
CREAT. MATH. INFORM.
30 (2021), No. 1, 61 - 68

Online version at https://creative-mathematics.cunbm.utcluj.ro/

Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Semiprime rings with multiplicative(generalized)-
derivations involving left multipliers

G. NAGA MALLESWARI1, S. SREENIVASULU2 and G. SHOBHALATHA3

ABSTRACT. Let R be a semiprime ring, I a non zero ideal of R. A mapping F : R −→ R (not necessarily
additive) is said to be a multiplicative (generalized)-derivation of R if F (xy) = F (x) y + xd (y) holds for all
x, y ∈ R, where d is any mapping onR. A mapH : R −→ R (not necessarily additive) is called a multiplicative
left multiplier if

H (xy) = H (x) y, holds for all x, y ∈ R.
The main objective of this article is to study the following situations:
(i)F (xoy)±H (xoy) = 0,
(ii)F (xoy)±H [x, y] = 0,
(iii)F [x, y]± [x,H (y)] = 0,
(iv)F (xoy)± [x,H (y)] = 0,
(v)F (xy)± [x,H (y)] ∈ Z (R),
(vi)F (xy)± [H (x) , H (y)] ∈ Z (R),
for all x, y in some appropriate subsets of R.

1. INTRODUCTION

Let R denote an associative ring with center Z(R). A ring R is called a prime ring if
for any a, b ∈ R, aRb = 0 implies that either a = 0 or b = 0 and is called a semiprime
ring if aRa = 0 implies that a = 0. For any x, y ∈ R, we shall denote the commutator and
anti-commutator by the symbols

[x, y] = xy − yx

and
(xoy) = xy + yx,

respectively.
An additive map d : R −→ R is called a derivation of R if

d (xy) = d (x) y + xd (y)

holds for all x, y ∈ R.
An additive mapping F : R −→ R associated with a derivation d : R −→ R is called a

generalized derivation of R if

F (xy) = F (x) y + xd (y) ,

holds for all x, y ∈ R.
In [6], Bresar introduced the notion of generalized derivation. Obviously, every deriva-

tion is a generalized derivation of R. Thus, generalized derivation covers both the concept
of derivation and the concept of left multipliers. Let S be a non-empty subset of R.

A map f : S −→ R is called a centralizing(commuting) map on S if
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[f(x), x] ∈ Z(R)( or [f(x), x] = 0), for all x ∈ S.

The concept of multiplicative derivations appears for the first time in the work of Daif
[9] and it was motivated by the work of Martindale [18]. According to Daif [9]: A map
d : R −→ R is called a multiplicative derivation of R if d (xy) = d (x) y + xd (y) holds for
all x, y ∈ R. Further, the complete description of those maps were given by Goldmann
and semrl in [13]. The notion of multiplicative derivation was extended to multiplicative
generalized derivation by Daif and Tammam-El-Sayiad [11] as follows: a map F : R −→ R
is called a multiplicative generalized derivation if there exists a derivation d such that

F (xy) = F (x) y + xd (y)

for all x, y ∈ R.
Recently, Dhara and Ali [12] gave a definition of multiplicative(generalized)-derivation

as follows: a mapping F : R −→ R (not necessarily additive) is said to be multiplicative
(generalized)-derivation if

F (xy) = F (x) y + xd (y)

holds for all x, y ∈ R, where d is any map on R (not necessarily a derivation nor additive).
Hence the concept of multiplicative (generalized)-derivation covers the concept of mul-
tiplicative derivation. A mapping H : R −→ R (not necessarily additive) is said to be a
multiplicative left multiplier if

H (xy) = H (x) y

holds for all x, y ∈ R ([19]).
Moreover, multiplicative(generalized)-derivation with d = 0 covers the concept of mul-

tiplicative left multipliers. Many papers in literature have investigated the commutativity
of prime and semiprime rings satisfying certain functional identitites involving multi-
plicative generalized derivations or multiplicative(generalized)-derivations ([3], [4], [5],
[7], [15], [16], [17], [20], [21] and [22]).

Daif and Bell [10] proved that if a semiprime ring R admits a derivation d such that
d [x, y] ± [x, y] = 0 holds for all x, y in a non-zero ideal I of R, then R is commuta-
tive. Hongan [14] generalized these results by taking the same situations in the center
of the ring R. Asma Ali et al.[1] investigated the commutativity of a prime ring admit-
ting a generalized derivation satisfying any one of the following identities: (i)F ([x, y]) ±
[x, y] ∈ Z (R) (ii)F (xoy) ± (xoy) ± Z (R) in some appropriate subset of R. Recently,
Ali et al.[2] proved multiplicative(generalized)-derivation and left ideals in semiprime
rings. Dedem Camci and Neset Aydin [8] studied the following identities related to
multiplicative(generalized)-derivations in semiprime rings:

(i)F (xy)±H (xy) = 0,
(ii)F (xy)±H (yx) = 0,
(iii)F (x)F (y)±H (xy) = 0,
(iv)F (xy)±H (xy) ∈ Z,
(v)F (xy)±H (yx) ∈ Z,
(vi)F (x)F (y)±H (xy) ∈ Z,

for all x, y ∈ R.
In this line of investigation, it is more interesting to study the semiprime rings with

multiplicative(generalized)-derivations involving left multipliers in some appropriate sub-
sets of R.

Throughout the paper, R will be a semiprime ring, I a non zero ideal of R, F be a
multiplicative(generalized)-derivation of R and H be a multiplicative left multiplier of R.

We shall frequently use the following basic commutator and anti-commutator identities
in the proofs of our results:
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(i) [x, yz] = y [x, z] + [x, y] z,
(ii) [xy, z] = [x, z] y + x [y, z] ,
(iii)xoyz = (xoy) z − y [x, z] = y (xoz) + [x, y] z,
(iv)xyoz = x (yoz)− [x, z] y = (xoz) y + x [y, z],
for all x, y, z ∈ R.

2. MAIN RESULTS

We begin with our first theorem:

Theorem 2.1. Let R be a semiprime ring and I a non-zero ideal of R. If F : R −→ R is a
multiplicative(generalized)-derivation associated with a map d : R −→ R such that F (xoy) ±
H (xoy) = 0 for all x, y ∈ I , then I [x, d (x)] = 0 for all x ∈ I .

Proof. By the hypothesis, we have

F (xoy)±H (xoy) = 0, for all x, y ∈ I. (2.1)

Replacing y by yx in (2.1), we obtain

F ((xoy)x)±H ((xoy)x) = 0,

Using (2.1), it reduces to
(xoy) d (x) = 0, for all x, y ∈ I. (2.2)

Substituting d (x) y for y and using (2.2), we get

[x, d (x)] yd (x) = 0, for all x, y ∈ I. (2.3)

Right multiplying (2.3) by x, we get

[x, d (x)] yd (x)x = 0, for all x, y ∈ I. (2.4)

Replace y by yx in (2.3), we obtain

[x, d (x)] yxd (x) = 0, for all x, y ∈ I. (2.5)

subtract (2.4) from (2.5), we get

[x, d (x)] y [x, d (x)] = 0, for all x, y ∈ I. (2.6)

Replacing y by ry, we obtain

[x, d (x)] ry [x, d (x)] = 0, for all x, y ∈ I and r ∈ R. (2.7)

left multiplying (2.7) by y, we get

y [x, d (x)]Ry [x, d (x)] = 0, for all x, y ∈ I.

By the semiprimeness of R, we conclude that y [x, d (x)] = 0, for all x, y ∈ I ,
that is, I [x, d (x)] = 0, for all x ∈ I . �

Theorem 2.2. Let R be a semiprime ring and I a non-zero ideal of R. If F : R −→ R is a
multiplicative(generalized)-derivation associated with a map d : R −→ R such that F (xoy) ±
H [x, y] = 0 for all x, y ∈ I , then I [x, d (x)] = 0 for all x ∈ I .

Proof. By the hyothesis, we have

F (xoy)±H [x, y] = 0, for all x, y ∈ I. (2.8)

Replacing y by yx in (2.8), we obtain

F ((xoy)x)±H ([x, y]x) , for all x, y ∈ I, (2.9)
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Using (2.8), it reduces to
(xoy) d (x) = 0, for all x, y ∈ I. (2.10)

Using the same arguments after (2.2) in the proof of Theorem (2.1), we get the required
result. �

Theorem 2.3. Let R be a semiprime ring and I a non-zero ideal of R. If F : R −→ R is a
multiplicative(generalized)-derivation associated with a map d : R −→ R such that F [x, y] ±
[x,H (y)] = 0 for all x, y ∈ I , then I [x, d (x)] = 0 for all x ∈ I .

Proof. By the hypothesis, we have

F [x, y]± [x,H (y)] = 0for all x, y ∈ I. (2.11)

Replacing y by yx in (2.11), we obtain

F ([x, y]x)± [x,H (y)x] = 0for all x, y ∈ I, (2.12)

Using (2.11), it reduces to

[x, y] d (x) = 0for all x, y ∈ I. (2.13)

Substituting d (x) y for y and using (2.13), we get

[x, d (x)] yd (x) = 0for all x, y ∈ I. (2.14)

Right multiplying (2.14) by x, we obtain

[x, d (x)] yd (x)x = 0for all x, y ∈ I. (2.15)

Replacing y by yx in (2.14), we get

[x, d (x)] yxd (x) = 0for all x, y ∈ I. (2.16)

Subtracting (2.15) from (2.16), we get

[x, d (x)] y [x, d (x)] = 0for all x, y ∈ I. (2.17)

Replacing y by ry, we obtain

[x, d (x)] ry [x, d (x)] = 0for all x, y ∈ I and r ∈ R. (2.18)

left multiplying (2.17) by y, we get

y [x, d (x)]Ry [x, d (x)] = 0for all x, y ∈ I.

The semiprimeness of R yields that y [x, d (x)] = 0 for all x, y ∈ I . Therefore I [x, d (x)] = 0
for all x ∈ I . �

Theorem 2.4. Let R be a semiprime ring and I a non-zero ideal of R. If F : R −→ R is a
multiplicative(generalized)-derivation associated with a map d : R −→ R such that F [x, y] ±
[x,H (y)] = 0 for all x, y ∈ I , then I [x, d (x)] = 0 for all x ∈ I .

Proof. By the hypothesis, we have

F (xoy)± [x,H (y)] = 0for all x, y ∈ I. (2.19)

Replacing y by yx in (2.19), we get

F ((xoy)x)± [x,H (y)x] = 0for all x, y ∈ I, (2.20)

Using (2.19), it reduces to

(xoy) d (x) = 0for all x, y ∈ I. (2.21)

Then by the same argument as in the proof of Theorem(2.1), we get I [x, d (x)] = 0 for all
x ∈ I . �
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Theorem 2.5. Let R be a semiprime ring and I a non-zero ideal of R. If F : R −→ R is a
multiplicative(generalized)-derivation associated with a map d : R −→ R such that F (xy) ±
[x,H (y)] ∈ Z(R) for all x, y ∈ I , then I [d (x) , x] = 0 for all x ∈ I .

Proof. By the hypothesis, we have

F (xy) + [x,H (y)] ∈ Z (R) for all x, y ∈ I. (2.22)

Replacing y by yz in (2.22), we get

F (xy) z + xyd (z) +H (y) [x, z] + [x,H (y)] z ∈ Z (R) for all x, y, z ∈ I,

(F (xy) + [x,H (y)]) z + xyd (z) +H (y) [x, z] ∈ Z (R) . (2.23)
Combining (2.21) and (2.22), we obtain

[xyd (z) , z] + [H (y) [x, z] , z] = 0. (2.24)

Replacing x by xz in (2.23), we get

[xzyd (z) , z] + [H (y) [xz, z] , z] = 0,

[xzyd (z) , z] + [H (y) [x, z] z, z] = 0. (2.25)
Right multiplying (2.23) by z and subtracting from (2.24), we get

[x [yd (z) , z] , z] = 0for all x, y, z ∈ I. (2.26)

Replacing x by wx in (2.25) and using (2.25), we obtain

[w, z]x [yd (z) , z] = 0for all x, y, z, w ∈ I. (2.27)

Replacing w by yd (z) and using semiprimeness of R, we get

[yd (z) , z] = 0for all y, z ∈ I. (2.28)

Substituting d (z) y instead of y in (2.27) and using (2.27), we obtain

[d (z) , z] yd (z) = 0for all y, z ∈ I.

Replacing z by x, we get

[d (x) , x] yd (x) = 0for all x, y ∈ I. (2.29)

Replacing y by yx in (2.28), we get

[d (x) , x] yxd (x) = 0for all x, y ∈ I. (2.30)

Right multiplying (2.28) by x, we get

[d (x) , x] yd (x)x = 0for all x, y ∈ I. (2.31)

Subtracting (2.29) from (2.30), we get

[d (x) , x] y [d (x) , x] = 0for all x, y ∈ I. (2.32)

Replacing y by ry in (2.31), we obtain

[d (x) , x] ry [d (x) , x] = 0for all x, y ∈ I and r ∈ R. (2.33)

Left multiplying (2.32) by y, we get

y [d (x) , x]Ry [d (x) , x] = 0for all x, y ∈ I. (2.34)

By semiprimeness of R, we conclude that y [x, d (x)] = 0, for all x, y ∈ I , then
I [x, d (x)] = 0, for all x ∈ I .
In the same manner the conclusion can be obtained when
F (xy)− [x,H (y)] ∈ Z (R) for all x, y ∈ I . �
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Theorem 2.6. Let R be a semiprime ring and I a non-zero ideal of R. If F : R −→ R is a
multiplicative(generalized)-derivation associated with a map d : R −→ R such that

F (xy)± [H (x) , H (y)] ∈ Z(R),

for all x, y ∈ I , then

I [d (x) , x] = 0,

for all x ∈ I .

Proof. By the hypothesis, we have

F (xy) + [H (x) , H (y)] ∈ Z (R) , for all x, y ∈ I. (2.35)

Replacing y by yz in (2.35), we get

F (xy) z + xyd (z) +H (y) [x, z] + [H (x) , H (y)] z ∈ Z (R) . (2.36)

Combining (2.34) and (2.35), we obtain

[xyd (z) , z] + [H (y) [x, z] , z] = 0, for all x, y, z ∈ I. (2.37)

Replacing x by xz in (2.37), we find that

[xzyd (z) , z] + [H (y) [xz, z] , z] = 0,

[xzyd (z) , z] + [H (y) [x, z] z, z] = 0, for all x, y, z ∈ I. (2.38)
Then by the same argument as in the proof of Theorem(2.5), we get I [d (x) , x] = 0, for all
x ∈ I .
In the same manner the conclusion can be obtained when F (xy)− [H (x) , H (y)] ∈ Z (R)
for all x, y ∈ I . �

Corollary 2.1. Let R be a semiprime ring admitting a multiplicative(generalized)-derivation F :
R −→ R associated with a map d : R −→ R and H : R −→ R be a multiplicative left multiplier.
If R satisfies any one of the following identities:
(i)F (xoy)±H (xoy) = 0,
(ii)F (xoy)±H [x, y] = 0,
(iii)F [x, y]± [x,H (y)] = 0,
(iv)F (xoy)± [x,H (y)] = 0,
(v)F (xy)± [x,H (y)] ∈ Z (R),
(vi)F (xy)± [H (x) , H (y)] ∈ Z (R) holds for all x, y ∈ R, then the map d is a commuting map
on R.

Example 2.1. Consider R=


 0 a b

0 0 c
0 0 0

/ a, b, c ∈ Z

, where Z is set of integers. We

define the maps F, d,H : R −→ R by F

 0 a b
0 0 c
0 0 0

=

 0 0 b
0 0 0
0 0 0

,

d

 0 a b
0 0 c
0 0 0

=

 0 a b2

0 0 0
0 0 0

, H

 0 a b
0 0 c
0 0 0

=

 0 0 ab
0 0 0
0 0 0

,

respectively.
It is verified that F is a multiplicative (generalized)-derivation associated with a map d

respectively and
H(xy) = H(x)y
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holds for all x, y ∈ R.
It is easy to see that the identity

F (xoy)±H (xoy) = 0,

for all x, y ∈ R.

Here R is not semiprime because

 0 1 1
0 0 0
0 0 0

R

 0 1 1
0 0 0
0 0 0

=(0).

Hence, the condition of semiprimeness in Corollary 2.7 cannot be removed.
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