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Rotational λ−hypersurfaces in Euclidean spaces

KADRI ARSLAN, ALIM SÜTVEREN and BETÜL BULCA

ABSTRACT. Self-similar flows arise as special solution of the mean curvature flow that preserves the shape
of the evolving submanifold. In addition, λ−hypersurfaces are the generalization of self-similar hypersurfaces.
In the present article we consider λ−hypersurfaces in Euclidean spaces which are the generalization of self-
shrinkers. We obtained some results related with rotational hypersurfaces in Euclidean 4−space R4 to become
self-shrinkers. Furthermore, we classify the general rotational λ−hypersurfaces with constant mean curvature.
As an application, we give some examples of self-shrinkers and rotational λ−hypersurfaces in R4.

1. INTRODUCTION

Let x : M → Rn+d be an isometric immersion, where M is an n−dimensional dif-
ferentiable manifold. Under this isometric immersion, M is called the n−dimensional
hypersurface immersed in Rn+1. One of the most important geometric objects of M is the
x position vector. This vector is also a vector of the Euclidean space Rn+1 defined in the
form x = −→op, also known as the location vector or radius vector, and the position of the
point p ∈ M to the reference point o ∈ Rn+1. One of the important invariants of M is the
mean curvature vector field

−→
H . In physics, the mean curvature vector field is the torsional

field applied on the hypersurface. It is used for surface tension, surface stress or surface
free energy in materials science [6]. The well known formula of E. Beltrami is between
the position vector field x and the mean curvature vector vector field

−→
H of M provides

a simple relationship in the form ∆x = −n
−→
H . Here ∆ denotes the Laplacian of M with

respect to the induced metric. From this equation, the necessary and sufficient condition
for M to be minimal (i.e.,

−→
H = 0) is ∆x = 0. In other words, M is harmonic [5]. The

position vector field x of M has a natural decomposition given by

x = xT + xN , (1.1)

where xT and xN are the tangential and normal components of x respectively [5]. In 2017,
B.Y. Chen presented a study of various topics in differential geometry associated with the
location vector fields of Euclidian submanifolds [6].

The mean curvature flow is the gradient flow of the functional area of the n-dimensional
hypersurface M . From the perspective of the analysis, this flow is produced by a nonlin-
ear parabolic equation. Although the classified results of the analysis show the short-term
presence of the average curvature flow, understanding the long-term behavior is a diffi-
cult problem that requires checking for possible singularities that may occur throughout
the flow. The mean curvature vector field

−→
H is one of the most important invariants of the

hypersurface M . In physics, the average curvature vector field is the torsion field applied
to the hypersurface originated from the ambient space. The mean curvature flow is the
gradient flow of the area functional on the space of the hypersurface M . The self-similar
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flows arise as special solution of the mean curvature flow that preserve the shape of the
evolving hypersurface [20]. The most important mean curvature flow is self-similar flow
which is obtained when the evolution becomes a homothety. Such self-similar hypersur-
face M with curvature vector field

−→
H satisfying the following non-linear elliptic system

−→
H + λxN = 0,where xN is the normal component of x and λ is a real valued function. If
λ is any strictly positive constant, then the hypersurface shrinks infinite time to a single
point, under the action of the mean curvature flow, its shape remaining unchanged. If λ
is strictly negative, then the hypersurface will expand its shape again remain the same; in
this case the hypersurface is necessarily non compact. The case of vanishing λ is the well-
known case of a minimal hypersurface, which of course is stationary under the action of
the flow [20].

In [11] Chang and Wei introduced a λ−hypersurfaces of weighted volume-preserving
mean curvature flow in Euclidean space giving a natural generalization of self-shrinkers
in the hypersurface case. According to [11], a hypersurface M ⊂ Rn+1 is called a λ− hy-
persurface if its mean curvatureH satisfiesH+〈x,N〉 = λ for some real function λ, where
N is the unit normal of the hypersurface. Recently, Li and Chang made a generalization of
both self-shrinkers and λ−hypersurfaces, by introducing the concepts of ξ−submanifolds
[24].

This paper is organized as follows: In section 2, we give some basic concepts of the sec-
ond fundamental form and curvatures of the hypersurface in Rn+1. In section 3, we give
some well known results of self-similar hypersurfaces and λ−hypersurfaces in Euclidean
spaces Rn+1. Further, we give some well known examples satisfying the self-shrinking
condition. In section 4 we consider rotational hypersurfaces in Rn+1. We obtained some
results related with these type of hypersurfaces to become self-shrinkers. Furthermore,
we classify the rotational λ−hypersurfaces with constant mean curvature. As an applica-
tion, we give some examples of self-shrinkers and rotational λ−hypersurfaces in R4.

2. PRELIMINARIES

Let M be an n−dimensional smooth hypersurface in Rn+1 given with the isometric
immersion (position vector), x(s, u1, ..., un) : (s, u1, ..., un−1) ∈ U ⊂ Rn+1. The tangent
space to M at an arbitrary point p = x(s, u1, ..., un−1) of Mn span

{
xs, xu1 ..., xun−1

}
. In

the chart (s, u1, ..., un−1) the coefficients of the first fundamental form of M are given by

gij =
〈
xui

, xuj

〉
, 0 ≤ i, j ≤ n− 1 (2.2)

where 〈, 〉 is the Euclidean inner product. Let χ(M) and χ⊥(M) be the space of the smooth
vector fields tangent and normal to M , respectively. Given any local orthonormal vector
fields X1, X2, ..., Xn tangent to M , consider the second fundamental map h : χ(M) ×
χ(M)→ χ⊥(M);

h(Xi , Xj ) = ∇̃X
i
Xj −∇Xi

Xj 1 ≤ i, j ≤ n. (2.3)

where∇ and ∇̃ are the induced connection ofM and the Riemannian connection of Rn+1,
respectively. This map is well-defined, symmetric and bilinear [5].

For the normal vector field N of M , recall the shape operator A : χ⊥(M) × χ(M) →
χ(M);

ANXj = −∇̃Xj
N, 1 ≤ i, j ≤ n, Xj ∈ χ(Mn). (2.4)

This operator is bilinear, self-adjoint and satisfies the following equation:

〈ANXj , Xi〉 = 〈h(Xi, Xj), N〉 = hij , 1 ≤ i, j ≤ n; (2.5)
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where hij are the coefficients of the second fundamental form. The equations (2.3) and
(2.4) are called Gaussian formula and Weingarten formula respectively. In addition,

h(Xi, Xj) = hijN, 1 ≤ i, j ≤ n, (2.6)

and

ANXi = −
n∑
j=1

hijXj , 1 ≤ i ≤ n, (2.7)

hold. The mean curvature vector
−→
H and the square length ‖h‖2 of the second fundamental

form h are defined respectively by

−→
H =

1

n

n∑
k=1

h(Xk, Xk). (2.8)

‖h‖2 =

n∑
j=1

(hij)
2 (2.9)

The norm of the mean curvature vector H =
∥∥∥−→H∥∥∥ is called the mean curvature of Mn [5].

3. MATERIAL AND METHODS

Let the n−dimensional hypersurface M be given by isometric immersion x : M →
Rn+1. A family of differentiable immersions is defined as

x(p, t) : M → Rn+1, x(p, 0) = x(p).

In this case, the mean curvature vector at the point x(p, t) of the hypersurface Mt =

x(M, t) becomes
−→
H (t) =

−→
H (p, t). If the following equality holds, this family is called

theaverage mean curvature flow ([3]);(
∂

∂t
xt(p)

)⊥
= H(p, t), x0 = x (3.10)

where υ⊥ denotes the projection of υ into the normal space of xt(M). The mean curvature
flow is also considered in [31], [26] and [30]. For higher dimensional case see [13] and [32].
In addition, the mean curvature flow of entire graphs was analyzed in [16]. See, also [25]
for lecture notes on mean curvature flow.

Definition 3.1. An immersed hypersurface in the Euclidean space Rn+1 is called self-
similar solution of (3.10) if the curvature vector field

−→
H of M satisfies the following non-

linear elliptic system:
−→
H + λxN = 0 (3.11)

where xN is the normal component of x and λ is a real valued function. It is called self-
shrinker if λ = 1, and self-expander if λ = −1. The case of vanishing λ is the well-known
case of a minimal surface, which of course is stationary under the action of the flow [20].

A classification and analysis of low index mean curvature flow and self-shrinker are
considered in [22]. See also [27] for complete self-shrinkers. Recently self-similar solution
of surfaces has been considered in [17]. A survey of closed self-shrinkers with symmetry
can be seen in [15]. See also [19] for some results on self-shrinkers and singularity model
of the mean curvature flow.
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Let us denote H =
∥∥∥−→H∥∥∥ and N the mean curvature and unit normal vector of the

hypersurface M ⊂ Rn+1 respectively. So, multiplying both sides of the equation (3.11) by
N we obtain

H + λ
〈
xN , x

〉
= 0. (3.12)

A similar definition is given below in the case of λ = 1.

Definition 3.2. Let M be an n−dimensional smooth hypersurface in Rn+1 given with the
isometric immersion x : M → Rn+1. If the equality

H +
〈
xN , x

〉
= 0 (3.13)

holds,M is called a self-shrinker hypersurface [11]. Here 〈, 〉 is the standard inner product
of Rn+1.

Self-shrinking hypersurfaces play an important role in studies on average curvature
flux. These define all possible breaks at a given singular point of curvature flux [12]. If
M = Γ ⊂ R2 is a curve then the all solutions of (3.11) have been classified by Abresch and
Langer in [1]. Except the straight lines passing the origin, the curvature κ is positive for all
of them. In higher dimension any self-shrinker curve γ ⊂ Rn lies in a flat linear two-space
E2 ⊂ Rnand coincides with one of the Abresch−Langer curves Γ in E2, because then (3.10)
becomes an ODE of order 2. Abresch and Langer proved that all the differentiable and
closed self-shrinking curves in E2 were circles.

Definition 3.3. A family of differentiable immersions is defined as x(., t) : M → Rn+1,
x(., 0) = x(.). The average curvature flux defined in the form

∂x(t)

∂t
= −α(t)N(t) + ~H(t), x(t) = x(., t) (3.14)

is called the average curvature flux that maintains the weighted volume. Here

α(t) =

∫
M

H(t) 〈N(t), N〉 e−
‖x‖2

2 dµ∫
M

〈N(t), N〉 e−
‖x‖2

2 dµ
, (3.15)

~H(t) = ~H(., t) and N(t) are the mean curvature vector the normal vector of Mt = x(M, t)
respectively and N is the unit normal vector of M (see, [11] and [9]).

The average curvature flux given with (3.14) preserves the weighted volume given by
its equation

V (t) =

∫
M

〈x(t), N〉 e−
‖x‖2

2 dµ, (3.16)

where dµ is the outer volume element defined by (see, [12]);

dµ =
√

det(gij), gij =

〈
∂x

∂xi
,
∂x

∂xj

〉
. (3.17)

However, the weighted area functional is defined by

A(t) =

∫
M

e−
‖x‖2

2 dµt. (3.18)

Here, the function dµt is the area element of M , which is reduced by the metric with the
help of x(., t). So, V (t) is constant for each t, being a family (variation) of differentiable
immersions defined as x(., t) : M → Rn+1, x(., 0) = x(.). The x(., t) family is said to
be a family of x(.) that preserves the weighted volume. The necessary and sufficient
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condition for each family x(.) that preserves the weighted volume to be a critical point of
the weighted area functional A(t) is the equality

H+ < x,N >= λ, (3.19)

holds identically. Here H is the mean curvature of M and λ is a real constant. If the
equation (3.19) yields, M is called a ( proper)λ−hypersurface with λ 6= 0. For the case λ = 0,
M is self-shrinking [11]. A rigidity results of λ−hypersurfaces have given in [29] and [10].
In literature one can find the following well-known examples (see, [11]);

Example 3.1. The n-dimensional sphere Sn(r) with radius r is a compact λ-hypersurface
of Rn+1 with λ = n

r − r.

Example 3.2. The hypercylinder Sk(r)×Rn−k,1 ≤ k ≤ n−1 of dimension n is a complete
and non-compact λ−hypersurface of Rn+1 with λ = k

r − r

Example 3.3. Rn is a n−dimensional complete, and non-compact λ−hypersurface of Rn+1

with λ = 0.

Proposition 3.1. Let M ⊂ Rn+1 be a hypersurface given with constant mean curvature. If M is
a λ−hypersurface then it is isometric to a part of a sphere Sn(

√
n) with radius r =

√
n.

A generalization of the λ−hypersurface is given in the following definition.

Definition 3.4. Let M be a hypersurface given with the isometric immersion x : M →
Rn+1. If the mean curvature H and the the unit normal vector N of M satisfy the equality

H + w < x, ~N >= λ, (3.20)

then M is called a λ−hypersurface corresponding to the weight function w [24].

In the case of w = 0, hypersurfaces with constant curvature are obtained. In case of
w = c and λ = 0, M hypersurfaces is self-shrinker. In the case of w = −1/2 and λ = 0,
it was concluded in [21] that the compact self-shrinking hypersurfaces with non-negative
mean curvature consist of x(M) = Sn(

√
n), for n ≥ 2. In the same study, the following

result has been proved.

Theorem 3.1. [21] Let M ⊂ Rn+1 be a hypersurface given with the mean curvature H > 0. If
M satisfies the condition

H − 1

2
< x, ~N >= 0 (3.21)

then M is equal to one of the following;
(1) Sn,
(2) Sn−m × Rm,
(3) Γ× Rn−1,
where, Γ is a Abresch-Langer curve.

In [23] Kim and Pyo gave the following definition.

Definition 3.5. Let M ⊂ Rn+1 be a hypersurface with the isometric immersion x : M →
Rn+1. If the mean curvature vector

−→
H and the the unit normal vector N of M satisfy the

equality 〈−→
H,x

〉
= −1

c
, (3.22)

then M is called a homothetic soliton. Here c is a nonzero constant. Homothetic soliton is
a self-similar solution of mean curvature flux.

The following results are due to [8];
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Definition 3.6. Let M ⊂ Rn+1 be a hypersurface with the isometric immersion x : M →
Rn+1. Given any any smooth vector field Z ∈ T (M) if the divergent of Z vanishes identi-
cally, i.e. div(Z) = 0, then Z is called an incompressible vector field [8].

Theorem 3.2. [8] LetM ⊂ Rn+1 be a hypersurface with the isometric immersion x : M → Rn+1

then the tangential component xT of the position vector x is an incompressible vector field if and
only if 〈−→

H,x
〉

= −1 (3.23)

holds identically.

As a consequence of Definition 3.6 with Theorem 3.2 one can get the following result.

Corollary 3.1. Let M ⊂ Rn+1 be a hypersurface with the isometric immersion x : M → Rn+1.
If the tangential component xT of the position vector x is an incompressible vector field then the
hypersurface M is a homothetic soliton with c = 1.

4. RESULTS

Rotational hypersurfaces are one of the important issues of modern differential geome-
try. These hypersurfaces are widely used in R3 especially in computer aided geometric de-
sign and surface modeling. In the present section, we consider rotational λ−hypersurfaces
in Euclidean spaces.

4.1. Rotational λ−surfaces in R3. A rotational surfaceM in R3 is defined by the parametriza-
tion

x(u, v) = (f(u), g(u) cos v, g(u) sin v), (4.24)

where u ∈ J, 0 ≤ v < 2π,and α(u) = (f(u), g(u)) is the meridian curve of the rotation [18].
The orthonormal frame field of M is given by

e1 =
1

ϕ(u)

∂

∂u

e2 =
1

g(u)

∂

∂v
(4.25)

e3 =
1

ϕ(u)
(g′(u),−f ′(u) cos v,−f ′(u) sin v)

where
ϕ(u) =

√
(f ′(u))2 + (g′(u))2, (4.26)

is the smooth function on M [4]. With respect to this frame we can obtain the second
fundamental maps;

h(e1, e1) =
κ

ϕ3
e3

h(e1, e2) = 0 (4.27)

h(e2, e2) =
f ′

gϕ
e3

where
κ = f ′′g′ − f ′g′′ (4.28)

is the smooth function on M .



Rotational λ−hypersurfaces 35

Consequently, by the use of (2.8) with (4.27) the mean curvature vector
−→
H ofM becomes

−→
H =

1

2
{h(e1, e1) + h(e2, e2)} (4.29)

=
1

2ϕ

(
κ

ϕ2
+
f ′

g

)
e3.

From the orthogonal decomposition (1.1) of the position vector x of M we obtain

xN = x− ρ′(u)e1 (4.30)

where ρ(u) = 1
2 ‖x‖

2 is the square norm of the distance function of the position vector x
such that

ρ′(u) = f(u)f ′(u) + g(u)g′(u). (4.31)

The gradient of the distance function is given by

grad (‖x‖) =

2∑
j=1

〈x, ej〉
‖x‖

ej =
ρ′(u)

‖x‖
e1 (4.32)

Due to [6] we obtain the following results.

Theorem 4.3. Let M be a general rotational surface in R3 given with the parametrization (4.24).
Then x = xN holds identically if and only if M is a spherical surface of R3.

Proof. Assume that M is a rotational surface in R3 given with the parametrization (4.24).
If x = xN holds identically, then ρ′(u) = 0 holds. So, the equation (4.32) yields the the
distance function ofM has zero gradient so by Example 4.1. of [7]M is a spherical surface
in R3. Infact, f1(u)f ′1(u)+f2(u)f ′2(u) = 0, i.e. f21 (u)+f21 (u) = r20 implies that the meridian
curve α is an open part of a circle parametrized by

f1(u) = r0 cos

(
u

r0

)
, f2(u) = r0 sin

(
u

r0

)
, (4.33)

where r0 is a positive real number.
The converse is clear. �

Theorem 4.4. Let M be a rotational surface in R3 given with the parametrization (4.24). Then
x = xT holds identically if and only if M is a conic surface with the vertex at the origin.

Proof. Assume that M is a rotational surface in R3 given with the parametrization (4.24).
If x = xT holds identically, then x = ρ′(u)e1 holds identically. So, the equation (4.32)
yields that gradient of the distance function has constant length

‖grad (‖x‖)‖ =
|ρ′(u)|
‖x‖

= 1. (4.34)

So by Proposition 5.2 of [7] M is a conic surface in R3 with the vertex at the origin. Infact,
x = ρ′(u)e1 yields f ′g − fg′ = 0. Consequently the meridian curve α is an open part of a
straight line passing through origin.

The converse is clear. �

However, the inner product of e3 with the position vector x gives

〈e3, x〉 =
f(u)g′(u)− g(u)f ′(u)

ϕ
. (4.35)

We obtain the following result;
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Theorem 4.5. Let M be a rotational surface in R3 given with the parametrization (4.24).Then M
is a homothetic soliton if and only if

c(κg + f ′ϕ2)δ + 2gϕ4 = 0 (4.36)

holds identically. Here
δ = f(u)g′(u)− g(u)f ′(u) (4.37)

and ϕ, κ are differentiable functions defined in the equations (4.26) and (4.28), respectively.

Proof. Let M ⊂ R3 be a rotational surface given with the parametrization (4.24). If M is a
homothetic soliton, then 〈−→

H,x
〉

= H 〈e3, x〉 = −1

c
.

holds. Thus, with the help of equations (4.29) and (4.35) we get (4.36).
The proof of the converse statement is obvious. �

We give the following examples;

Example 4.4. Every sphere S2(r) ⊂ R3 is a homothetic soliton with c = 1.

Example 4.5. Every cylinder given with the meridian curve α(u) = (au+ b, d) is a homo-
thetic soliton with c = 2.

As a consequence of the equations (4.25), (4.29), and (3.20) we get the following results;

Theorem 4.6. Let M be a rotational surface in R3 given with the parametrization (4.24). Then
M is a λ−surface corresponding to the weight function w if and only if

w =
−(kg + f ′ϕ2) + 2λgϕ3

2gδϕ2
)

holds identically.

Theorem 4.7. Let M be a rotational surface in R3 given with the parametrization (4.24). Then
M is a λ−surface if and only if

kg + f ′ϕ2 + 2gδϕ2 − 2λgϕ3 = 0 (4.38)

holds identically. Here ϕ, κ, δ are smooth functions defined in (4.26),(4.28) and (4.37) respectively.

Thus, in the case of λ = 0, a result of Theorem 4.6 is given below.

Corollary 4.2. Let M be a rotational surface in R3 given with the parametrization (4.24). Then
M is a self-shrinker if and only if

kg + f ′ϕ2 + 2gδϕ2 = 0

holds identically.

We give the following examples;

Example 4.6. Let f(u) = a, g(u) = bu + c. In this case, λ = a is obtained. This surface
specifies a plane and is self-shrinking for a = 0.

Example 4.7. Let f(u) = au + b, g(u) = c. In this case, ϕ = a, δ = −ac, κ = 0. Thus
λ = 1−2c2

2c is obtained. This surface specifies a cylinder and is self-shrinking for the value
c = ± 1√

2
.
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Example 4.8. Let f(u) = au+b, g(u) = cu+d. In this case if the equation (4.38) is provided
then

λ =
a+ 2(cu+ d)(bc− ad)

2(cu+ d)
√
a2 + c2

holds. Thus, the following situations are hold;
(1) If a = 0, then the resultant surface specifies a plane given in Example 4.6.
(2) If c = 0, the resultant surface specifies a cylinder given in Example 4.7.
(3) If a 6= 0 and c 6= 0, the resultant surface specifies a cone which is not a λ−surface.

4.2. Rotational λ−hypersurfaces in R4. Let M ⊂ R4 be a rotational hypersurface given
with the regular coordinate patch

x(s, u, v) = (f(s), g(s) sinu, g(s) cosu sin v, g(s) cosu cos v) (4.39)

where γ(s) = (f(s), g(s)) is a regular curve. For the rotational hypersurfaces with constant
curvature see for example [14].

The orthonormal frame field of M is given by

~e1 =
1

ϕ

∂x

∂s
, ~e2 =

1

g

∂x

∂u
,

~e3 =
1

g cosu

∂x

∂v
, ~e4 =

1

ϕ
(g′,−f ′ sinu,−f ′ cosu sin v,−f ′ cosu cos v)

(4.40)

where ϕ is differentiable function defined in the equation (4.26). With respect to this frame
we can obtain the second fundamental maps;

h(e1, e1) =
κ

ϕ3
~e4, h(e2, e2) =

f ′

ϕg
~e4

h(e3, e3) =
f ′

ϕg
~e4, h(e1, e2) = h(e1, e3) = h(e2, e3) = 0.

(4.41)

Consequently, by the use of (2.8) with (4.41) the mean curvature vector
−→
H of M becomes

−→
H =

(
κg + 2ϕ2f ′

3gϕ3

)
~e4, (4.42)

where ϕ, κ are differentiable functions defined in the equations (4.26) and (4.28), respec-
tively

However, the inner product of ~e4 with the position vector x gives

〈x, e4〉 =
δ

ϕ
(4.43)

where δ is the smooth function defined in (4.37).
Consequently, by taking account of (4.39)-(4.43) with (3.22) and (3.19) we obtain the

following results;

Theorem 4.8. LetM ⊂ R4 be a rotational hypersurface given with the parametrization (4.39).Then
M is a homothetic soliton if and only if

c(κg + 2f ′ϕ2)δ + 3gϕ4 = 0 (4.44)

holds identically.

Theorem 4.9. Let M be a rotational hypersurface in R4 given with the parametrization (4.39).
Then M is a λ−hypersurface if and only if

kg + 2f ′ϕ2 + 3gδϕ2 − 3λgϕ3 = 0 (4.45)

holds identically. Here ϕ, κ, δ are smooth functions defined in (4.26),(4.28) and (4.37) respectively.
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We give the following examples;

Example 4.9. Let M ⊂ R4 be a rotational hypersurface given by f(s) = cos s and g(s) =
sin s. In this case, the hypersurface given with the patch

x(s, u, v) = (cos s, sin s sinu, sin s cosu sin v, sin s cosu cos v)

represents a hypersphere S3(1) which is self-shrinking i.e., λ = 0.

Example 4.10. Let M ⊂ R4 be a rotational hypersurface given by f(s) = as + b and
g(s) = r0, 0 6= r0 ∈ R. In this case, the hypersurface given with the patch

x(s, u, v) = (as+ b, r0 sinu, r0 cosu sin v, r0 cosu cos v)

represents a circular hypercylinder S2(r0)×R which is a λ−hypersurface with λ =
2−3r20
3r0

.

Example 4.11. Let M ⊂ R4 be a rotational hypersurface given by f(s) = b and g(s) =
cs+ d, b, c, d ∈ R. In this case, the hypersurface given with patch

x(s, u, v) = (b, (cs+ d) sinu, (cs+ d) cosu sin v, (cs+ d) cosu cos v)

represents a part of a plane which is a λ−hypersurface with λ = b.

4.3. Birotational λ−hypersurfaces in R4. A birotational hypersurface M in R4 is defined
by the parametrization (see, [15]);

x(s, u, v) = (f(s) cosu, f(s) sinu, g(s) cos v, g(s) sin v) (4.46)

where γ(s) = (f(s), g(s)) is a regular curve in R2. The orthonormal frame field of M is
given by

~e1 =
1

ϕ

∂x

∂s
, ~e2 =

1

f

∂x

∂u
,

~e3 =
1

g

∂x

∂v
, ~e4 =

1

ϕ
(g′ cosu, g′ sinu,−f ′ cos v,−f ′ sin v)

(4.47)

where ϕ is differentiable function defined in the equation (4.26). With respect to this frame
we can obtain the second fundamental maps;

h(e1, e1) =
κ

ϕ3
~e4, h(e2, e2) = − g′

ϕf
~e4

h(e3, e3) =
f ′

ϕg
~e4, h(e1, e2) = h(e1, e3) = h(e2, e3) = 0.

(4.48)

Consequently, by the use of (2.8) with (4.48) the mean curvature vector
−→
H of M becomes

−→
H =

(
κfg + ϕ2µ

3fgϕ3

)
~e4, (4.49)

where ϕ, κ are differentiable functions defined in the equations (4.26) and (4.28), respec-
tively and

µ = ff ′ − gg′. (4.50)

In [15] one can see the following example;

Example 4.12. Let the meridian curve be a circle of radius r. In this case, M is a birota-
tional hypersurface with parameterization

x(s, u, v) = (r cos s cosu, r cos s sinu, r sin s cos v, r sin s sin v).

An easy computation gives that the mean curvature of M is H = − 1
3r .
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Further, the inner product of ~e4 with the position vector x gives 〈x, e4〉 = δ
ϕ where δ is

the smooth function defined in (4.37).
Consequently, by taking account of (4.46)−(4.50) with (3.22) and (3.19) we obtain the

following results;

Theorem 4.10. Let M ⊂ R4 be a birotational hypersurface given with the parametrization
(4.46).Then M is a homothetic soliton if and only if

c(κfg + µϕ2)δ + 3fgϕ4 = 0 (4.51)

holds identically. Here ϕ, κ, δ, µ are smooth functions defined in (4.26),(4.28), (4.37) and (4.49)
respectively.

Theorem 4.11. Let M ⊂ R4 be a birotational hypersurface in R4 given with the parametrization
(4.46). Then M is a λ−hypersurface if and only if

kfg + ϕ2(µ+ 3fgδ − 3λfgϕ) = 0 (4.52)

holds identically.

Corollary 4.3. Let M ⊂ R4 be a birotational hypersurface in R4 given with the parametrization
(4.46). Then M is a self-shrinker if and only if

kfg + ϕ2(µ+ 3fgδ) = 0 (4.53)

holds identically.

We give the following example;

Example 4.13. Let M ⊂ R4 be a birotational hypersurface whose meridian curve is a line
passing through the origin as f(s) = g(s). In this case, the hypersurface given with the
patch

x(s, u, v) = f(s)(cosu, sinu, cos v, sin v)

represents a minimal surface in R4. Especially when γ(s) = (s, s) this hypersurface given
with

x(s, u, v) = (s cosu, s sinu, s cos v, s sin v)

is self-shrinking and minimal Clifford cone [15].

5. CONCLUSION

The mean curvature flow is a kind of gradient flow of a given hypersurface. However,
the self-similar flows arise as special solution of the mean curvature flow that preserve the
shape of the evolving hypersurface. Self-shrinkers are the special version of self-similar
flows. In addition, λ−hypersurfaces are the generalization of self-shrinkers. In this study,
we obtain some results of rotation λ−hypersurfaces in Euclidean spaces. We have shown
that the spherical and cylindrical rotation hypersurfaces are self-shrinkers. We hoped that
this study will contribute to the mean curvature flow calculations of high dimensional
rotational submanifolds.
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