More on δ - and θ -modifications

UĞUR ŞENGÜL

ABSTRACT. Using δ -and θ -modifications of bigeneralized topologies we introduce $(\delta_{\nu_1,\nu_2}: \theta_{\upsilon_1,\upsilon_2})$ -continuity and related maps between two BIGTS's. We characterize these maps using the concepts of mixed generalized open sets: δ_{ν_1,ν_2} -open sets, θ_{ν_1,ν_2} -open sets.

1. INTRODUCTION

Ákos Császár [3], introduced and study the concept of generalized topological spaces and he also introduces two kinds of generalized continuity in [3] and again from the studies of Ákos Császár (see [3],[5]) we have learned that the theory of δ - and θ -modifications of topological spaces [13] can be taken to generalized topology. As a continuation of this study in [7], Csaszar and Makai introduced δ_{ν_1,ν_2} -open sets and θ_{ν_1,ν_2} -open sets defined by two given generalized topologies ν_1 , ν_2 on a set $X \neq \emptyset$. They introduced the notion of $(\theta_{\nu_1,\nu_2}:\theta_{\nu_1,\nu_2})$ -continuity, and they showed that every (ν_1,ν_1) -continuous and (ν_2, ν_2) -continuous map is $(\theta_{\nu_1, \nu_2} : \theta_{\nu_1, \nu_2})$ -continuous. In [10] W. K. Min, gave a characterization for $(\theta_{\nu_1,\nu_2}: \hat{\theta_{\nu_1,\nu_2}})$ -continuity and he introduced the concept of $(\delta_{\nu_1,\nu_2}: \delta_{\nu_1,\nu_2})$ continuity between bigeneralized topological spaces and studied the relations between $(\theta_{\nu_1,\nu_2}:\theta_{\nu_1,\nu_2})$ -continuity and $(\delta_{\nu_1,\nu_2}:\delta_{\nu_1,\nu_2})$ -continuity. W. K. Min in ([9],[11]) studied other related concepts of continuity. In this paper, we aim to extend the implication table in Remark 3. 5. of [10], in fact we look for possible relatives for the maps in this table, for doing this in the first step we will introduce weakly $(\delta_{\nu_1,\nu_2}: v_1v_2)$ continuity, $(\delta_{\nu_1,\nu_2}:\theta_{\nu_1,\nu_2})$ -continuity, $(\theta_{\nu_1,\nu_2}:\delta_{\nu_1,\nu_2})$ -continuity, on bigeneralized topological spaces and after that we will study the implications between $(\theta_{\nu_1,\nu_2}, \theta_{\nu_1,\nu_2})$ -continuity and $(\delta_{\nu_1,\nu_2}: \delta_{\nu_1,\nu_2})$ -continuity with these three maps. W.K. Min ([10]) pointed out that there is no relation between $(\theta_{\nu_1,\nu_2}:\theta_{\nu_1,\nu_2})$ -continuity and $(\delta_{\nu_1,\nu_2}:\delta_{\nu_1,\nu_2})$ -continuity. But $(\delta_{\nu_1,\nu_2}: \theta_{\nu_1,\nu_2})$ -continuity and the other maps is slightly relates these two variants of maps, for example both $(\theta_{\nu_1,\nu_2}:\theta_{\nu_1,\nu_2})$ -continuity and $(\delta_{\nu_1,\nu_2}:\delta_{\nu_1,\nu_2})$ -continuity implies $(\delta_{\nu_1,\nu_2}:\theta_{\nu_1,\nu_2})$ -continuity.

2. Preliminaries

Consider a set $X \neq \emptyset$, a subfamily $\nu \subset \exp X$, where $\exp X$ is the power set of X, is called a generalized topology [3] (briefly, GT) on X if $\emptyset \in \nu$ and ν is closed under union. A set $X \neq \emptyset$ with a GT ν on X is called a generalized topological space (briefly, GTS) and is denoted by (X, ν) . A GTS (X, ν) is called strong if $X \in \nu$. For a GTS (X, ν) , the elements of ν are called ν -open sets and the complements of ν -open sets are called ν -closed sets [3]. The intersection of all ν -closed sets containing a subset S of X is denoted by $c_{\nu}(S)$, and the union of all ν -open sets contained in S is denoted by $i_{\nu}(S)$, (see [4], [5]). Note that

2010 Mathematics Subject Classification. 54A10, 54C08.

Received: 01.08.2020. In revised form: 15.12.2020. Accepted: 22.12.2021

Key words and phrases. δ -and θ -modifications generalized topologies, bigeneralized topological space, r_{ν_1,ν_2} -open set, weakly ($\delta_{\nu_1,\nu_2}: v_1v_2$)-continuous map, ($\delta_{\nu_1,\nu_2}: \theta_{v_1,v_2}$)-continuous map, ($\theta_{\nu_1,\nu_2}: \delta_{v_1,v_2}$)-continuous map, ($\theta_{\nu_1,\nu_2}: \delta_{\nu_1,\nu_2}$)-continuous map, ($\theta_{\nu_1,\nu_2}: \delta_{\nu_1,\nu_2}: \delta_{\nu_1,\nu_2}$)-continuous map, ($\theta_{\nu_1,\nu_2}: \delta_{\nu_1,\nu_2}: \delta_{\nu_1,$

 $c_{\nu}(X \setminus S) = X \setminus i_{\nu}(S)$. It is known that $i_{\nu}(S)$ and $c_{\nu}(S)$ are idempotent and monotonic [5]. Let ν and v be GT's on X and Y, respectively, then a map $f : (X, \nu) \to (Y, v)$ is called (ν, v) -continuous (briefly (ν, v) -c.) map [3] (or generalized continuous) if $G \in v$ implies that inverse of G under f is in ν , that is $f^{\leftarrow}(G) \in \nu$. Let ν_1, ν_2 be two GT's on a set X $(\neq \emptyset)$. Then $(X; \nu_1, \nu_2)$ called a bigeneralized topological space [10] (briefly BIGTS). Let $(X; \nu_1, \nu_2)$ be a BIGTS and $S \subseteq X$. S is said to be r_{ν_1, ν_2} -open (respectively, r_{ν_1, ν_2} -closed) [6] if $S = i_{\nu_1} (c_{\nu_2}(S))$ (respectively, $S = c_{\nu_1} (i_{\nu_2}(S))$).

Definition 2.1. [6] Császár defined $\theta_{\nu_1,\nu_2}, \delta_{\nu_1,\nu_2} \subseteq 2^X$ by

(1) $S \in \theta_{\nu_1,\nu_2}$ iff for each $x \in S$, there exists an $W \in \nu_1$ such that $x \in W \subseteq c_{\nu_2}(W) \subseteq S$; (2) $S \in \delta_{\nu_1,\nu_2}$ iff $S \subseteq X$ and, if $x \in S$, then there is a ν_2 -closed set F such that $x \in i_{\nu_1}(F) \subseteq S$.

An element *S* in δ_{ν_1,ν_2} (respectively, θ_{ν_1,ν_2}) is called a δ_{ν_1,ν_2} -open (respectively, θ_{ν_1,ν_2} -open) set [6]. *S* is called a δ_{ν_1,ν_2} -closed (respectively, θ_{ν_1,ν_2} -closed) set if the complement of *S* is δ_{ν_1,ν_2} -open (respectively, θ_{ν_1,ν_2} -open) [6]. Notations defined as follows:

 $\begin{aligned} c_{\theta_{\nu_1,\nu_2}}(S) &= \cap \{F \subseteq X : S \subseteq F \text{ for } \theta_{\nu_1,\nu_2}\text{-closed set } F \text{ in } X\} \ [9] \ ;\\ i_{\theta_{\nu_1,\nu_2}}(S) &= \cup \{V \subseteq X : V \subseteq S \text{ for } V \in \theta_{\nu_1,\nu_2}\} \ [9];\\ i_{\delta_{\nu_1,\nu_2}}(S) &= \cup \{V \subseteq X : V \subseteq S \text{ for } V \in \delta_{\nu_1,\nu_2}\} = \cup \{V \subseteq X : V \subseteq S \text{ for } r_{\nu_1,\nu_2}\text{-open set } V \text{ in } X\};\\ \gamma_{\theta_{\nu_1,\nu_2}}(S) &= \{x \in X : c_{\nu_2}(W) \cap S \neq \emptyset \text{ for every } W \in \nu_1 \text{ containing } x\} \ [7]. \end{aligned}$

Lemma 2.1. [6] Let ν_1 and ν_2 be two GT on a set $X \ (\neq \emptyset)$ and $S \subseteq X$. The following are valid: (1) θ_{ν_1,ν_2} and δ_{ν_1,ν_2} are GT's on X and $\theta_{\nu_1,\nu_2} \subseteq \delta_{\nu_1,\nu_2} \subseteq \nu_1$. (2) The nonempty elements of δ_{ν_1,ν_2} coincides with the unions of r_{ν_1,ν_2} -open sets. (3) $x \in c_{\delta_{\nu_1,\nu_2}}$ (S) iff $S \cap V \neq \emptyset$ for every r_{ν_1,ν_2} -open set V containing x.

(4) If F is ν_2 -closed, then $i_{\nu_1}(F)$ is r_{ν_1,ν_2} -open.

Lemma 2.2. Let ν_1 and ν_2 be two GT on a set $X \ (\neq \emptyset)$ and $S \subseteq X$. Then the following hold: (1) $S \subseteq \gamma_{\theta_{\nu_1,\nu_2}}(S) \subseteq c_{\theta_{\nu_1,\nu_2}}(S)$ [7].

(2) S is θ_{ν_1,ν_2} -closed iff $S = \gamma_{\theta_{\nu_1,\nu_2}}(S)$ [7].

(3) $x \in i_{\theta_{\nu_1,\nu_2}}(S)$ iff there exists a ν_1 -open set W containing x such that $x \in W \subseteq c_{\nu_2}(W) \subseteq S$ [10].

(4) If S is ν_2 -open in X, then $\gamma_{\theta_{\nu_1,\nu_2}}(S) = c_{\nu_1}(S)$ [7].

Definition 2.2. Let $(X; \nu_1, \nu_2)$ and $(Y; \nu_1, \nu_2)$ be BIGTS's. A map $f : X \to Y$ is said to be; (1) $(\theta_{\nu_1,\nu_2} : \theta_{\nu_1,\nu_2})$ -continuous [6] (briefly $(\theta_{\nu_1,\nu_2} : \theta_{\nu_1,\nu_2})$ -c.) if for every $G \in \theta_{\nu_1,\nu_2}$, $f^{\leftarrow}(G) \in \theta_{\nu_1,\nu_2}$, (2) $(\delta = : \delta =)$ -continuous [10] (briefly $(\delta = : \delta =)$ -c.) if for every $G \in \delta = f^{\leftarrow}(G)$

(2) $(\delta_{\nu_1,\nu_2}: \delta_{\upsilon_1,\upsilon_2})$ -continuous [10] (briefly $(\delta_{\nu_1,\nu_2}: \delta_{\upsilon_1,\upsilon_2})$ -c.) if for every $G \in \delta_{\upsilon_1,\upsilon_2}$, $f^{\leftarrow}(G) \in \delta_{\nu_1,\nu_2}$.

Definition 2.3. Let (X, ν) be a GT and $(Y; v_1, v_2)$ be a BIGTS. A map $f : (X, \nu) \rightarrow (Y; v_1, v_2)$ is said to be faintly $(\nu : v_1v_2)$ -continuous [11] (briefly faintly $(\nu : v_1v_2)$ -c.) if for every $V \in \theta_{v_1,v_2}$ we have $f^{\leftarrow}(V) \in \nu$.

Consider a bigeneralized topology $(X; \nu_1, \nu_2)$ the notation $\mathcal{O}_{\delta_{\nu_1,\nu_2}}(X, x)$ (respectively $\mathcal{O}_{\theta_{\nu_1,\nu_2}}(X, x), \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x), \mathcal{O}_{\nu_i}(X, x)$ $(i \in \{1, 2\})$) will be used for the family of δ_{ν_1,ν_2} -open sets (respectively θ_{ν_1,ν_2} -open sets, r_{ν_1,ν_2} -open sets, ν_i -open sets $(i \in \{1, 2\})$) containing a point $x \in X$.

Uğur Şengül

3. $(\delta_{\nu_1,\nu_2}:\theta_{\upsilon_1,\upsilon_2})$ -continuity and related maps

Definition 3.4. Let $(X; \nu_1, \nu_2)$ and $(Y; v_1, v_2)$ be BIGTS's. A map $f : X \to Y$ is said to be $(\delta_{\nu_1,\nu_2} : \theta_{v_1,\nu_2})$ -continuous (briefly $(\delta_{\nu_1,\nu_2} : \theta_{v_1,\nu_2})$ -c.) if for every $G \in \theta_{v_1,v_2}$, $f^{\leftarrow}(G) \in \delta_{\nu_1,\nu_2}$.

Definition 3.5. Let $(X; \nu_1, \nu_2)$ and $(Y; v_1, v_2)$ be BIGTS's. A map $f : X \to Y$ is said to be $(\theta_{\nu_1,\nu_2} : \delta_{v_1,v_2})$ -continuous (briefly $(\theta_{\nu_1,\nu_2} : \delta_{v_1,v_2})$ -c.) if for every $G \in \delta_{v_1,v_2}$, $f^{\leftarrow}(G) \in \theta_{\nu_1,\nu_2}$.

 $(\delta_{\nu_1,\nu_2}: \theta_{\nu_1,\nu_2})$ -continuity is related with both of the concepts of $\theta\delta$ -continuity due to Santoro [12] and *ij*-weakly θ -continuity due to Khedr and Al-Shibani [8]. The following definition is a generalization of the concept of *ij*-weakly θ -continuity due to Khedr and Al-Shibani [8] to the bigeneralized topologies. Note that *ij*-weakly θ -continuity is a generalization of the concept of weakly θ -continuity due to Cammaroto and Noiri [2].

Definition 3.6. Let $(X; \nu_1, \nu_2)$ and $(Y; \upsilon_1, \upsilon_2)$ be BiGTS's. A map $f : X \to Y$ is said to be weakly $(\delta_{\nu_1,\nu_2} : \upsilon_1\upsilon_2)$ -continuous (shortly weakly $(\delta_{\nu_1,\nu_2} : \upsilon_1\upsilon_2)$ -c.) if for each $x \in X$ and each $V \in \mathcal{O}_{\nu_1}(Y, f(x))$, there exists a $U \in \mathcal{O}_{\nu_1}(X, x)$ such that $f(i_{\nu_1}(c_{\nu_2}(U))) \subseteq c_{\nu_2}(V)$.

Then we need working examples, especially for the weak $(\delta_{\nu_1,\nu_2} : \upsilon_1 \upsilon_2)$ -continuity, but we will provide necessary examples in the last section.

Theorem 3.1. Let $(X; \nu_1, \nu_2)$ and $(Y; \nu_1, \nu_2)$ be BIGTS's, for a map $f : X \to Y$, the following are equivalent:

(1) f is weakly $(\delta_{\nu_1,\nu_2} : v_1v_2)$ -c.

(2) For each $x \in X$ and each $V \in \mathcal{O}_{\nu_1}(Y, f(x))$, there exists a $W \in \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x)$ such that $f(W) \subseteq c_{\nu_2}(V)$.

(3) For each $x \in X$ and each $V \in \mathcal{O}_{v_1}(Y, f(x))$, there exists an $U \in \mathcal{O}_{\delta_{\nu_1,\nu_2}}(X, x)$ such that $f(U) \subseteq c_{v_2}(V)$.

Proof. (1) \Rightarrow (2) : Let $x \in X$ and $V \in \mathcal{O}_{\nu_1}(Y, f(x))$, by (1) there exists a $U \in \mathcal{O}_{\nu_1}(X, x)$ such that $f(i_{\nu_1}(c_{\nu_2}(U))) \subseteq c_{\nu_2}(V)$. Since $W = i_{\nu_1}(c_{\nu_2}(U))$ is r_{ν_1,ν_2} -open set we have $f(W) \subseteq c_{\nu_2}(V)$.

 $(2) \Rightarrow (3)$: Let $x \in X$ and $V \in \mathcal{O}_{v_1}(Y, f(x))$ then (2) implies that there exists a $W \in \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x)$ such that $f(W) \subseteq c_{v_2}(V)$. Since every r_{ν_1,ν_2} -open set is δ_{ν_1,ν_2} -open set (3) is true.

 $\begin{array}{l} (3) \Rightarrow (1): \text{Let } x \in X \text{ and } V \in \mathcal{O}_{\nu_1}(Y, f(x)). \text{ From (3) there exists } U \in \mathcal{O}_{\delta_{\nu_1,\nu_2}}(X, x) \\ \text{such that } f(U) \subseteq c_{\nu_2}(V). \text{ Since } U \text{ is } \delta_{\nu_1,\nu_2}\text{-}open \text{ set, there is a } \nu_2\text{-}closed \text{ set } F \text{ such that } \\ x \in i_{\nu_1}(F) \subseteq U, \text{ take } W = i_{\nu_1}(F), \text{ then } W \in \nu_1 \text{ and since } i_{\nu_1}(F) \text{ is } r_{\nu_1,\nu_2}\text{-}open, \text{ it is true } \\ \text{that } W = i_{\nu_1}(c_{\nu_2}(W)) = i_{\nu_1}(F) \text{ hence we have } f(i_{\nu_1}(c_{\nu_2}(W))) \subseteq f(U)) \subseteq c_{\nu_2}(V). \end{array}$

Theorem 3.2. Let $(X; \nu_1, \nu_2)$ and $(Y; \nu_1, \nu_2)$ be BIGTS's, for a map $f : X \to Y$ the following are equivalent:

(1) f is weakly $(\delta_{\nu_1,\nu_2} : \upsilon_1\upsilon_2)$ -c. (2) $f(c_{\delta_{\nu_1,\nu_2}}(A)) \subseteq \gamma_{\theta_{\upsilon_1,\upsilon_2}}(f(A))$ for every $A \subseteq X$. (3) $c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(B)) \subseteq f^{\leftarrow}(\gamma_{\theta_{\upsilon_1,\upsilon_2}}(B))$ for every $B \subseteq Y$. (4) $c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(V)) \subseteq f^{\leftarrow}(c_{\nu_1}(V))$ for every υ_2 -open subset V of Y.

Proof. (1) \Rightarrow (2) : For $A \subseteq X$, let $x \in c_{\delta_{\nu_1,\nu_2}}(A)$ and $V \in \mathcal{O}_{\nu_1}(Y, f(x))$. Then since f is weakly $(\delta_{\nu_1,\nu_2}: \nu_1\nu_2)$ -c., there exists a $U \in \mathcal{O}_{\nu_1}(X, x)$ such that $f(i_{\nu_1}(c_{\nu_2}(U))) \subseteq c_{\nu_2}(V)$. Since $x \in c_{\delta_{\nu_1,\nu_2}}(A)$ and $i_{\nu_1}(c_{\nu_2}(U))$ is r_{ν_1,ν_2} -open set in X, we have $A \cap i_{\nu_1}(c_{\nu_2}(U)) \neq \emptyset$. So $\emptyset \neq f(A) \cap f(i_{\nu_1}(c_{\nu_2}(U))) \subseteq c_{\nu_2}(V) \cap f(A)$. Then we have $f(x) \in \gamma_{\theta_{\nu_1,\nu_2}}(f(A))$. (2) \Rightarrow (3) : Taking $A = f^{\leftarrow}(B)$ in (2) $f(c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(B))) \subseteq \gamma_{\theta_{\nu_1,\nu_2}}(f(f^{\leftarrow}(B))) \subseteq \gamma_{\theta_{\nu_1,\nu_2}}(B)$. Then we have $c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(B)) \subseteq f^{\leftarrow}(f(c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(B))) \subseteq f^{\leftarrow}(\gamma_{\theta_{\nu_1,\nu_2}}(B)).$ (3) \Rightarrow (4) : Let $V \in v_2$. Then by Lemma 2.2(4), $\gamma_{\theta_{\nu_1,\nu_2}}(V) = c_{\nu_1}(V)$ and by (3) we have $c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(V)) \subseteq f^{\leftarrow}(c_{\nu_1}(V)).$ (4) \Rightarrow (1) : Let $x \in X$ and $V \in \mathcal{O}_{v_1}(Y, f(x)).$ Since $V = i_{v_1}(V) \subseteq i_{v_1}(c_{v_2}(V))$ and $Y \setminus c_{v_2}(V) \in v_2$ by (4) we have $x \in f^{\leftarrow}(V) \subseteq f^{\leftarrow}(i_{v_1}(c_{v_2}(V))) = X \setminus f^{\leftarrow}(c_{v_1}(Y \setminus c_{v_2}(V)))$ $\subseteq X \setminus c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(Y \setminus c_{v_2}(V))) = i_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(c_{v_2}(V))).$ Then $x \in i_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(c_{v_2}(V)))$, so that there exists a $U \in \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x)$ such that $U \subseteq f^{\leftarrow}(c_{v_2}(V))$, hence f is weakly $(\delta_{\nu_1,\nu_2}: v_1v_2)$ -c.

Corollary 3.1. Let $(X; \nu_1, \nu_2)$ and $(Y; \upsilon_1, \upsilon_2)$ be BIGTS's. If a map $f : (X; \nu_1, \nu_2) \rightarrow (Y; \upsilon_1, \upsilon_2)$ is weakly $(\delta_{\nu_1, \nu_2} : \upsilon_1 \upsilon_2)$ -c. then the following are valid: (1) $f^{\leftarrow}(F)$ is δ_{ν_1, ν_2} -closed in X for each $\theta_{\upsilon_1, \upsilon_2}$ -closed F in Y. (2) $f^{\leftarrow}(V)$ is δ_{ν_1, ν_2} -open in X for each $\theta_{\upsilon_1, \upsilon_2}$ -open V in Y.

Proof. Let F be θ_{v_1,v_2} -closed in Y. By Theorem 3.2(3) and by Lemma 2.2(4) we have $c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(F)) \subseteq f^{\leftarrow}(F)$ and so that $f^{\leftarrow}(F)$ is δ_{ν_1,ν_2} -closed in X. (2) is clear from (1).

Theorem 3.3. For BIGTS's $(X; \nu_1, \nu_2)$ and $(Y; \upsilon_1, \upsilon_2)$, if $f : X \to Y$ is $(\delta_{\nu_1, \nu_2} : \theta_{\upsilon_1, \upsilon_2})$ continuous, then for every $\theta_{\upsilon_1, \upsilon_2}$ -closed M in $(Y; \upsilon_1, \upsilon_2)$, $f^{\leftarrow}(M)$ is δ_{ν_1, ν_2} -closed in $(X; \nu_1, \nu_2)$.

Proof. Assume M is θ_{v_1,v_2} -closed in $(Y; v_1, v_2)$, since $f : X \to Y$ is $(\delta_{\nu_1,\nu_2} : \theta_{v_1,v_2})$ continuous we have $f^{\leftarrow}(Y \setminus M) = X \setminus f^{\leftarrow}(M)$ is δ_{ν_1,ν_2} -open in $(X; \nu_1, \nu_2)$. Hence $f^{\leftarrow}(M)$ is δ_{ν_1,ν_2} -closed in $(X; \nu_1, \nu_2)$.

Theorem 3.4. Let $(X; \nu_1, \nu_2)$ and $(Y; \nu_1, \nu_2)$ be BIGTS's, for a map $f : X \to Y$, the following are equivalent:

(1) f is $(\delta_{\nu_1,\nu_2}: \theta_{\nu_1,\nu_2})$ -c.

(2) For each $x \in X$ and each $V \in \mathcal{O}_{\theta_{\nu_1,\nu_2}}(Y, f(x))$, there exists a $U \in \mathcal{O}_{\delta_{\nu_1,\nu_2}}(X, x)$ such that $f(U) \subseteq V$.

(3) For each $x \in X$ and each $V \in \mathcal{O}_{\theta_{\nu_1,\nu_2}}(Y, f(x))$, there exists a ν_2 -closed set M containing x such that $f(i_{\nu_1}(M)) \subseteq V$.

(4) For each $x \in X$ and each $V \in \mathcal{O}_{\theta_{v_1,v_2}}(Y, f(x))$, there exists a ν_1 -open set C containing x such that $f(i_{\nu_1}(c_{\nu_2}(C))) \subseteq V$.

(5) For each $x \in X$ and each $V \in \mathcal{O}_{\theta_{\nu_1,\nu_2}}(Y, f(x))$, there exists a $U \in \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x)$ such that $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2) : Let $V \in \theta_{v_1,v_2}$ and $x \in f^{\leftarrow}(V)$. By (1) $f^{\leftarrow}(V) \in \delta_{\nu_1,\nu_2}$. Take $U = f^{\leftarrow}(V)$; then $U \in \mathcal{O}_{\delta_{\nu_1,\nu_2}}(X, x)$ and satisfies $f(U) \subseteq V$.

 $(2) \Rightarrow (3)$: Let $V \in \theta_{\nu_1,\nu_2}$ and $x \in f^{\leftarrow}(V)$. (2) implies that there exists a $W \in \mathcal{O}_{\delta_{\nu_1,\nu_2}}(X,x)$ such that $f(W) \subseteq V$. δ_{ν_1,ν_2} -openness of W implies that there exists a ν_2 -closed set M containing x such that $x \in i_{\mu_1}(M) \subseteq W$, so we have $f(i_{\nu_1}(M)) \subseteq f(W) \subseteq V$. So there exists a ν_2 -closed set M containing x satisfying $f(i_{\nu_1}(M)) \subseteq V$.

 $(3) \Rightarrow (1)$: Let $V \in \theta_{v_1,v_2}$. For each $x \in f^{\leftarrow}(V)$ there exists a ν_2 -closed set M satisfying $x \in i_{\nu_1}(M)$ and $f(i_{\nu_1}(M)) \subseteq V$ by (3). So we have $x \in i_{\nu_1}(M) \subseteq f^{\leftarrow}(V)$, that is $f^{\leftarrow}(V)$ is δ_{ν_1,ν_2} -open.

 $(3) \Rightarrow (4): \text{Let } V \in \theta_{\nu_1,\nu_2} \text{ and } x \in f^{\leftarrow}(V). \text{ By (3) there exists a } \nu_2\text{-closed set } M \text{ satisfying } x \in i_{\nu_1}(M) \text{ and } f(i_{\nu_1}(M)) \subseteq V. \text{ Since } x \in i_{\nu_1}(M) \text{ there exists a } C \in \mathcal{O}_{\nu_1}(X,x) \text{ such that } x \in C \subseteq i_{\nu_1}(M) \subseteq M \text{ and from this containment we have } C \subseteq c_{\nu_2}(C) \subseteq c_{\nu_2}(i_{\nu_1}(M)) \subseteq c_{\nu_2}(M) = M \text{ and } x \in C \subseteq i_{\nu_1}(c_{\nu_2}(C)) \subseteq i_{\nu_1}(M) \text{ that is } f(i_{\nu_1}(c_{\nu_2}(C))) \subseteq V.$

 $(4) \Rightarrow (5)$: For each $x \in X$ and each $V \in \mathcal{O}_{\theta_{\nu_1,\nu_2}}(Y, f(x))$, there exists a $B \in \mathcal{O}_{\nu_1}(X, x)$ such that $f(i_{\nu_1}(c_{\nu_2}(B))) \subseteq V$. Set $U = i_{\nu_1}(c_{\nu_2}(B))$ then we have $U \in \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x)$ and $f(U) \subseteq V.$

(5) \Rightarrow (1) : Let $V \in \theta_{v_1,v_2}$. Take $x \in f^{\leftarrow}(V)$ then $V \in \mathcal{O}_{\theta_{v_1,v_2}}(Y, f(x))$, from (5) there exists a $U \in \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x)$ such that $f(U) \subseteq V$ and then it is clear that $f^{\leftarrow}(V) \in \delta_{\nu_1,\nu_2}$ as a union of r_{ν_1,ν_2} -open sets.

Theorem 3.5. Let $(X; \nu_1, \nu_2)$ and $(Y; \nu_1, \nu_2)$ be BIGTS's, for a map $f : X \to Y$, the following are equivalent:

(1) f is $(\delta_{\nu_1,\nu_2} : \theta_{\upsilon_1,\upsilon_2})$ -c. (2) $f^{\leftarrow} (i_{\theta_{\upsilon_1,\upsilon_2}} (B)) \subseteq i_{\delta_{\nu_1,\nu_2}} (f^{\leftarrow} (B))$ for each $B \subseteq Y$.

Proof. (1) \Rightarrow (2) : Let $x \in f^{\leftarrow} (i_{\theta_{v_1,v_2}}(B))$, if $x \notin i_{\delta_{\nu_1,\nu_2}} (f^{\leftarrow}(B))$ then $(X \setminus f^{\leftarrow}(B)) \cap V \neq \emptyset$ for every $V \in \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x)$. From the hypothesis $f^{\leftarrow} (i_{\theta_{v_1,v_2}}(B)) \in \delta_{\nu_1,\nu_2}$, hence there exists a $G \in \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x)$ such that $G \subseteq f^{\leftarrow} (i_{\theta_{v_1,v_2}}(B)) \subseteq f^{\leftarrow}(B)$, contradiction.

(2) \Rightarrow (1) : Let $V \in \theta_{v_1,v_2}$. Then $i_{\theta_{v_1,v_2}}(V) = V$ and by (2) $f \leftarrow (V) \subseteq i_{\delta_{\nu_1,\nu_2}}(f \leftarrow (V))$, since reverse containment is always true, we have $f \leftarrow (V) = i_{\delta_{\nu_1,\nu_2}}(f \leftarrow (V))$, that is $f \leftarrow (V) \in \delta_{\nu_1,\nu_2}$.

Theorem 3.6. Let $(X; \nu_1, \nu_2)$ and $(Y; \upsilon_1, \upsilon_2)$ be BIGTS's, for a map $f : X \to Y$, if the map f is $(\delta_{\nu_1,\nu_2} : \theta_{\upsilon_1,\upsilon_2})$ -c. iff $f(c_{\delta_{\nu_1,\nu_2}}(A)) \subseteq c_{\theta_{\upsilon_1,\upsilon_2}}(f(A))$ for every $A \subseteq X$.

Proof. Let $A \subseteq X$ and assume $y \in f(c_{\delta_{\nu_1,\nu_2}}(A))$, then there exists $x \in c_{\delta_{\nu_1,\nu_2}}(A)$ such that y = f(x). Since $x \in c_{\delta_{\nu_1,\nu_2}}(A)$, $A \cap U \neq \emptyset$ for every $U \in \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x)$. By Theorem 3.4 for each $x \in X$ and each $V \in \mathcal{O}_{\theta_{\nu_1,\nu_2}}(Y, f(x))$, there exists a $U \in \mathcal{O}_{r_{\nu_1,\nu_2}}(X, x)$, such that $f(U) \subseteq V$, we have $V \cap f(A) \neq \emptyset$. Hence $f(x) \in c_{\theta_{\nu_1,\nu_2}}(f(A))$.

Conversely, let $B \in \theta_{v_1,v_2}$, then $Y \setminus B$ is θ_{v_1,v_2} -closed set in Y, and since for arbitrary $C \subseteq Y$, $c_{\theta_{v_1,v_2}}(C)$ is θ_{v_1,v_2} -closed set in Y, we have $c_{\theta_{v_1,v_2}}(Y \setminus B) = Y \setminus B$. Taking $A = f^{\leftarrow}(Y \setminus B)$ we get $f(c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(Y \setminus B))) \subseteq c_{\theta_{v_1,v_2}}(f(f^{\leftarrow}(Y \setminus B))) \subseteq c_{\theta_{v_1,v_2}}(f(Y \setminus B))) \subseteq c_{\theta_{v_1,v_2}}(f(Y \setminus B))) \subseteq f^{\leftarrow}(Y \setminus B)$. So it is true that $c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(Y \setminus B)) \subseteq f^{\leftarrow}(f(c_{\delta_{\nu_1,\nu_2}}(f^{\leftarrow}(Y \setminus B)))) \subseteq f^{\leftarrow}(Y \setminus B)$ then $f^{\leftarrow}(B) \in \delta_{\nu_1,\nu_2}$.

Remark 3.1. Considering Császàr's and Min's papers, *Bayhan, Kanıbir, Reilly* [1], *pointed out that* if $f : (X, \nu) \rightarrow (Y, \upsilon)$ is a weaker form of generalized continuity, then f can be made into a generalized continuous map by replacing ν or υ with some suitable generalized topologies mentioned above. Since δ_{ν_1,ν_2} -open sets and θ_{ν_1,ν_2} -open sets again a GT on X [7], we may state the following theorem:

Theorem 3.7. For BIGTS's $(X; \nu_1, \nu_2)$ and $(Y; \upsilon_1, \upsilon_2)$, $f : X \to Y$ is $(\delta_{\nu_1, \nu_2} : \theta_{\upsilon_1, \upsilon_2})$ -c. iff $f : (X, \delta_{\nu_1, \nu_2}) \to (Y, \theta_{\upsilon_1, \upsilon_2})$ is generalized continuous.

Proof. This is clear.

Theorem 3.8. For BIGTS's $(X; \nu_1, \nu_2)$ and $(Y; \upsilon_1, \upsilon_2)$, if $f : X \to Y$ is $(\delta_{\nu_1, \nu_2} : \theta_{\upsilon_1, \upsilon_2})$ continuous, then for every δ_{ν_1, ν_2} -closed M in $(Y; \upsilon_1, \upsilon_2)$, $f^{\leftarrow}(M)$ is $\theta_{\upsilon_1, \upsilon_2}$ -closed in in $(X; \nu_1, \nu_2)$.

Proof. Assume M is δ_{ν_1,ν_2} -closed in $(Y; v_1, v_2)$, since $f : X \to Y$ is $(\theta_{\nu_1,\nu_2} : \delta_{v_1,v_2})$ -c. we have $f^{\leftarrow}(Y \setminus M) = X \setminus f^{\leftarrow}(M)$ is θ_{v_1,v_2} -open in $(X; \nu_1, \nu_2)$. Hence $f^{\leftarrow}(M)$ is θ_{v_1,v_2} -closed in $(X; \nu_1, \nu_2)$.

Theorem 3.9. Let $(X; \nu_1, \nu_2)$ and $(Y; \nu_1, \nu_2)$ be BIGTS's, for a map $f : X \to Y$, the following are equivalent: (1) f is $(\theta_{\nu_1,\nu_2} : \delta_{\nu_1,\nu_2})$ -c.

(2) For each $x \in X$ and each $V \in \mathcal{O}_{\delta_{\nu_1,\nu_2}}(Y, f(x))$, there exists an $U \in \mathcal{O}_{\theta_{\nu_1,\nu_2}}(X, x)$ such that

 $f(U) \subseteq V.$

(3) For each $x \in X$ and each $V \in \mathcal{O}_{r_{v_1,v_2}}(Y, f(x))$, there exists an $U \in \mathcal{O}_{\theta_{\nu_1,\nu_2}}(X, x)$ such that $f(U) \subseteq V$.

(4) For each $x \in X$ and each $V \in \mathcal{O}_{r_{v_1,v_2}}(Y, f(x))$, there exists a ν_1 -open set U containing x such that $f(c_{\nu_2}(U)) \subseteq V$.

(5) $f(\gamma_{\theta_{\nu_1,\nu_2}}(A)) \subseteq c_{\delta_{\upsilon_1,\upsilon_2}}(f(A)) \text{ for every } A \subseteq X.$ (6) $\gamma_{\theta_{\nu_1,\nu_2}}(f^{\leftarrow}(B)) \subseteq f^{\leftarrow}(c_{\delta_{\upsilon_1,\upsilon_2}}(B)) \text{ for every } B \subseteq Y.$

Proof. (1) \Rightarrow (2) : Let $V \in \delta_{v_1, v_2}$ and $x \in f^{\leftarrow}(V)$. By (1) $f^{\leftarrow}(V)$ is θ_{ν_1, ν_2} -open. Take $U = f^{\leftarrow}(V)$; then $U \in \mathcal{O}_{\theta_{\nu_1, \nu_2}}(X, x)$ and satisfies $f(U) \subseteq V$.

 $(2) \Rightarrow (3)$: Clear from Lemma 2.1(2).

 $(3) \Rightarrow (4)$: Let V be r_{ν_1,ν_2} -open in Y and $x \in f^{\leftarrow}(V)$. (3) implies that there exists a $W \in \mathcal{O}_{\theta_{\nu_1,\nu_2}}(X,x)$ such that $f(W) \subseteq V$. θ_{ν_1,ν_2} -openness of W implies that there exists a ν_1 -open set U containing x such that $x \in U \subseteq c_{\nu_2}(U) \subseteq W$, so we have $f(c_{\nu_2}(U)) \subseteq f(W) \subseteq V$.

(4) \Rightarrow (5) : Let $A \subseteq X$ and assume $y \in f(\gamma_{\theta_{v_1,v_2}}(A))$, then there exists $x \in \gamma_{\theta_{v_1,v_2}}(A)$ such that y = f(x). Since $x \in \gamma_{\theta_{v_1,v_2}}(A)$, we have $A \cap c_{\nu_2}(U) \neq \emptyset$ for every ν_1 -open set Ucontaining x. By (4) for every $V \in \mathcal{O}_{r_{v_1,v_2}}(Y, f(x))$ there exists a ν_1 -open set U containing xsuch that $f(c_{\nu_2}(U)) \subseteq V$, then we have $V \cap f(A) \neq \emptyset$. Hence $f(x) \in c_{\delta_{v_1,v_2}}(f(A))$.

 $(5) \Rightarrow (6) : \text{Taking } A = f^{\leftarrow}(B) \text{ in } (5) \text{ we have } f(\gamma_{\theta_{\nu_1,\nu_2}}(f^{\leftarrow}(B))) \subseteq c_{\delta_{\nu_1,\nu_2}}(f(f^{\leftarrow}(B))) \subseteq c_{\delta_{\nu_1,\nu_2}}(f(f^{\leftarrow}(B))) \subseteq f^{\leftarrow}(f(\gamma_{\theta_{\nu_1,\nu_2}}(f^{\leftarrow}(B)))) \subseteq f^{\leftarrow}(c_{\delta_{\nu_1,\nu_2}}(B)) \text{ hence we get } \gamma_{\theta_{\nu_1,\nu_2}}(f^{\leftarrow}(B)) \subseteq f^{\leftarrow}(c_{\delta_{\nu_1,\nu_2}}(B)).$

 $\begin{array}{l} (6) \Rightarrow (1) : \operatorname{Let} \widetilde{M} \in \delta_{v_1, v_2}, \text{ then } Y \setminus \widetilde{M} \text{ is } \delta_{v_1, v_2} \text{-closed set in } Y, \text{ and since for arbitrary} \\ C \subseteq Y, c_{\delta_{v_1, v_2}}(C) \text{ is } \delta_{v_1, v_2} \text{-closed set in } Y, \text{ we have } c_{\delta_{v_1, v_2}}(Y \setminus M) = Y \setminus M. \text{ Taking} \\ B = Y \setminus M \text{ in } (6) \text{ we get } \gamma_{\theta_{\nu_1, \nu_2}}(f^{\leftarrow}(Y \setminus M)) \subseteq f^{\leftarrow} (c_{\delta_{v_1, v_2}}(Y \setminus M)) = f^{\leftarrow}(Y \setminus M) \text{ then} \\ \gamma_{\theta_{\nu_1, \nu_2}}(f^{\leftarrow}(Y \setminus M)) = f^{\leftarrow}(Y \setminus M) \text{ so } f^{\leftarrow}(Y \setminus M) \text{ is } \theta_{\nu_1, \nu_2} \text{-closed. Then we have } f^{\leftarrow}(M) \in \\ \theta_{\nu_1, \nu_2}. \end{array}$

Definition 3.7. [10] Let $(X; \nu_1, \nu_2)$ be a BIGTS's on a set $X \neq \emptyset$ and $A \subseteq X$. Then X is said to be (ν_1, ν_2) -almost regular if for $x \in X$ and an r_{ν_1, ν_2} -closed set F with $x \notin F$, there exist $U \in \nu_1, V \in \nu_2$ such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$.

Theorem 3.10. [10] Let $(X; \nu_1, \nu_2)$ be a BIGTS's on a set $X \neq \emptyset$. If X is (ν_1, ν_2) -almost regular, every r_{ν_1,ν_2} -open set is θ_{ν_1,ν_2} -open.

Theorem 3.11. Let $(X; \nu_1, \nu_2)$ and $(Y; \nu_1, \nu_2)$ be BIGTS's; let $f : X \to Y$. If X is (ν_1, ν_2) almost regular and Y is (ν_1, ν_2) -almost regular, then the following statements are equivalent: (1) f is $(\delta_{\nu_1,\nu_2} : \delta_{\nu_1,\nu_2})$ -c. (2) f is $(\theta_{\nu_1,\nu_2} : \theta_{\nu_1,\nu_2})$ -c. (3) f is $(\delta_{\nu_1,\nu_2} : \theta_{\nu_1,\nu_2})$ -c. (4) f is $(\theta_{\nu_1,\nu_2} : \delta_{\nu_1,\nu_2})$ -c.

Proof. This is clear by Theorem 3. 10 of [10].

Theorem 3.12. For BIGTS's $(X; \nu_1, \nu_2)$, $(Y; \upsilon_1, \upsilon_2)$ and $(Z; \sigma_1, \sigma_2)$ if $f: X \to Y$ is $(\delta_{\nu_1,\nu_2}: \theta_{\upsilon_1,\upsilon_2})$ -c., $g: Y \to Z$ is $(\delta_{\upsilon_1,\upsilon_2}: \theta_{\sigma_1,\sigma_2})$ -c. and $(Y; \upsilon_1, \upsilon_2)$ is (υ_1, υ_2) -almost regular then $g \circ f: X \to Z$ is $(\delta_{\nu_1,\nu_2}: \theta_{\sigma_1,\sigma_2})$ -c.

Proof. This is clear.

4. Comparisons

Theorem 4.13. For BIGTS's $(X; \nu_1, \nu_2)$ and $(Y; \upsilon_1, \upsilon_2)$ if the map $f : (X; \nu_1, \nu_2) \to (Y; \upsilon_1, \upsilon_2)$ is;

(1) (ν_1, ν_1) -c. and (ν_2, ν_2) -c., then it is $(\delta_{\nu_1, \nu_2} : \theta_{\nu_1, \nu_2})$ -c.

(2) $(\delta_{\nu_1,\nu_2}: \delta_{\upsilon_1,\upsilon_2})$ -c., then it is $(\delta_{\nu_1,\nu_2}: \theta_{\upsilon_1,\upsilon_2})$ -c.

(3) $(\theta_{\nu_1,\nu_2}:\theta_{\nu_1,\nu_2})$ -c. then it is $(\delta_{\nu_1,\nu_2}:\theta_{\nu_1,\nu_2})$ -c.

(4) $(\delta_{\nu_1,\nu_2}, \theta_{\nu_1,\nu_2})$ -c. then it is faintly $(\nu_1 : \nu_1 \nu_2)$ -c.

(5) $(\theta_{\nu_1,\nu_2}: \delta_{\nu_1,\nu_2})$ -c., then it is $(\delta_{\nu_1,\nu_2}: \theta_{\nu_1,\nu_2})$ -c.

(6) weakly $(\delta_{\nu_1,\nu_2}: v_1v_2)$ -c., then it is $(\delta_{\nu_1,\nu_2}: \theta_{v_1,v_2})$ -c.

Proof. (1) Suppose that $V \in \theta_{v_1,v_2}$ and $f : X \to Y$ is (ν_1, v_1) -c. and (ν_2, v_2) -c. Then for $x \in f^{\leftarrow}(V) \subseteq X$ we have $y = f(x) \in V$ and there is a $W \in v_1$ satisfying $y \in W \subseteq c_{v_2}(W) \subseteq V$. Therefore it is true that $x \in f^{\leftarrow}(W) \subseteq f^{\leftarrow}(c_{v_2}(W)) \subseteq f^{\leftarrow}(V)$ and using $f^{\leftarrow}(W) \in \nu_1$ and $f^{\leftarrow}(c_{v_2}(W))$ is ν_2 -closed, we have $x \in f^{\leftarrow}(W) = i_{\nu_1} (f^{\leftarrow}(W)) \subseteq i_{\nu_1} (f^{\leftarrow}(c_{v_2}(W))) \subseteq f^{\leftarrow}(V)$ and this gives $f^{\leftarrow}(V)$ is δ_{ν_1,ν_2} -open.

(2) Let f be $(\delta_{\nu_1,\nu_2}: \delta_{\upsilon_1,\upsilon_2})$ -c. and $W \in \theta_{\upsilon_1,\upsilon_2}$, then the containment $\theta_{\upsilon_1,\upsilon_2} \subseteq \delta_{\upsilon_1,\upsilon_2}$ gives $W \in \delta_{\upsilon_1,\upsilon_2}$. $(\delta_{\nu_1,\nu_2}: \delta_{\upsilon_1,\upsilon_2})$ -continuity of f is gives $f^{\leftarrow}(W) \in \delta_{\nu_1,\nu_2}$.

(3) Let f be $(\theta_{\nu_1,\nu_2}:\theta_{\nu_1,\nu_2})$ -c. and $W \in \theta_{\nu_1,\nu_2}$, then $f^{\leftarrow}(W) \in \theta_{\nu_1,\nu_2}$ and the containment $\theta_{\nu_1,\nu_2} \subseteq \delta_{\nu_1,\nu_2}$ implies $f^{\leftarrow}(W) \in \delta_{\nu_1,\nu_2}$.

(4) Let $f: X \to Y$ be $(\delta_{\nu_1,\nu_2}: \theta_{\upsilon_1,\upsilon_2})$ -c., then for every $W \in \theta_{\upsilon_1,\upsilon_2}$ it is true that $f \leftarrow (W) \in \delta_{\nu_1,\nu_2}$ and from the containment $\delta_{\nu_1,\nu_2} \subseteq \nu_1$ it is clear that f is faintly $(\nu_1: \upsilon_1 \upsilon_2)$ -c.

(5) Let f be $(\theta_{\nu_1,\nu_2}: \delta_{\upsilon_1,\upsilon_2})$ -c. and $W \in \theta_{\upsilon_1,\upsilon_2}$, then the containment $\theta_{\upsilon_1,\upsilon_2} \subseteq \delta_{\upsilon_1,\upsilon_2}$ gives $W \in \delta_{\upsilon_1,\upsilon_2}$. From the $(\theta_{\nu_1,\nu_2}: \delta_{\upsilon_1,\upsilon_2})$ -continuity of f we have $f \leftarrow (W) \in \theta_{\nu_1,\nu_2}$, again the containment $\theta_{\nu_1,\nu_2} \subseteq \delta_{\nu_1,\nu_2}$ gives $f \leftarrow (W) \in \delta_{\nu_1,\nu_2}$.

(6) Let $f : X \to Y$ be weakly $(\delta_{\nu_1,\nu_2} : v_1v_2)$ -c., then for every $W \in \theta_{v_1,v_2}$ by Corollary 3.1, it is true that $f^{\leftarrow}(W) \in \delta_{\nu_1,\nu_2}$, hence f is $(\delta_{\nu_1,\nu_2} : \theta_{v_1,v_2})$ -c.

Remark 4.2. For a map $f : (X; \nu_1, \nu_2) \rightarrow (Y; \upsilon_1, \upsilon_2)$ on BIGTS's, the following implications are valid:

$$\begin{array}{cccc} (\nu_{1}, \upsilon_{1})\text{-c. and} & (\theta_{\nu_{1}, \nu_{2}} : \theta_{\upsilon_{1}, \upsilon_{2}})\text{-c.} & \text{faintly } (\nu_{1} : \upsilon_{1}\upsilon_{2})\text{-c.} \\ \downarrow \gamma & \swarrow & \downarrow \gamma & \swarrow \\ (\theta_{\nu_{1}, \nu_{2}} : \delta_{\upsilon_{1}, \upsilon_{2}})\text{-c.} & \stackrel{\rightarrow}{\leftarrow} & (\delta_{\nu_{1}, \nu_{2}} : \theta_{\upsilon_{1}, \upsilon_{2}})\text{-c.} & \stackrel{\not\rightarrow}{\leftarrow} & \text{weakly } (\delta_{\nu_{1}, \nu_{2}} : \upsilon_{1}\upsilon_{2})\text{-c.} \\ \downarrow \chi & \uparrow \chi & & \downarrow \chi \\ & (\delta_{\nu_{1}, \nu_{2}} : \delta_{\upsilon_{1}, \upsilon_{2}})\text{-c.} & \stackrel{\not\leftarrow}{\leftarrow} & \text{weakly } (\delta_{\nu_{1}, \nu_{2}} : \upsilon_{1}\upsilon_{2})\text{-c.} \end{array}$$

In the following examples, we show that in general, converse implications do not have to be true.

Example 4.1. Consider two generalized topologies $\nu_1 = \{\emptyset, \mathbb{R} \setminus \{3\}, \mathbb{R} \setminus \{2,3\}\}$ and $\nu_2 = \{\emptyset, \{2,3\}\}$ on \mathbb{R} . Then $\delta_{\nu_1,\nu_2} = \{\emptyset, \mathbb{R} \setminus \{2,3\}\}$, $\theta_{\nu_1,\nu_2} = \{\emptyset, \mathbb{R} \setminus \{2,3\}\}$. Again, let $v_1 = \{\emptyset, \mathbb{R} \setminus \{2,3\}\}$ and $v_2 = \{\emptyset, \{2,3\}\}$ be two GT's on \mathbb{R} . Then we have $\delta_{v_1,v_2} = \theta_{v_1,v_2} = \{\emptyset, \mathbb{R} \setminus \{2,3\}\}$.

(1): The identity map $f:(\mathbb{R};\nu_1,\nu_2) \to (\mathbb{R};\nu_1,\nu_2)$ is, $(\delta_{\nu_1,\nu_2},\theta_{\nu_1,\nu_2})$ -c., $(\theta_{\nu_1,\nu_2},\theta_{\nu_1,\nu_2})$ -c. and $(\delta_{\nu_1,\nu_2},\delta_{\nu_1,\nu_2})$ -c. but it is not $(\theta_{\nu_1,\nu_2},\delta_{\nu_1,\nu_2})$ -c.

(2): The identity map $h:(\mathbb{R}; v_1, v_2) \to (\mathbb{R}; \nu_1, \nu_2)$ is $(\delta_{v_1, v_2} : \theta_{\nu_1, \nu_2})$ -c. and but f is not $(\delta_{v_1, v_2} : \delta_{\nu_1, \nu_2})$ -c. f is not $(\theta_{v_1, v_2} : \delta_{\nu_1, \nu_2})$ -c.

Example 4.2. Consider a generalized topology $\nu_1 (= \nu_2) = \{\emptyset, \mathbb{R} \setminus \{0, 1\}, \mathbb{R} \setminus \{-1, 0, 1\}\}$ on \mathbb{R} and two generalized topologies $\upsilon_1 = \{\emptyset, \mathbb{R} \setminus \{0, 1\}, \mathbb{R} \setminus \{-1, 0, 1\}\}$ and $\upsilon_2 = \{\emptyset, \{0, 1\}, \mathbb{R} \setminus \{0, 1\}, \{-1, 0, 1\}, \mathbb{R}\}$ on \mathbb{R} . Then $\delta_{\nu_1, \nu_2} (= \delta(\nu_1)) = \{\emptyset, \mathbb{R} \setminus \{0, 1\}\}$ and $\theta_{\upsilon_1, \upsilon_2} = \{\emptyset, \mathbb{R} \setminus \{0, 1\}, \mathbb{R} \setminus \{-1, 0, 1\}\}$.

(1): The identity map $f:(\mathbb{R}; \nu_1, \nu_2) \to (\mathbb{R}; v_1, v_2)$ is faintly (ν_1, v_1v_2) -c., but since $f^{\leftarrow}(\mathbb{R}\setminus\{-1, 0, 1\})=\mathbb{R}\setminus\{-1, 0, 1\} \notin \delta_{\nu_1, \nu_2}, f$ is not $(\delta_{\nu_1, \nu_2}: \theta_{v_1, v_2})$ -c. map.

Uğur Şengül

(2): The identity map $g:(\mathbb{R}; v_1, v_2) \to (\mathbb{R}; \nu_1, \nu_2)$ is $(\theta_{v_1, v_2} : \delta_{\nu_1, \nu_2})$ -c. but since $g^{\leftarrow} (\mathbb{R} \setminus \{-1, 0, 1\}) = \mathbb{R} \setminus \{-1, 0, 1\} \notin v_2$ it is not (v_2, ν_2) -c. (3): The identity map $h:(\mathbb{R}; v_1, v_2) \to (\mathbb{R}; v_1, v_2)$ is *weakly* $(\delta_{v_1, v_2} : v_1 v_2)$ -c.

Example 4.3. Let $X = \{1, 2, 3, 4\}$ let $\nu_1 = \{\emptyset, \{1, 2\}, \{3, 4\}, X\}$ $\nu_2 = \{\emptyset, \{1, 2\}\}$ be two GT's on X. Then we have $\delta_{\nu_1,\nu_2} = \theta_{\nu_1,\nu_2} = \{\emptyset, \{3, 4\}, X\}$. Let $Y = \{1, 2, 3\}$ and let us consider two generalized topologies $v_1 = \{\emptyset, \{1\}, \{1, 3\}, \{2, 3\}, Y\}$ and $v_2 = \{\emptyset, \{1\}, \{3\}, \{1, 3\}, Y\}$ on Y. Then $\delta_{v_1,v_2} = \{\emptyset, \{1\}, \{2, 3\}, Y\}$, $\theta_{v_1,v_2} = \{\emptyset, \{2, 3\}, Y\}$. Consider a map f: $(X; \nu_1, \nu_2) \rightarrow (Y; v_1, v_2)$ defined as f(1) = 2, f(2) = 1, f(3) = 2, f(4) = 3. Then f is $(\delta_{\nu_1,\nu_2}, \theta_{v_1,\nu_2}, \theta_{v_1,\nu_2})$ -c., but not *weakly* $(\delta_{\nu_1,\nu_2} : v_1v_2)$ -c. (there is no $U \in \nu_1$ satisfying $f(i_{\nu_1} (c_{\nu_2}(U))) \subseteq c_{v_2}(\{1\})$).

REFERENCES

- Bayhan, S., Kanibir, A. and Reilly, I. L., On functions between generalized topological spaces, Appl. Gen. Topol., 14 (2013), No. 2, 195–203
- [2] Cammaroto, F. and Noiri, T., On weakly θ-continuous functions, Mat.Vesnik, 38 (1986), No. 1, 33-44
- [3] Császár, Á., Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357
- [4] Császár, Á., Separation axioms for generalized topologies, Acta Math. Hungar., 104 (2004), 63–69
- [5] Császár, Á., Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53-66
- [6] Császár, Á., δ- and θ-modifications of generalized topologies, Acta Math. Hungar., 120 (2008), 275–279
- [7] Császár, Á. and Makai, E., Further remarks on δ and θ -modifications, Acta Math. Hungar., 123 (2009), 223–228
- [8] Khedr, F. H. and Al-Shibani, A. M., Weakly θ-continuuous mappings in bitopological spaces, Bull. Fac. Sci., Assiut Univ. C, 23 (1994), No. 1, 105–118
- [9] Min, W. K., Mixed weak continuity on generalized topological spaces, Acta Math. Hungar., 132 (2011), No. 4, 339–347
- [10] Min, W. K., A note on δ- and θ-modifications, Acta Math. Hungar., 132 (2011), No. 1-2, 107–112
- [11] Min, W. K., Mixed θ-continuity on generalized topological spaces, Math. Comput. Modelling, 54 (2011), No. 11-12, 2597–2601
- [12] Santoro, G., On θδ-continuous functions, Zb. Rad. No. 6, part 2 (1992), 259–268
- [13] Veličko, N. V., H-closed topological spaces. Mat. Sb., 70 (1966), 98-112

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND LETTERS MARMARA UNIVERSITY ZIVERBEY-GÖZTEPE, 34722, İSTANBUL, TURKEY *Email address*: usengul@marmara.edu.tr