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An area formula for the triangle of residual centroids and
its generalizations

SZILÁRD ANDRÁS and SÁNDOR NAGYDOBAI KISS

ABSTRACT. In this paper we consider an inscribed triangle XY Z to a triangle ABC and we establish a
relation between the area of these two triangles and the area of the triangle determined by the centroids of the
residual triangles AZY,BXZ and CY X. Moreover we generalize this relation to the case of a general barycenter
instead of centroid and also to quadrilaterals.

1. INTRODUCTION

In this paper we consider the points X,Y, Z on the sides BC,CA and AB of an arbi-
trary triangle ABC and we denote by GA, GB , GC the centroids of the residual triangles
AZY, BXZ and CY X respectively. We establish a relation (see Theorem 2) between the
area of the triangles GAGBGC , XY Z and ABC. This is motivated by some earlier results
published by M. Dalcı́n in [3] and E. Eckart in [5] and [6] concerning triangle centers of
residual triangles. More exactly in [3] the author asserted the following property without
proof:

Theorem 1.1 (Proposition 8). An inscribed triangle and its triangle of residual orthocenters have
equal areas.

This is a consequence of a general property of hexagons having three pairs of parallel
sides:

Theorem 1.2. If the pairs of opposite sides of the hexagon ABCDEF are parallel, then the trian-
gles ACE and BDF have equal area.

This property was a contest problem in 1958 at the famous József Kürschák Mathemat-
ical Competition and the solution can be found in [2].

In this paper we establish a relation between the area of the initial triangle ABC, the
inscribed triangleXY Z and the triangle determined by the centroids of the residual trian-
glesAZY,BXZ and CY X.Moreover we give a possible generalization for quadrilaterals.

2. MAIN RESULTS

Theorem 2.3. The area of the triangle of residual centroids satisfies the following relation:

9 ·Area(GAGBGC) = 2 ·Area(ABC) +Area(XY Z). (2.1)

Proof. Let x, y, z ∈ R such that the normalized barycentric coordinates of the pointsX,Y, Z
are

X = (0, 1− x, x), Y = (y, 0, 1− y), Z = (1− z, z, 0).
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FIGURE 1. The centroids of the residual triangles

With these notations we have

Area(XY Z) =Area(ABC) ·

∣∣∣∣∣∣
0 1− x x
y 0 1− y

1− z z 0

∣∣∣∣∣∣
=Area(ABC) · (xyz + (1− x)(1− y)(1− z)). (2.2)

The barycentric coordinates of the centroid GA, GB and GC can be expressed as follows:

GA =
1

3
(2 + y − z, z, 1− y), GB =

1

3
(1− z, 2 + z − x, x), GC =

1

3
(y, 1− x, 2 + x− y)

so the area of the triangle GAGBGC is

Area(GAGBGC) =
1

27
Area(ABC) ·

∣∣∣∣∣∣
2 + y − z z 1− y
1− z 2 + z − x x
y 1− x 2 + x− y

∣∣∣∣∣∣
=
1

9
Area(ABC) ·

∣∣∣∣∣∣
1 z 1− y
1 2 + z − x x
1 1− x 2 + x− y

∣∣∣∣∣∣
=
1

9
Area(ABC) · (2 + xyz + (1− x)(1− y)(1− z)). (2.3)

From (2.3) and (2.2) we obtain (2.1), so the proof is complete. �

Remark 2.1. The area is considered as oriented one, so the relation remains true even if,
the points X,Y, Z are outside the segments BC,CA,AB.

Remark 2.2. Using Theorem 1.1. we obtain the following equivalent formulation:

9 ·Area(GAGBGC) = 2 ·Area(ABC) +Area(HAHBHC), (2.4)

whereHA, HB andHC are the orthocenters of the residual trianglesAZY, BXZ andCY X
respectively.

Theorem 2.4. Consider the arbitrary pointsX,Y, Z on the sidesBC,CA andAB of an arbitrary
triangle ABC. The points A1, A2 and A3 have normalized barycentric coordinates (λ1, λ2, λ3),
(λ3, λ1, λ2) and (λ2, λ3, λ1) respectively with respect to the triangle AZY. In a similar way we
consider the points B1, B2 and B3 in the triangle BXZ and C1, C2, C3 in the triangle CY X.
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FIGURE 2. Replacing the centroid with 3 points

With these notations we have

Area(A1B1C1) +Area(A2B2C2) +Area(A3B3C3) = c1 ·Area(ABC) + c2 ·Area(XY Z),
(2.5)

where
c1 = λ21 + λ22 + λ23 + λ1 · λ2 + λ2 · λ3 + λ3 · λ1,

c2 = 2(λ21 + λ22 + λ23)− (λ1 · λ2 + λ2 · λ3 + λ3 · λ1).

Remark 2.3. If λ1 = λ2 = λ3 = 1
3 , we have A1 = A2 = A3 = GA the centroid of AY Z,

B1 = B2 = B3 = GB the centroid of BZX and C1 = C2 = C3 = GC the centroid of CXY.
Moreover in this case c1 = 2

3 and c2 = 1
3 , so we obtain (2.1).

Proof of theorem 2.3. Using the same notations as in proof of Theorem 2.3 we obtain for the
coordinates of the points A1, B1 and C1 the following expressions:

A1 = (λ1 + λ2 · (1− z) + λ3 · y, λ2 · z, λ3 · (1− y)),
B1 = (λ1 · (1− z), λ1 + λ2 · (1− x) + λ3 · z, λ2 · x),
C1 = (λ1 · y, λ2 · (1− x), λ1 + λ2 · (1− y) + λ3 · x).

So for the ratio R1 = Area(A1B1C1)
Area(ABC) we obtain (using λ1 + λ2 + λ3 = 1):

R1 =

∣∣∣∣∣∣
λ1 + λ2 · (1− z) + λ3 · y λ2 · z λ3 · (1− y)

λ1 · (1− z) λ1 + λ2 · (1− x) + λ3 · z λ2 · x
λ1 · y λ2 · (1− x) λ1 + λ2 · (1− y) + λ3 · x

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 λ2 · z λ3 · (1− y)
1 λ1 + λ2 · (1− x) + λ3 · z λ2 · x
1 λ2 · (1− x) λ1 + λ2 · (1− y) + λ3 · x

∣∣∣∣∣∣
=

∣∣∣∣ λ1 + λ2 · (1− x− z) + λ3 · z λ2 · x− λ3 · (1− y)
λ2 · (1− x− z) λ1 + λ2 · (1− y) + λ3 · (x+ y − 1)

∣∣∣∣
=(λ1 + λ3 · z)

∣∣∣∣ 1 λ2 · x− λ3 · (1− y)
0 λ1 + λ2 · (1− y) + λ3 · (x+ y − 1)

∣∣∣∣+
λ2(1− x− z)

∣∣∣∣ 1 λ2 · x− λ3 · (1− y)
1 λ1 + λ2 · (1− y) + λ3 · (x+ y − 1)

∣∣∣∣ . (2.6)

So we have
R1 = λ21 + λ22(1− x− y)(1− x− z) + λ23(zx+ zy − z)+
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+λ1 · λ2(2− x− y − z) + λ2 · λ3(z + x− zy − xz − x2) + λ3 · λ1(x+ y + z − 1).

By a similar calculation we deduce a relation for R2 = Area(A2B2C2)
Area(ABC) and for

R3 = Area(A3B3C3)
Area(ABC) . Due to the symmetry of the notations by adding the three ratios we

obtain
R1 +R2 +R3 = c1 + c2(1− x− y − z + xy + yz + zx),

which completes the proof.
�

Example 2.1. If M1 is the midpoint of ZY, the midpoint of AM1 has barycentric coordi-
nates

(
1
2 ,

1
4 ,

1
4

)
, so applying the previous result we deduce

Area(A1B1C1) +Area(A2B2C2) +Area(A3B3C3) =
11

16
·Area(ABC) + 7

16
·Area(XY Z),

(2.7)
where A1, A2, A3, B1, B2, B3 and C1, C2, C3 are the midpoints of the corrsponding medi-
ans in the triangles AZY, BXZ and CY X respectively.

In what follows we give a more general version for the relation (2.1).

Theorem 2.5. If G1, G2 and G3 are the centroids of the triangles A11A12A13, A21A22A23 and
A31A32A33, then

9Area[G1G1G3] =Area[A11A21A31] +Area[A12A22A32] +Area[A13A23A33]+

+Area[A11A22A33] +Area[A12A23A31] +Area[A13A21A32]+

+Area[A11A23A32] +Area[A12A21A33] +Area[A13A22A31] (2.8)

Proof. For the area of an arbitrary triangle UV T we use it’s expression in complex num-
bers (see [1], page 109, [7], [4]):

Area[UV T ] =
1

2
Im(uv + vt+ tu),

where u, v, t are the affixes of the points U, V, T. Using this expression and the affixes of
the centroids, we have

9Area[G1G2G3] =
1

2
Im((a11 + a12 + a13)(a21 + a22 + a23)

+(a21 + a22 + a23)(a31 + a32 + a33) + (a31 + a32 + a33)(a11 + a12 + a13)).

So

9Area[G1G2G3] =
1

2
Im

3∑
i=1

(

3∑
j=1

aij)(

3∑
j=1

ai+1j)

=
1

2
Im ((a11a21 + a21a31 + a31a11) + (a12a22 + a22a32 + a32a12)

+(a13a23 + a23a33 + a33a31))

+
1

2
Im ((a11a22 + a22a33 + a33a11) + (a12a23 + a23a31 + a31a12)

+(a13a21 + a21a32 + a32a13))+

+
1

2
Im ((a11a23 + a23a32 + a32a11) + (a12a21 + a21a33 + a33a12)

+(a13a22 + a22a31 + a31a13)) .

Identifying the terms in the right-hand side as areas we obtain (2.8), so the proof is com-
plete. �
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FIGURE 3. Special configuration of three triangles

Remark 2.4. Using the notations of the figure 3 (X = A22 = A33, . . .) we obtain

9Area[G1G2G3] =Area[ABC] + 2Area[XY Z]

+Area[AZY ] +Area[BXZ] +Area[CY X], (2.9)

so if the points XY Z are on the sides of the triangle ABC, we have

Area[ABC] = Area[XY Z] +Area[AZY ] +Area[BXZ] +Area[CY X],

which compared to (2.9) implies (2.1).

On the other hand the relation (2.9) is valid even in the case when X /∈ BC, Y /∈ CA
and Z /∈ AB, so it implies the following interesting property for a hexagon AZBXCY :

FIGURE 4. An interesting property of the hexagon
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Corollary 2.1. If AZBXCY is an arbitrary hexagon, G1, G2 and G3 are the centroids of the
triangles AZY,BXZ and CY X respectively, then relation (2.9) holds.

Applying this corollary twice and interchanging the role of the points ABC and XY Z
we obtain the following property:

Corollary 2.2. If in the hexagon ABCDEF G1, G2, G3, G4, G5 and G6 are the centroids of the
triangles ABF, BCA, CDB, DEC, EFD and FAE respectively (see figure 4), then

Area(G1G3G5) = Area(G2G4G6).

This property also reduces to Theorem 1.2. since the opposite sides of the hexagon
G1G2G3G4G5G6 are parallel to the diagonals AD,BE and CF.

Theorem 2.5. can also be generalized to more than 3 triangles, but the number of tri-
angles in the right-hand side expression is too large (16). For this reason we do not assert
this case or the higher dimensional analogous properties, we prove only a property for
quadrilaterals that is analogous to Theorem 2.3.

Theorem 2.6. If ABCD is a quadrilateral, M ∈ BC,N ∈ CD,P ∈ DA, Q ∈ AB and we
denote by GA, GB , GC , GD the centroids of the triangles AQP, BMQ, CNM and DPN, then

9Area[GAGBGCGD] = 2Area[ABCD]+2Area[MNPQ]+Area[AMDQCPBNA] (2.10)

Remark 2.5. For a better understanding of the term Area[AMDQCPBNA] from the pre-
vious theorem we illustrate it in Figure 5. In fact it is the sum of the areas A1, A2 and A3

shown in this figure.

Proof. Using complex numbers as in the proof of theorem 2.5. we have

9Area(GAGBGCGD) =
9

2
Im(gA · gB + gB · gC + gC · gD + gD · gA) (2.11)

=
1

2
Im((p+ a+ q) · q + b+m+ (q + b+m) ·m+ c+ n) (2.12)

+
1

2
Im((m+ c+ n) · n+ d+ p+ (n+ d+ p) · p+ a+ q) (2.13)
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FIGURE 5. Area(AMDQCPBNA) = A1 +A2 +A4

Expanding the products in the right-hand side we obtain 36 terms. We can omit the terms
q · q, m ·m, n · n and p · p since these terms are real numbers, so their imaginary part is 0.
The sum of terms containing p · q, q ·m, m · n and n · p is Area(MNPQ), while the sum
of terms containing a · b, b · c, c · d and d · a is Area(ABCD). We have also the terms q ·m,
m · n, n · p and p · q, whose sum gives the second Area(MNPQ) on the right-hand side.

In order to identify the second Area(ABCD) observe that the terms a · q, q · n, n · d,
d · p and p · d form Area(AQNDPA), while the terms q · b, b ·m, m · c, c · n and n · q form
Area(QBMCNQ), so the sum of these two areas is Area(ABCD). The remaining terms
are a ·m, m · d, d · q, q · c, c · p p · b, b ·n and n · a whose sum gives Area(AMDQCPBNA),
so the proof is complete. �

In the previous proof we used that the points M,N,P,Q are on the sides of the quadri-
lateral only in identifying the area of AQNDPA with the area of AQND, so a more gen-
eral identity is valid for any octogon AQBMCNDP.

Theorem 2.7. If in the octogon AQBMCNDP GA, GB , GC and GD are the centroids of the
triangles AQP, BMQ, CNM and DPN respectively, then

9Area[GAGBGCGD] =Area[ABCD] +Area[AQBMCNDP ]

+ 2Area[MNPQ] +Area[AMDQCPBNA]

Applying this theorem twice we obtain the following property:
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Corollary 2.3. If in the octogon A1A2A3A4A5A6A7A8 we denote for all i ∈ {1, 2, 3, . . . , 8}
by Gi the centroid of the triangle Ai−1AiAi+1 (the indeces are taken circulary, so A9 = A1 and
A0 = A8), then

Area(A1A3A5A7)−Area(A2A4A6A8) = 9(Area(G2G4G6G8)−Area(G1G3G5G7)).
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