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Some 3× 3 dimensional nonsingular matrices related to
generalized Fibonacci numbers

TUǦBA PETIK, HILAL AKBULUT and HALIM ÖZDEMIR

ABSTRACT. The relation between integer powers of the generalized Fibonacci matrix Qg =

(
p q
1 0

)
and generalized Fibonacci numbers is well known, where p and q are nonzero real numbers. Inspired by this
relation, a procedure is presented to find some 3×3 dimensional nonsingular matrices whose powers are related
to generalized Fibonacci numbers.

1. INTRODUCTION

The Fibonacci sequence {Fn}n≥0 is defined by the recurrence relation

Fn+1 = Fn + Fn−1 for all integers n ≥ 1,

where F0 = 0 and F1 = 1. The Fibonacci sequence with negative subscripts is determined
by the relation F−n = (−1)n+1Fn for all integers n ≥ 1, see, for instance, [14].

Fibonacci sequences appear in many mathematical problems in number theory and ap-
plied sciences, see, for instance, [2, 4, 14, 17, 19]. In addition, Fibonacci sequences are very
useful for deriving interesting properties in mathematics. For example, there is a well

known relation between the Fibonacci numbers and matrices: If Q =

(
1 1
1 0

)
, then

Qn =

(
Fn+1 Fn

Fn Fn−1

)
for all n ∈ Z, see, for instance, [11,13,14]. Many identities associ-

ated with Fibonacci numbers were derived by using the relation between the matrices Q
and Qn. For example, the identity

Fn+1Fn−1 − Fn
2 = (−1)n

which is known as Cassini identity can be proved by using the determinants of the matri-
ces Q and Qn.

On the other hand, for all n ∈ Z, the equalities

αn = αFn + Fn−1 and βn = βFn + Fn−1

hold, where α =
1 +
√

5

2
and β =

1−
√

5

2
are the roots of the polynomial x2 − x − 1,

which is the characteristic polynomial of the matrix Q, see, for instance, [11, 14]. By using
such properties, the matrix Q mentioned above, and matrix methods, many identities
related to Fibonacci numbers were derived. For detail information, it can be looked at, for
instance, [2, 4, 11, 14, 19].
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Fibonacci numbers have been generalized in different ways by many authors. For ex-
ample, in [5], Horadam defined the generalized Fibonacci numbers by the relation

Hn = Hn−1 +Hn−2 n ≥ 3; H1 = p, H2 = p+ q,

where p, q are arbitrary integers. And then, Horadam gave a more general definition
for the sequences of this type: The sequences {Wn(a, b; p, q)} are defined by the general
recurrence relation

Wn = pWn−1 − qWn−2 n ≥ 2; W0 = a,W1 = b

where a, b, p, q are integers (see, for instance, [6–8]). For some special values of a, b, p, and
q, Fibonacci and Lucas sequences are obtained; Fn = Wn(0, 1; 1,−1), Ln = Wn(2, 1; 1,−1).

Recently, Gupta et al. handled generalized Fibonacci sequences by the relation

Fk = pFk−1 + qFk−2, k ≥ 2 with F0 = a, F1 = b,

where p, q, a, and b are positive integers [3]. Also, the authors emphasized that many
sequences could be determined for different values of p, q, a, and b.

In this work, we use a generalization similar to that given by Gupta et al. taking initial
conditions as 0 and 1, and also taking the coefficients of recurrence relation in nonzero
real numbers:

Let p and q be arbitrary nonzero real numbers. Consider a generalized Fibonacci sequence
as

Gn+1 = pGn + qGn−1 for all integers n ≥ 1 with G0 = 0, G1 = 1. (1.1)

This generalization corresponds exactly to the generalization in [18]. Generalized Fi-

bonacci numbers with negative subscripts are determined by the relation G−n =
−Gn

(−q)n
[18]. If p = q = 1 is taken, then the sequence (1.1) turns into the classical Fibonacci se-
quence.

Now, suppose that p2 + 4q > 0. It is well known that

Gn =
αn
p,q − βn

p,q

αp,q − βp,q
,

where αp,q =
p+

√
p2 + 4q

2
and βp,q =

p−
√
p2 + 4q

2
(see, for instance, [18]). This iden-

tity is known as Binet’s Formula. Notice that αp,q and βp,q are the roots of the polynomial
x2 − px− q. It is obvious that

αp,q + βp,q = p,

αp,q − βp,q =
√
p2 + 4q,

and
αp,qβp,q = −q.

From now on, for the sake of simplicity, α and β will be used instead of αp,q and βp,q ,
respectively.

There are many identities concerning generalized Fibonacci numbers mentioned here.
Many of them can be proved by using Binet’s Formula, induction, and matrix methods.

For example, Şiar and Keskin proved thatQn
g =

(
Gn+1 qGn

Gn qGn−1

)
withQg =

(
p q
1 0

)
,

and
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αn = αGn + qGn−1, βn = βGn + qGn−1 (1.2)

for all n ∈ Z [18]. For detail information related to generalized Fibonacci numbers, it can
be looked at, for instance, [1, 3, 5–9, 12, 15, 16, 18].

In [10], the authors obtained some 3×3 dimensional matrices, whose powers are related to
Fibonacci numbers, thanks to a procedure using the diagonalization method of matrices.

Basic idea of the procedure is based on the relation between the matrices Q =

(
1 1
1 0

)
and Qn =

(
Fn+1 Fn

Fn Fn−1

)
for n ∈ Z. The procedure established in this work is similar

to the one in [10] because of the relation between the matrices Qg and Qn
g for all n ∈ Z.

We shall investigate some 3 × 3 dimensional matrices whose eigenvalues are α, β, and 1.
Since q is nonzero, it is obvious that α and β are nonzero, too. So, all the eigenvalues of
the matrices which will be obtained will also be nonzero.

It is a well-known fact that there are many applications of Fibonacci sequences in real
life, see, for instance, [14, 17]. Therefore, the topic is important not only in terms of the
theory but also in terms of its applications. On the other hand, if there is a real physi-
cal problem that needs to be solved, then it must first be modeled mathematically. It is
noteworthy the words of the Russian mathematician Nicholas Lobachevsk: ”There is no
branch of mathematics, however abstract, which may not someday be applied to phenomena of the
real world”. So, we believe that the considered problem will probably corresponds to a real
physical problem in the future.

2. MAIN RESULTS

As mentioned before, the main aim of the work is to present a procedure to find some
3× 3 dimensional matrices whose powers are related to generalized Fibonacci numbers.

Let

A =

 a b c
d e f
g h l


be a 3× 3 matrix having the eigenvalues λ1 = α, λ2 = β, and λ3 = 1. It is easily seen that
the eigenvalues λ1, λ2, and λ3 become mutually different if p2 + 4q > 0 and p + q 6= 1.
Thereafter, it will be continued under these assumptions.

Let us assume that the vectors x = (x1, x2, x3), y = (y1, y2, y3), and z = (z1, z2, z3)
are the eigenvectors corresponding to the eigenvalues λ1, λ2, and λ3, respectively. So,
we have the systems of equations Ax = λ1x, Ay = λ2y, and Az = λ3z. The matrix A
is diagonalizable since all the eigenvalues are mutually different. So, without loss of the
generality, we can write

A = SΛS−1

where Λ = diag(α, β, 1) and S is the matrix having the columns x, y, and z, respectively.
Hence, we obtain

An = SΛnS−1

for all n ∈ Z. Thus, considering the equalities (1.2), we get

An = S

 αn 0 0
0 βn 0
0 0 1

S−1 = S

 αGn + qGn−1 0 0
0 βGn + qGn−1 0
0 0 1

S−1,
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or equivalently,
An = GnA+ qGn−1I3 + (1−Gn − qGn−1)D, (2.3)

where

D = S

 0 0 0
0 0 0
0 0 1

S−1.

It is obvious that we have

det(S) = z1 (x2y3 − y2x3) + z2 (x3y1 − x1y3) + z3 (x1y2 − y1x2) (2.4)

and

D =
1

det(S)

 z1 (x2y3 − y2x3) z1 (x3y1 − x1y3) z1 (x1y2 − y1x2)
z2 (x2y3 − y2x3) z2 (x3y1 − x1y3) z2 (x1y2 − y1x2)
z3 (x2y3 − y2x3) z3 (x3y1 − x1y3) z3 (x1y2 − y1x2)

 . (2.5)

From now on, without loss of the generality, we will proceed choosing x = (α, β,−1) and
y = (β, α,−1). Under these assumptions, the identities

a

(
p+
√

p2+4q

2

)
+ b

(
p−
√

p2+4q

2

)
− c = α2,

a

(
p−
√

p2+4q

2

)
+ b

(
p+
√

p2+4q

2

)
− c = β2

(2.6)

can be obtained from the first equations of Ax = λ1x and Ay = λ2y, respectively. Adding
and subtracting the terms of the equalities (2.6) side by side lead to the equalities

ap+ bp− 2c = α2 + β2 = p2 + 2q,

a
(√

p2 + 4q
)
− b

(√
p2 + 4q

)
= α2 − β2 = p

√
p2 + 4q,

(2.7)

respectively.
Similarly, from the second and third equations of Ax = λ1x and Ay = λ2y, proceeding in
exactly the same way, we get

dp+ ep− 2f = −2q,

d
√
p2 + 4q − e

√
p2 + 4q = 0

(2.8)

and
gp+ hp− 2l = −p,
g
√
p2 + 4q − h

√
p2 + 4q = −

√
p2 + 4q.

(2.9)

So, to satisfy the systems of equations Ax = λ1x and Ay = λ2y, it is necessary to satisfy
the systems of equations (2.7), (2.8), and (2.9), or equivalently, the system of equations

pa+ pb− 2c = p2 + 2q, a− b = p,
pd+ pe− 2f = −2q, d− e = 0,
pg + ph− 2l = −p, g − h = −1.

(2.10)

Taking into account the choices of the vectors x and y, it is seen that we have the equalities

x2y3 − y2x3 = x3y1 − x1y3 =
√
p2 + 4q and x1y2 − y1x2 = p

√
p2 + 4q. (2.11)

Now, we can find different matrices A satisfying all of the systems Ax = λ1x, Ay = λ2y,
and Az = λ3z by doing appropriate choices for the vector z:
Firstly, let z = (z1, z2, z3) be a vector such that z1 = k, z2 = −k, z3 = k with k being a
positive integer. In this case, from (2.4) and (2.11), it is obtained that

det(S) = kp
√
p2 + 4q.
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So, we get

D =
1

p

 1 1 p
−1 −1 −p
1 1 p


from (2.5). In addition, the system of equations Az = λ3z turns into the system of equa-
tions

a− b+ c = 1
d− e+ f = −1
g − h+ l = 1.

(2.12)

From the common solution of the systems (2.10) and (2.12), we obtain

A =
1

p

 p2 − p+ q + 1 −p+ q + 1 −p2 + p
−1− q −1− q −p
2− p 2 2p

 . (2.13)

So, from (2.3), we get

An =
1

p


(p2− p+ q)Gn+ q(p− 1)Gn−1 + 1 (−p+ q)Gn− qGn−1+1 −p2Gn−pqGn−1+p

−qGn + qGn−1 − 1 −qGn + q(1 + p)Gn−1 − 1 −p+ pqGn−1

(1− p)Gn − qGn−1 + 1 Gn − qGn−1 + 1 pGn + p


for all n ∈ Z. Thus, we have proved the following result.

Theorem 2.1. IfA = 1
p

 p2 − p+ q + 1 −p+ q + 1 −p2 + p
−1− q −1− q −p
2− p 2 2p

, where p and q are nonzero

real numbers such that p+ q 6= 1 and p2 + 4q > 0, then

An=
1

p


(p2−p+ q)Gn+ q(p− 1)Gn−1+ 1 (−p+ q)Gn − qGn−1+ 1 −p2Gn− pqGn−1+ p

−qGn + qGn−1 − 1 −qGn + q(1 + p)Gn−1 − 1 −p+ pqGn−1

(1− p)Gn − qGn−1 + 1 Gn − qGn−1 + 1 pGn + p


for all n ∈ Z.

�

Secondly, let z = (z1, z2, z3) be a vector such that z1 = k, z2 = k, z3 = −k with k being a
positive integer. From (2.4) and (2.11), it is clear that det(S) = (2k − kp)

√
p2 + 4q. Now,

under the assumption p 6= 2, the matrix

D =
1

2− p

 1 1 p
1 1 p
−1 −1 −p


is obtained from (2.5). On the other hand, the system of equations Az = λ3z turns into the
system of equations

a+ b− c = 1
d+ e− f = 1
g + h− l = −1.

(2.14)

Common solution of (2.10) and (2.14) leads to the matrix

A =
1

p− 2

 p2 + q − p− 1 q + p− 1 p2 + 2q − p
−q − 1 −q − 1 −2q − p
2− p 0 0

 . (2.15)
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So, from (2.3), we get

An=
1

p−2


(p2+q −p)Gn+q(p−1)Gn−1−1 (q+p)Gn+qGn−1−1 (p2+2q)Gn+pqGn−1−p

−qGn + qGn−1 − 1 −qGn + q(p− 1)Gn−1 − 1 −2qGn+pqGn−1−p

(1−p)Gn−qGn−1+ 1 1−Gn − qGn−1 −pGn+q(p−3)Gn−1+p


for all n ∈ Z. Thus, we have proved the following theorem.

Theorem 2.2. If A = 1
p−2

 p2 + q − p− 1 q + p− 1 p2 + 2q − p
−q − 1 −q − 1 −2q − p
2− p 0 0

, where p and q are

nonzero real numbers such that p+ q 6= 1, p2 + 4q > 0, and p 6= 2, then

An=
1

p−2


(p2+q −p)Gn+q(p−1)Gn−1−1 (q+p)Gn+qGn−1−1 (p2+2q)Gn+pqGn−1−p

−qGn + qGn−1 − 1 −qGn + q(p− 1)Gn−1 − 1 −2qGn+pqGn−1−p

(1−p)Gn−qGn−1+ 1 1−Gn − qGn−1 −pGn+q(p−3)Gn−1+p


for all n ∈ Z.

�

Finally, let z = (z1, z2, z3) be a vector such that z1 = −k, z2 = k, and z3 = k with k being
a positive integer. In view of the former discussions, from (2.4) and (2.11) again, it is
obtained that det(S) = kp

√
p2 + 4q. So, from (2.5), we get

D =
1

p

 −1 −1 −p
1 1 p
1 1 p

 .

Moreover, the system of linear equations Az = λ3z turns into the system

−a+ b+ c = −1
−d+ e+ f = 1
−g + h+ l = 1.

(2.16)

From the common solution of (2.10) and (2.16), it is obtained that

A =
1

p

 p2 + p+ q − 1 p+ q − 1 p2 − p
−q + 1 −q + 1 p
−p 0 0

 . (2.17)

So, from (2.3), we obtain

An =
1

p


(p2 + p+ q)Gn + (pq + q)Gn−1 − 1 (p+ q)Gn + qGn−1 − 1 p2Gn + pqGn−1 − p

−qGn − qGn−1 + 1 −qGn + (pq − q)Gn−1 + 1 p− pqGn−1

(−p− 1)Gn − qGn−1 + 1 1−Gn − qGn−1 p− pGn


for all n ∈ Z. Thus, we have the following result.

Theorem 2.3. If A = 1
p

 p2 + p+ q − 1 p+ q − 1 p2 − p
−q + 1 −q + 1 p
−p 0 0

, where p and q are nonzero

real numbers such that p+ q 6= 1 and p2 + 4q > 0 , then
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An =
1

p


(p2+ p+q)Gn + (pq +q)Gn−1 − 1 (p+ q)Gn+qGn−1 − 1 p2Gn +pqGn−1− p

−qGn − qGn−1 + 1 −qGn + (pq − q)Gn−1 + 1 p− pqGn−1

(−p− 1)Gn − qGn−1 + 1 1−Gn − qGn−1 p− pGn


for all n ∈ Z.

�

Recall that the Fibonacci Q matrix is defined by

Q =

(
F2 F1

F1 F0

)
=

(
1 1
1 0

)
.

As we have already pointed out in Introduction. For all n ∈ Z, the equality

Qn =

(
Fn+1 Fn

Fn Fn−1

)
is well known, where Fn is n-th Fibonacci number [11,13,14]. Notice that the eigenvalues

of the matrix Q are
1 +
√

5

2
and

1−
√

5

2
. Based on this fact, in [10], the authors gave a pro-

cedure to find some 3 × 3 dimensional matrices whose eigenvalues are
1 +
√

5

2
,

1−
√

5

2
,

and 0. Since the matrices obtained in [10] are singular, the results are only valid for non-
negative integers n. Even so, the procedure established in this work is similar to the one
in [10]. Since the procedure in this work contains 3× 3 dimensional nonsingular matrices

having the eigenvalues
p+

√
p2 + 4q

2
,
p−

√
p2 + 4q

2
, and 1, where p and q are nonzero

real numbers with p + q 6= 1 and p2 + 4q > 0, the results given here are valid all integers
n. In addition, if it is taken p = q = 1, then the results obtained are reduced to the nonsin-
gular matrices whose powers are related to Fibonacci numbers. Finally, note that for the
sake of simplicity and without loss of the generality, the third nonzero eigenvalue of the
matrix A is selected as 1.

Let’s close the work giving an illustrating example. For example, suppose that p = q =

1. So, as pointed out in Theorem 2.1, if A =

 2 1 0
−2 −2 −1
1 2 2

, then

An =


Fn + 1 −Fn−1 + 1 −Fn − Fn−1 + 1

−Fn + Fn−1 − 1 −Fn + 2Fn−1 − 1 −1 + Fn−1

1− Fn−1 Fn − Fn−1 + 1 Fn + 1


for all n ∈ Z.
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