\frac{1}{27} \operatorname{Area}(A B C) \cdot\left|\begin{array}{ccc}
2+y-z & z & 1-y \\
1-z & 2+z-x & x \\
y & 1-x & 2+x-y
\end{array}\right| \\
& =\frac{1}{9} \operatorname{Area}(A B C) \cdot\left|\begin{array}{ccc}
1 & z & 1-y \\
1 & 2+z-x & x \\
1 & 1-x & 2+x-y
\end{array}\right| \\
& =\frac{1}{9} \operatorname{Area}(A B C) \cdot(2+x y z+(1-x)(1-y)(1-z)) . \tag{2.3}
\end{align*}
$$

From (2.3) and (2.2) we obtain (2.1), so the proof is complete.
Remark 2.1. The area is considered as oriented one, so the relation remains true even if, the points X, Y, Z are outside the segments $B C, C A, A B$.

Remark 2.2. Using Theorem 1.1. we obtain the following equivalent formulation:

$$
\begin{equation*}
9 \cdot \operatorname{Area}\left(G_{A} G_{B} G_{C}\right)=2 \cdot \operatorname{Area}(A B C)+\operatorname{Area}\left(H_{A} H_{B} H_{C}\right), \tag{2.4}
\end{equation*}
$$

where H_{A}, H_{B} and H_{C} are the orthocenters of the residual triangles $A Z Y, B X Z$ and $C Y X$ respectively.

Theorem 2.4. Consider the arbitrary points X, Y, Z on the sides $B C, C A$ and $A B$ of an arbitrary triangle $A B C$. The points A_{1}, A_{2} and A_{3} have normalized barycentric coordinates $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, $\left(\lambda_{3}, \lambda_{1}, \lambda_{2}\right)$ and $\left(\lambda_{2}, \lambda_{3}, \lambda_{1}\right)$ respectively with respect to the triangle $A Z Y$. In a similar way we consider the points B_{1}, B_{2} and B_{3} in the triangle $B X Z$ and C_{1}, C_{2}, C_{3} in the triangle $C Y X$.

Figure 2. Replacing the centroid with 3 points
With these notations we have
$\operatorname{Area}\left(A_{1} B_{1} C_{1}\right)+\operatorname{Area}\left(A_{2} B_{2} C_{2}\right)+\operatorname{Area}\left(A_{3} B_{3} C_{3}\right)=c_{1} \cdot \operatorname{Area}(A B C)+c_{2} \cdot \operatorname{Area}(X Y Z)$,
where

$$
\begin{gather*}
c_{1}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{1} \cdot \lambda_{2}+\lambda_{2} \cdot \lambda_{3}+\lambda_{3} \cdot \lambda_{1} \tag{2.5}\\
c_{2}=2\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right)-\left(\lambda_{1} \cdot \lambda_{2}+\lambda_{2} \cdot \lambda_{3}+\lambda_{3} \cdot \lambda_{1}\right)
\end{gather*}
$$

Remark 2.3. If $\lambda_{1}=\lambda_{2}=\lambda_{3}=\frac{1}{3}$, we have $A_{1}=A_{2}=A_{3}=G_{A}$ the centroid of $A Y Z$, $B_{1}=B_{2}=B_{3}=G_{B}$ the centroid of $B Z X$ and $C_{1}=C_{2}=C_{3}=G_{C}$ the centroid of $C X Y$. Moreover in this case $c_{1}=\frac{2}{3}$ and $c_{2}=\frac{1}{3}$, so we obtain (2.1).
Proof of theorem 2.3. Using the same notations as in proof of Theorem 2.3 we obtain for the coordinates of the points A_{1}, B_{1} and C_{1} the following expressions:

$$
\begin{aligned}
& A_{1}=\left(\lambda_{1}+\lambda_{2} \cdot(1-z)+\lambda_{3} \cdot y, \lambda_{2} \cdot z, \lambda_{3} \cdot(1-y)\right), \\
& B_{1}=\left(\lambda_{1} \cdot(1-z), \lambda_{1}+\lambda_{2} \cdot(1-x)+\lambda_{3} \cdot z, \lambda_{2} \cdot x\right), \\
& C_{1}=\left(\lambda_{1} \cdot y, \lambda_{2} \cdot(1-x), \lambda_{1}+\lambda_{2} \cdot(1-y)+\lambda_{3} \cdot x\right) .
\end{aligned}
$$

So for the ratio $R_{1}=\frac{\operatorname{Area}\left(A_{1} B_{1} C_{1}\right)}{\operatorname{Area}(\operatorname{ABC})}$ we obtain (using $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$):

$$
\begin{align*}
& R_{1}=\left|\begin{array}{ccc}
\lambda_{1}+\lambda_{2} \cdot(1-z)+\lambda_{3} \cdot y & \lambda_{2} \cdot z & \lambda_{3} \cdot(1-y) \\
\lambda_{1} \cdot(1-z) & \lambda_{1}+\lambda_{2} \cdot(1-x)+\lambda_{3} \cdot z & \lambda_{2} \cdot x \\
\lambda_{1} \cdot y & \lambda_{2} \cdot(1-x) & \lambda_{1}+\lambda_{2} \cdot(1-y)+\lambda_{3} \cdot x
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & \lambda_{2} \cdot z & \lambda_{3} \cdot(1-y) \\
1 & \lambda_{1}+\lambda_{2} \cdot(1-x)+\lambda_{3} \cdot z & \lambda_{2} \cdot x \\
1 & \lambda_{2} \cdot(1-x) & \lambda_{1}+\lambda_{2} \cdot(1-y)+\lambda_{3} \cdot x
\end{array}\right| \\
& =\left|\begin{array}{cc}
\lambda_{1}+\lambda_{2} \cdot(1-x-z)+\lambda_{3} \cdot z & \lambda_{2} \cdot x-\lambda_{3} \cdot(1-y) \\
\lambda_{2} \cdot(1-x-z) & \lambda_{1}+\lambda_{2} \cdot(1-y)+\lambda_{3} \cdot(x+y-1)
\end{array}\right| \\
& =\left(\lambda_{1}+\lambda_{3} \cdot z\right)\left|\begin{array}{cc}
1 & \lambda_{2} \cdot x-\lambda_{3} \cdot(1-y) \\
0 & \lambda_{1}+\lambda_{2} \cdot(1-y)+\lambda_{3} \cdot(x+y-1)
\end{array}\right|+ \\
& \lambda_{2}(1-x-z)\left|\begin{array}{cc}
1 & \lambda_{2} \cdot x-\lambda_{3} \cdot(1-y) \\
1 & \lambda_{1}+\lambda_{2} \cdot(1-y)+\lambda_{3} \cdot(x+y-1)
\end{array}\right| . \tag{2.6}
\end{align*}
$$

So we have

$$
R_{1}=\lambda_{1}^{2}+\lambda_{2}^{2}(1-x-y)(1-x-z)+\lambda_{3}^{2}(z x+z y-z)+
$$

$$
+\lambda_{1} \cdot \lambda_{2}(2-x-y-z)+\lambda_{2} \cdot \lambda_{3}\left(z+x-z y-x z-x^{2}\right)+\lambda_{3} \cdot \lambda_{1}(x+y+z-1) .
$$

By a similar calculation we deduce a relation for $R_{2}=\frac{\operatorname{Area}\left(A_{2} B_{2} C_{2}\right)}{\operatorname{Area}(A B C)}$ and for $R_{3}=\frac{\operatorname{Area}\left(A_{3} B_{3} C_{3}\right)}{\operatorname{Area}(A B C)}$. Due to the symmetry of the notations by adding the three ratios we obtain

$$
R_{1}+R_{2}+R_{3}=c_{1}+c_{2}(1-x-y-z+x y+y z+z x)
$$

which completes the proof.

Example 2.1. If M_{1} is the midpoint of $Z Y$, the midpoint of $A M_{1}$ has barycentric coordinates $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$, so applying the previous result we deduce
$\operatorname{Area}\left(A_{1} B_{1} C_{1}\right)+\operatorname{Area}\left(A_{2} B_{2} C_{2}\right)+\operatorname{Area}\left(A_{3} B_{3} C_{3}\right)=\frac{11}{16} \cdot \operatorname{Area}(A B C)+\frac{7}{16} \cdot \operatorname{Area}(X Y Z)$,
where $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ and C_{1}, C_{2}, C_{3} are the midpoints of the corrsponding medians in the triangles $A Z Y, B X Z$ and $C Y X$ respectively.

In what follows we give a more general version for the relation (2.1).
Theorem 2.5. If G_{1}, G_{2} and G_{3} are the centroids of the triangles $A_{11} A_{12} A_{13}, A_{21} A_{22} A_{23}$ and $A_{31} A_{32} A_{33}$, then

$$
\begin{align*}
9 \text { Area }\left[G_{1} G_{1} G_{3}\right]= & \text { Area }\left[A_{11} A_{21} A_{31}\right]+\text { Area }\left[A_{12} A_{22} A_{32}\right]+\text { Area }\left[A_{13} A_{23} A_{33}\right]+ \\
& + \text { Area }\left[A_{11} A_{22} A_{33}\right]+\text { Area }\left[A_{12} A_{23} A_{31}\right]+\text { Area }\left[A_{13} A_{21} A_{32}\right]+ \\
& + \text { Area }\left[A_{11} A_{23} A_{32}\right]+\text { Area }\left[A_{12} A_{21} A_{33}\right]+\text { Area }\left[A_{13} A_{22} A_{31}\right] \tag{2.8}
\end{align*}
$$

Proof. For the area of an arbitrary triangle $U V T$ we use it's expression in complex numbers (see [1], page 109, [7], [4]):

$$
\operatorname{Area}[U V T]=\frac{1}{2} \operatorname{Im}(u \bar{v}+v \bar{t}+t \bar{u})
$$

where u, v, t are the affixes of the points U, V, T. Using this expression and the affixes of the centroids, we have

$$
\begin{gathered}
9 \text { Area }\left[G_{1} G_{2} G_{3}\right]=\frac{1}{2} \operatorname{Im}\left(\left(a_{11}+a_{12}+a_{13}\right) \overline{\left(a_{21}+a_{22}+a_{23}\right)}\right. \\
\left.+\left(a_{21}+a_{22}+a_{23}\right) \overline{\left(a_{31}+a_{32}+a_{33}\right)}+\left(a_{31}+a_{32}+a_{33}\right) \overline{\left(a_{11}+a_{12}+a_{13}\right)}\right)
\end{gathered}
$$

So

$$
\begin{gathered}
9 \text { Area }\left[G_{1} G_{2} G_{3}\right]=\frac{1}{2} \operatorname{Im} \sum_{i=1}^{3}\left(\sum_{j=1}^{3} a_{i j}\right)\left(\sum_{j=1}^{3} \overline{a_{i+1 j}}\right) \\
=\frac{1}{2} \operatorname{Im}\left(\left(a_{11} \overline{a_{21}}+a_{21} \overline{a_{31}}+a_{31} \overline{a_{11}}\right)+\left(a_{12} \overline{a_{22}}+a_{22} \overline{\overline{a_{32}}}+a_{32} \overline{a_{12}}\right)\right. \\
\left.\quad+\left(a_{13} \overline{a_{23}}+a_{23} \overline{a_{33}}+a_{33} \overline{a_{31}}\right)\right) \\
+\frac{1}{2} \operatorname{Im}\left(\left(a_{11} \overline{a_{22}}+a_{22} \overline{\overline{33}}+a_{33} \overline{a_{11}}\right)+\left(a_{12} \overline{a_{23}}+a_{23} \overline{a_{31}}+a_{31} \overline{a_{12}}\right)\right. \\
\left.\quad+\left(a_{13} \overline{a_{21}}+a_{21} \overline{a_{32}}+a_{32} \overline{a_{13}}\right)\right)+ \\
+\frac{1}{2} \operatorname{Im}\left(\left(a_{11} \overline{a_{23}}+a_{23} \overline{\overline{a_{32}}}+a_{32} \overline{\overline{a_{11}}}\right)+\left(a_{12} \overline{a_{21}}+a_{21} \overline{a_{33}}+a_{33} \overline{a_{12}}\right)\right. \\
\left.+\left(a_{13} \overline{a_{22}}+a_{22} \overline{a_{31}}+a_{31} \overline{a_{13}}\right)\right) .
\end{gathered}
$$

Identifying the terms in the right-hand side as areas we obtain (2.8), so the proof is complete.

Figure 3. Special configuration of three triangles

Remark 2.4. Using the notations of the figure 3 ($X=A_{22}=A_{33}, \ldots$) we obtain

$$
\begin{align*}
9 \text { Area }\left[G_{1} G_{2} G_{3}\right]= & \text { Area }[A B C]+2 \text { Area }[X Y Z] \\
& + \text { Area }[A Z Y]+\text { Area }[B X Z]+\text { Area }[C Y X] \tag{2.9}
\end{align*}
$$

so if the points $X Y Z$ are on the sides of the triangle $A B C$, we have

$$
\text { Area }[A B C]=\text { Area }[X Y Z]+\text { Area }[A Z Y]+\text { Area }[B X Z]+\text { Area }[C Y X]
$$

which compared to (2.9) implies (2.1).
On the other hand the relation (2.9) is valid even in the case when $X \notin B C, Y \notin C A$ and $Z \notin A B$, so it implies the following interesting property for a hexagon $A Z B X C Y$:

Figure 4. An interesting property of the hexagon

Corollary 2.1. If $A Z B X C Y$ is an arbitrary hexagon, G_{1}, G_{2} and G_{3} are the centroids of the triangles $A Z Y, B X Z$ and $C Y X$ respectively, then relation (2.9) holds.

Applying this corollary twice and interchanging the role of the points $A B C$ and $X Y Z$ we obtain the following property:
Corollary 2.2. If in the hexagon $A B C D E F G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$ and G_{6} are the centroids of the triangles $A B F, B C A, C D B, D E C, E F D$ and $F A E$ respectively (see figure 4), then

$$
\operatorname{Area}\left(G_{1} G_{3} G_{5}\right)=\operatorname{Area}\left(G_{2} G_{4} G_{6}\right)
$$

This property also reduces to Theorem 1.2. since the opposite sides of the hexagon $G_{1} G_{2} G_{3} G_{4} G_{5} G_{6}$ are parallel to the diagonals $A D, B E$ and $C F$.

Theorem 2.5. can also be generalized to more than 3 triangles, but the number of triangles in the right-hand side expression is too large (16). For this reason we do not assert this case or the higher dimensional analogous properties, we prove only a property for quadrilaterals that is analogous to Theorem 2.3.

Theorem 2.6. If $A B C D$ is a quadrilateral, $M \in B C, N \in C D, P \in D A, Q \in A B$ and we denote by $G_{A}, G_{B}, G_{C}, G_{D}$ the centroids of the triangles $A Q P, B M Q, C N M$ and $D P N$, then

$$
\begin{equation*}
9 \text { Area }\left[G_{A} G_{B} G_{C} G_{D}\right]=2 \text { Area }[A B C D]+2 \text { Area }[M N P Q]+\text { Area }[A M D Q C P B N A] \tag{2.10}
\end{equation*}
$$

Remark 2.5. For a better understanding of the term Area $[A M D Q C P B N A]$ from the previous theorem we illustrate it in Figure 5. In fact it is the sum of the areas A_{1}, A_{2} and A_{3} shown in this figure.

Proof. Using complex numbers as in the proof of theorem 2.5. we have

$$
\begin{align*}
9 \operatorname{Area}\left(G_{A} G_{B} G_{C} G_{D}\right)= & \frac{9}{2} \operatorname{Im}\left(g_{A} \cdot \overline{g_{B}}+g_{B} \cdot \overline{g_{C}}+g_{C} \cdot \overline{g_{D}}+g_{D} \cdot \overline{g_{A}}\right) \tag{2.11}\\
= & \frac{1}{2} \operatorname{Im}((p+a+q) \cdot \overline{q+b+m}+(q+b+m) \cdot \overline{m+c+n}) \tag{2.12}\\
& +\frac{1}{2} \operatorname{Im}((m+c+n) \cdot \overline{n+d+p}+(n+d+p) \cdot \overline{p+a+q}) \tag{2.13}
\end{align*}
$$

Figure 5. $\operatorname{Area}(A M D Q C P B N A)=A_{1}+A_{2}+A_{4}$
Expanding the products in the right-hand side we obtain 36 terms. We can omit the terms $q \cdot \bar{q}, m \cdot \bar{m}, n \cdot \bar{n}$ and $p \cdot \bar{p}$ since these terms are real numbers, so their imaginary part is 0 . The sum of terms containing $p \cdot \bar{q}, q \cdot \bar{m}, m \cdot \bar{n}$ and $n \cdot \bar{p}$ is $\operatorname{Area}(M N P Q)$, while the sum of terms containing $a \cdot \bar{b}, b \cdot \bar{c}, c \cdot \bar{d}$ and $d \cdot \bar{a}$ is $\operatorname{Area}(A B C D)$. We have also the terms $q \cdot \bar{m}$, $m \cdot \bar{n}, n \cdot \bar{p}$ and $p \cdot \bar{q}$, whose sum gives the second $\operatorname{Area}(M N P Q)$ on the right-hand side.

In order to identify the second $\operatorname{Area}(A B C D)$ observe that the terms $a \cdot \bar{q}, q \cdot \bar{n}, n \cdot \bar{d}$, $d \cdot \bar{p}$ and $p \cdot \bar{d}$ form $\operatorname{Area}(A Q N D P A)$, while the terms $q \cdot \bar{b}, b \cdot \bar{m}, m \cdot \bar{c}, c \cdot \bar{n}$ and $n \cdot \bar{q}$ form $\operatorname{Area}(Q B M C N Q)$, so the sum of these two areas is Area $(A B C D)$. The remaining terms are $a \cdot \bar{m}, m \cdot \bar{d}, d \cdot \bar{q}, q \cdot \bar{c}, c \cdot \bar{p} p \cdot \bar{b}, b \cdot \bar{n}$ and $n \cdot \bar{a}$ whose sum gives Area $(A M D Q C P B N A)$, so the proof is complete.

In the previous proof we used that the points M, N, P, Q are on the sides of the quadrilateral only in identifying the area of $A Q N D P A$ with the area of $A Q N D$, so a more general identity is valid for any octogon $A Q B M C N D P$.
Theorem 2.7. If in the octogon $A Q B M C N D P G_{A}, G_{B}, G_{C}$ and G_{D} are the centroids of the triangles $A Q P, B M Q, C N M$ and $D P N$ respectively, then

$$
\begin{aligned}
9 \operatorname{Area}\left[G_{A} G_{B} G_{C} G_{D}\right]= & \text { Area }[A B C D]+\operatorname{Area}[\operatorname{AQBMCNDP]} \\
& +2 \operatorname{Area}[M N P Q]+\operatorname{Area}[\operatorname{AMDQCPBNA}]
\end{aligned}
$$

Applying this theorem twice we obtain the following property:

Corollary 2.3. If in the octogon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7} A_{8}$ we denote for all $i \in\{1,2,3, \ldots, 8\}$ by G_{i} the centroid of the triangle $A_{i-1} A_{i} A_{i+1}$ (the indeces are taken circulary, so $A_{9}=A_{1}$ and $A_{0}=A_{8}$), then

$$
\operatorname{Area}\left(A_{1} A_{3} A_{5} A_{7}\right)-\operatorname{Area}\left(A_{2} A_{4} A_{6} A_{8}\right)=9\left(\operatorname{Area}\left(G_{2} G_{4} G_{6} G_{8}\right)-\operatorname{Area}\left(G_{1} G_{3} G_{5} G_{7}\right)\right)
$$

References

[1] Andreescu, T. and Andrica, D., Complex numbers from A to ... Z, Second Edition, Birkhauser, 2014
[2] Barrington Leigh, R. and Liu, A., Hungarian problem book IV, MAA Press, 2011 (or Kömal Journal, 1959, page 70-77)
[3] Dalcín, M., Isotomic Inscribed Triangles and Their Residuals, Forum Geometricorum, 3 (2003), 125-134
[4] Deaux, R., Introduction to the Geometry of Complex Numbers, Ungar, New York, 1956
[5] Schmidt, E., Circumcenters of Residual Triangles, Forum Geometricorum, 3 (2003), 207--214
[6] Schmidt, E., Miquel points and inscribed triangles, http://eckartschmidt.de/Miqul.pdf, Accessed 20.09.2020
[7] Tonov, I., Complex numbers (in bulgarian), Ed. Narodna prosveta, Sofia, 1979

Department of Mathematics and Computer Science
Babeş-Bolyai University
M. KogĂlniceanu, No 1, 400084, Cluj-Napoca, Romania
Email address: andrasz@math.ubbcluj.ro
Satu Mare, Romania
Email address: d.sandor.kiss@gmail.com

[^0]: Received: 20.09.2020. In revised form: 21.01.2021. Accepted: 28.01.2021
 2010 Mathematics Subject Classification. 51M04, 51M25.
 Key words and phrases. residual triangles, centroids, area.
 Corresponding author: Szilárd András; andrasz@math.ubbcluj.ro

