Slice ranks: lines in hypersurfaces

Edoardo Ballico

Abstract

Motivated by the notion of slice ranks of multivariate forms we study families of hypersurfaces of \mathbb{P}^{n}, mainly for $n=3,4$, containing a prescribed number of lines or having infinitely many lines. In many cases we compute their dimension and describe their irreducible components with maximal dimension.

1. Introduction

Let \mathbb{K} be an algebraically closed base field with characteristic 0 . For any $d \in \mathbb{K}$ let $\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]_{d}$ denote the $\binom{n+d}{n}$-dimensional \mathbb{K}-vector space of all degree d forms in the variables x_{0}, \ldots, x_{n}. For any $f \in \mathbb{K}\left[x_{0}, \ldots, x_{n}\right]_{d}, f \neq 0, d \geq 2$, the slice $\operatorname{rank} \operatorname{sl}(f)$ of f is the minimal integer r such that $f=\sum_{i=1}^{r} f_{i} g_{i}$ for some $f_{i} \in \mathbb{K}\left[x_{0}, \ldots, x_{n}\right]_{1}$ and some $g_{i} \in$ $\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]_{d-1}([1,2,6,7,8,12])$. There are very strong reasons for these studies which allowed to get insights and proofs of old conjectures and promise further extensions of classical papers $([15,20])$. Set $X:=\{f=0\} \in\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$. Since $\operatorname{sl}(f)=\operatorname{sl}(c f)$ for all $c \in$ $\mathbb{K} \backslash\{0\}$, the integer $\operatorname{sl}(X):=\operatorname{sl}(f)$ is well-defined. The integer $\mathrm{sl}(X)$ is called the slice rank of X. It is easy to check that $\operatorname{sl}(X)=n-v$, where v is the maximal dimension of a linear space $L \subset X([1,6,7,8,12])$. Thus to study the integers $\operatorname{sl}(X), X \in\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$, one can use several papers devoted to the study of linear spaces contained in a specific hypersurface. For any hypersurface $X \subset \mathbb{P}^{n}$ with $\operatorname{sl}(X)=n-v$ let $\mathcal{S}(X) \subset G(v+1, n+1)$ denote the set of all of v-dimensional linear subspaces contained in v. The papers [14,22] by O. Debarre and L. Manivel are important to use this observation. The first one gives $\operatorname{sl}(X)$ for a general $X \in\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$ for all n ands all d. In particular if $d \geq 2 n-2$ a general $X \in\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$ contains no positive dimensional linear subspace ([14]). L. Manivel studied the case in which X is not general ([22]) and this is the case considered in this paper. More precisely, for each $d \geq 2 n-2$ a general $X \in\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$ contains no positive dimensional linear subspace ([14]). We will always work in the range $d \geq 2 n-2$ and consider hypersurfaces $X \in\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$ such that $\operatorname{sl}(X)=n-1$. For any X with $\operatorname{sl}(X)=n-1$ set $Y_{X}:=\cup_{L \in \mathcal{S}(X)} L \subseteq X$. Since the Grassmannian $G(2, n+1)$ is a projective variety and X is closed in $\mathbb{P}^{n}, \mathcal{S}(X)$ and $Y_{X} \subset X$ are projective algebraic sets.

In this paper we consider the following questions:
(1) Fix a closed algebraic subset $T \subset \mathbb{P}^{n}$ which is a union of lines, but contains no plane. Fix an integer $d \geq 2 n-2$ such that $h^{0}\left(\mathcal{I}_{T}(d)\right) \neq 0$. Is $Y_{X}=T$ for a general $X \in\left|\mathcal{I}_{T}(d)\right| ?$
(2) Fix the numerical invariants for T; for instance if T is finite fix the integer $\# T$ and, maybe, the arithmetic genus of the curve $\cup_{L \in T} L$. Compute or give lower/upper

[^0]bounds for the dimension of all $X \in\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$ such that $\operatorname{sl}(X)=n-1$ and Y_{X} has the numerical invariants of T.
We now list our main results and introduce the notation needed to state them.
Theorem 1.1. Fix integers y, d and x such that $0 \leq x \leq d^{2}$ and $y \geq d \geq 5$. If $x=d k+e$ with $k \in\{0, \ldots, d-1\}$ and $0<e<d$ assume $y \geq \max \{d, d+k-e-1\}$. There is a union $E_{x} \subset \mathbb{P}^{3}$ of x distinct lines such that $h^{1}\left(\mathcal{I}_{E_{x}}(t)\right)=0$ for all $t \in \mathbb{Z}, h^{0}\left(\mathcal{I}_{E_{x}}(d)\right) \geq 2$ and for each integer $y \geq d$ a general $S \in\left|\mathcal{I}_{E_{x}}(y)\right|$ is irreducible and contains exactly x lines.

Remark 1.1. Fix integers $n \geq 3$ and $d \geq 2, i>0$. Fix $X \in\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$. O. Debarre and L. Manivel computed the dimension $a(n, d, i)$ of the set $A(n, d, i)$ of all $X \in\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$ with $\operatorname{sl}(X)=i([14,22])$ and L. Manivel proved that if $A(n, d, i) \neq \emptyset$ and $a(n, d, i)<\binom{n+d}{n}-1$, then a general $X \in A(n, d, i)$ contains a unique $(n-i)$-dimensional linear subspace ($[22$, part 2 of Theorem at p. 307]). Let $A(n, d, i, k), k \geq 0$, be the set of $X \in A(n, d, i)$ such that $\operatorname{dim} \mathcal{S}(X)=k$.

Theorem 1.2. Fix an integer $d \geq 2$. Then:
(1) $a(4, d, 3, x)=0$ for all $x>3$;
(2) $a(4, d, 3,3)=\binom{4+d}{4}-\binom{d+2}{4}, A(4, d, 3,3)$ is irreducible and $X \in A(4, d, 3,3)$ if and only if X contains no plane, but it has a smooth quadric hypersurface as an an irreducible component.
Theorem 1.3. Fix an integer $d \geq 4$ and set $x:=\lceil 3 d / 2\rceil$. Let $\mathcal{J} \subset\left|\mathcal{O}_{\mathbb{P}^{3}}(d)\right|$ be an irreducible family such that all $X \in \mathcal{J}$ contain infinitely many lines, but no irreducible component of X is a plane.
(a) $\operatorname{dim} \mathcal{J} \leq\binom{ d+1}{3}+8$ and equality holds if and only if all elements of \mathcal{J} have a quadric as a component.
(b) Assume that no element of \mathcal{J} has a quadric as a component. Then

$$
\operatorname{dim} \mathcal{J} \leq\binom{ d}{3}+16
$$

For all positive integer d and t let $\beta(d, t)$ (resp. $\beta_{1}(d, t)$) denote the dimension of all $X \in\left|\mathcal{O}_{\mathbb{P}^{3}}(d)\right|$ (resp. all integral $\left.X \in\left|\mathcal{O}_{\mathbb{P}^{3}}(d)\right|\right)$ such that $\# Y_{X}=t$, with the convention $\operatorname{dim} \emptyset=-\infty$. Obviously $\beta(d, t)=\beta_{1}(d, t)=-\infty$ for $d=1,2$. It is classically known that $\beta(3, t)=\beta_{1}(3, t)=-\infty$ for all $t>27$. Let $E(d, t)$ (resp. $\left.E_{1}(d, t) \mid\right)$ be the set of all $X \in\left|\mathcal{O}_{\mathbb{P}^{3}}(d)\right|$ (resp. of all integral $\left.X \in\left|\mathcal{O}_{\mathbb{P}^{3}}(d)\right|\right)$ such that $\# \mathcal{S}(X)=t$.

Proposition 1.1. Fix an integer $d \geq 4$.
(a) $\beta(d, 1)=\beta_{1}(d, 1)=\binom{d+3}{3}-d-2$ and $E(d, 1)$ and $E_{1}(d, 1)$ are irreducible.
(b) $\beta(d, 2)=\beta_{1}(d, 1)=\binom{d+3}{3}-2 d+1$ and $E(d, 2)$ and $E_{1}(d, 2)$ have two irreducible components, both of maximal dimension, one formed by the surfaces containing a reducible conic and the other one by the surfaces containing 2 disjoint lines.
(c) $E(d, 3)$ and $E_{1}(d, 3)$ have 4 irreducible components, all of dimension $\binom{d+3}{3}-3 d+8$, distinguished by the set Y_{X} of any X in the irreducible family:
(1) 3 disjoint lines;
(2) a reducible conic and a disjoint line;
(3) a planar union of 3 lines;
(4) a connected union of 3 lines with arithmetic genus 0 .

Several papers studied finite unions $T \subset \mathbb{P}^{3}$ of lines ($[3,9,10,16,24,26]$). For general unions of a prescribed number of lines in $\mathbb{P}^{n}, n \geq 3$, see [19]. As far as we know our is the first systematic attempt to study the two questions we raised in the introduction.

We conclude the introduction with the following questions.
Take $S, S^{\prime} \in\left|\mathcal{O}_{\mathbb{P}^{n}}(d)\right|$ such that $\mathcal{S}(S)=\mathcal{S}\left(S^{\prime}\right)$.
(1) Under which assumptions on n, d and $\mathcal{S}(S)$ are $S=S^{\prime}$?
(2) Under which assumptions on n and d the hypersurfaces S and S^{\prime} are related in a certain way, e.g. there are an integer $d^{\prime}, E \in\left|\mathcal{O}_{\mathbb{P}^{n}}\left(d^{\prime}\right)\right|$ and $W, W^{\prime} \in\left|\mathcal{O}_{\mathbb{P}^{n}}\left(d-d^{\prime}\right)\right|$ such that $\operatorname{sl}(E)=\mathcal{S}(E), S=E+W, S^{\prime}=E+W^{\prime}$ and either $\operatorname{sl}(W)<\operatorname{sl}(S)$ or $\operatorname{sl}(W)=\operatorname{sl}(S)$ and $\operatorname{sl}(W) \subseteq \operatorname{sl}(S)$, either $\operatorname{sl}\left(W^{\prime}\right)<\operatorname{sl}(S)$ or $\operatorname{sl}\left(W^{\prime}\right)=\operatorname{sl}(S)$ and $\operatorname{sl}\left(W^{\prime}\right) \subseteq \operatorname{sl}(S) ?$
Of course, we may exclude the latter possibility if we assume that at least one among S and S^{\prime} is irreducible.

2. Proofs

Let $A \subset \mathbb{P}^{n}$ be a closed subscheme. Fix any $Q \in\left|\mathcal{O}_{\mathbb{P}^{n}}(m)\right|, m>0$. The residual scheme $\operatorname{Res}_{Q}(A)$ of A with respect to Q is the closed subscheme of \mathbb{P}^{n} with $\mathcal{I}_{A}: \mathcal{I}_{Q}$ as it ideal sheaf. If A is a reduced scheme, then $\operatorname{Res}_{Q}(A)$ is the closure of $A \backslash A \cap Q$ in \mathbb{P}^{n}, i.e. the union of all irreducible components of A not contained in Q. For any $t \in \mathbb{Z}$ there is an exact sequence of coherent sheaves:

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{Q}(A)}(t-m) \rightarrow \mathcal{I}_{A}(t) \rightarrow \mathcal{I}_{A \cap Q, Q}(t) \rightarrow 0 \tag{2.1}
\end{equation*}
$$

Proof of Theorem 1.2: Fix any $X \in A(4, d, 3, x)$ with $x \geq 3$. Since X contains no plane, any surface $S \subset X$ contains at most ∞^{1} lines. Since X contains no plane, if X is a cone (i.e. if there is $p \in X$ contained in ∞^{2} lines contained in X), then a general hyperplane section of X contains no line. Thus the assumption $x \geq 3$ and the properness of the Grassmannian $G(2,5)$ imply that X is not a cone, that $x=3$ and that there is an irreducible component W of X such that each $p \in W$ is contained in exactly ∞^{1} lines contained in W. Set $t:=\operatorname{deg}(W)$. To conclude the proof of the theorem it is sufficient to prove that $t=2$. Fix $p \in X_{\mathrm{reg}} \cap W$, so that $T_{p} X=T_{p} W$ is a 3-dimensional linear space. Each line $L \subset W$ containing p is contained in $T_{p} W$. Thus $T_{p} W \cap W$ contains a 2-dimensional cone C_{p} with vertex p. Set $e:=\operatorname{deg}\left(C_{p}\right) \leq t$.

Assume for the moment that the dual variety $W^{\vee} \subset \mathbb{P}^{4 \vee}$ of W is a hypersurface. Since we are in characteristic zero and p is general in $W, T_{p} W$ is tangent to W only at p and $T_{p} W \cap T_{p} X$ has a quadratic singularity. Thus $e=2$ and there is an open neighborhood U of $p \in W$ such that the scheme-theoretic intersection $T_{p} W \cap W$ is smooth at all points of $U \backslash\{p\}$. Thus $t=e$ and hence $t=2$.

Now assume that the dual variety W^{\vee} has dimension b for some $1 \leq b \leq 2$. Since we are in characteristic zero, this implies that $T_{p} W$ is tangent to W along a $3-b$ linear space. Since X contains no plane, we get $b=2$. Thus (again because we are in characteristic 0) the closure in W of a general fiber of the Gaussian map $\gamma_{W}: W_{\text {reg }} \rightarrow G(4,5)$ is a line. Call L_{p} the closure of the fiber of γ_{W} containing p. For a general $q \in L_{p}, q \in W_{\text {reg }}$ and $T_{q} W=T_{p} W$. Thus $C_{q}=C_{p}$. Hence C_{p} is a cone with vertex containing a line. Thus the surface C_{p} contains a plane. Since $C_{p} \subset W \subset X$, we obtained a contradiction.

Proof of Proposition 1.1: Let A_{t} be a plane curve of degree t. Let E_{1} (resp. E_{2}) be a union of 2 (resp. 3) disjoint lines. Let E_{3} be the union of a reducible conic and a line disjoint from it. Since $d \geq 4, h^{1}\left(\mathcal{I}_{A_{t}}(d)\right)=h^{1}\left(\mathcal{I}_{E_{i}}(d)\right)=0, i=1,2,3$. Thus $h^{0}\left(\mathcal{I}_{A_{t}}(d)\right)=\binom{d+3}{3}-$ $\binom{d+2}{2}+\binom{d-t+2}{2}, h^{0}\left(\mathcal{I}_{E_{1}}(d)\right)=\binom{d+3}{3}-d-1, h^{0}\left(\mathcal{I}_{E_{2}}(d)\right)=\binom{d+3}{3}-3 d-3$, and $h^{0}\left(\mathcal{I}_{E_{3}}(d)\right)=$ $\binom{d+3}{3}-2 d-2$. Note that $\operatorname{dim} G(2,3)=2$, that $\operatorname{dim} G(2,4)=4$ and that the set of all lines of \mathbb{P}^{3} intersecting a given line has dimension 3. Part (a) follows considering all $L \neq A_{1}$.

Now we prove part (c), leaving the similar (but shorter) proof of part (b) to the reader. A union $T \subset \mathbb{P}^{3}$ of 3 distinct lines may have 3,2 or 1 connected components and in the latter case we need to distinguish if T is contained in a plane or not. We see that $E(d, 3)$ and $E_{1}(d, 3)$ are the union of 4 disjoint algebraic sets and we first study them separately.
(a) Take T with 3 connected components. The set of all such T has dimension 12. In this case $h^{0}\left(\mathcal{I}_{T}(d)\right)=\binom{d+3}{3}-3 d-3$. Take a line $L \subset \mathbb{P}^{3}$ such that $L \nsubseteq T$ and set $z:=$ $\operatorname{deg}(L \cap T)$. Let $U(z)$ be the set of of all lines L with $\operatorname{deg}(L \cap T)=z$. It is easy to check that $\operatorname{dim} U(z)=4-z$ for all z. Since $d \geq 4$, in all cases the residual exact sequence of a general plane containing L gives $h^{1}\left(\mathcal{I}_{T \cup L}(d)\right)=0$ and hence $h^{0}\left(\mathcal{I}_{T \cup L}(d)\right)=h^{0}\left(\mathcal{I}_{T}(d)\right)-d-1+z$. Since in all cases we have $d+1-z>\operatorname{dim} U(z)$, the part of $E(d, 3)$ and $E_{1}(d, 3)$ associated to a fixed T in case (a) is irreducible and of codimension $3 d+3$. Hence the part of $E(d, 3)$ and $E_{1}(d, 3)$ associated to some T in case (a) is irreducible and of dimension $\binom{d+3}{3}-3 d+8$.
(b) Take T with 2 connected components, a reducible conic A and a line R. The set of all such T has dimension 11. In this case $h^{0}\left(\mathcal{I}_{T}(d)\right)=\binom{d+3}{3}-3 d-2$. Call $U(a, b)$ the set of all lines $L \subset \mathbb{P}^{3}$ such that $L \nsubseteq T, \operatorname{deg}(L \cap R)=a$ and $\operatorname{deg}(L \cap R)=b$. Obviously $a \in\{0,1,2\}$ and $b \in\{0,1\}$. Let H be the plane spanned by R. Consider the residual exact sequence of H :

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{H}(T \cup L)}(d-1) \rightarrow \mathcal{I}_{T \cup L}(d) \rightarrow \mathcal{I}_{H \cap(T \cup L), H}(d) \rightarrow 0 \tag{2.2}
\end{equation*}
$$

Since $\operatorname{Res}_{H}(T \cup L)$ is either R or $R \cup L, h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}(T \cup L)}(d-1)\right)=0$. Since $H \cap(T \cup L)$ is either A or $A \cup L$ or the union of A and a point, $h^{1}\left(H, \mathcal{I}_{H \cap(T \cup L), H}(d)\right)=0$. Thus $h^{0}\left(\mathcal{I}_{T \cup L}(d)\right)=h^{0}\left(\mathcal{I}_{T}(d)\right)-d-1+a+b$. We have $\operatorname{dim} U(2,1)=1$ (all lines of H passing through $R \cap H) \operatorname{dim} U(2,0)=2, \operatorname{dim} U(1,1)=2, \operatorname{dim} U(1,0)=3, \operatorname{dim} U(0,1)=3$ and $\operatorname{dim} U(0,0)$. Thus in all cases $d+1>a+b+\operatorname{dim} U(a, b)$. Hence the part of $E(d, 3)$ and $E_{1}(d, 3)$ associated to a fixed T in case (b) is irreducible and of codimension $3 d+2$. Hence the part of $E(d, 3)$ and $E_{1}(d, 3)$ associated to some T in case (b) is irreducible and of dimension $\binom{d+3}{3}-3 d-8$.
(c) Assume that T is connected. This is divided into two cases, T contained in a plane or not.
(c1) Assume that T is contained in a plane H. In this case $h^{0}\left(\mathcal{I}_{T}(d)\right)=\binom{d+3}{3^{2}}-3 d$. Since $\operatorname{dim} G(3,4)=3$, the set of all such degree 3 curves T is irreducible and of dimension 9. Fix a line $L \subseteq T$ and set $z:=\operatorname{deg}(L \cap T)$. If $L \subset H$, then $z=3$. If $L \nsubseteq H$, then $z \in\{0,1\}$. Consider the residual exact sequence (2.2) of H. If $L \subset H$, then $T \cup L$ is a plane curve, $h^{1}\left(\mathcal{I}_{T \cup L}(d)\right)=0$ and $h^{0}\left(\mathcal{I}_{T \cup L}(d)\right)=h^{0}\left(\mathcal{I}_{T}(d)\right)-d+1$. Note that the family of possible L^{\prime} 's has dimension 2 . Now assume $L \nsubseteq H$ and hence $z \leq 1$, $\operatorname{Res}_{H}(T \cup L)=L$ and again $h^{1}\left(\mathcal{I}_{T \cup L}(d)\right)=0$, i.e. $h^{0}\left(\mathcal{I}_{T \cup L}(d)\right)=h^{0}\left(\mathcal{I}_{T}(d)\right)-d-1+z$. The family of all L has dimension $4-z$. Using both cases for L we get $Y_{X}=T$ for a general $X \in\left|\mathcal{I}_{T}(d)\right|$. Varying T, this case gives an irreducible family of $E(d, 3)$ and $E_{1}(d, 3)$ with dimension $\binom{d+3}{3}-3 d+8$.
(c2) Assume that T is not contained in a plane.
(c2.1) Assume that T is nodal. Thus we may order the irreducible components R_{1}, R_{2}, R_{3} of T so that $R_{1} \cap R_{3}=\emptyset$. The set of all such T is irreducible and of dimension 10. Fix a line $L \nsubseteq T$ and set $z:=\operatorname{deg}(L \cap T)$. Since T is scheme-theoretically cut out by reducible quadrics, $z \leq 2$. Note that $z=2$ if and only if either L is contained in one of the plane spanned by $R_{1} \cup R_{2}$ or $R_{2} \cup R_{3}$ or $T \cup L$ is the complete intersection of 2 reducible quadric surfaces. In the latter case we have $h^{1}\left(\mathcal{I}_{T \cup L}(d)\right)=0$. In the other cases, even the ones with $z \leq 1$, we get $h^{1}\left(\mathcal{I}_{T \cup L}(d)\right)=0$ using the residual exact sequence of one of the planes containing 2 irreducible components of T. Hence $Y_{X}=T$ for a general $X \in\left|\mathcal{I}_{T}(d)\right|$.
(c2.2) Assume that T is not nodal. Thus there is $o \in \mathbb{P}^{3}$ such that $T=R_{1} \cup R_{2} \cup R_{3}$ with R_{1}, R_{2}, R_{3} distinct lines containing o and no plane contains T. Varying o we get a family Δ of unions of lines with $\operatorname{dim} \Delta=9$. Call $H_{i j}$ the plane spanned by $R_{i} \cup R_{j}$, $i \neq j$. Fix a line $L \nsubseteq T$. First assume $L \subset H_{i j}$ for some i, j. Set $H:=H_{i j}$ and write $\{k\}:=\{1,2,3\} \backslash\{i, j\}$. The residual exact sequence (2.2) of $H \operatorname{has}^{\operatorname{Res}_{H}}(T \cup L)=R_{k}$ and hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}(T \cup L)}(d-1)\right)=0$. Since $T \cup L$ is a planar curve, $h^{1}\left(H, \mathcal{I}_{H \cap(T \cup L), H}(d)\right)=0$. Thus $h^{0}\left(\mathcal{I}_{T \cup L}(d)\right)=h^{0}\left(\mathcal{I}_{T}(d)\right)-d+1$. This case is in the closure of the case described in step (c1.1) and so, although it occurs, it does not give an irreducible component of $E(d, 3)$ and $E_{1}(d, 3)$.

Now assume that L is contained in no plane $H_{i j}$. The set of such T (for any $o \in \mathbb{P}^{3}$) has dimension 9. Set $z:=\operatorname{deg}(L \cap T)$. Note that $z \leq 1$ if $o \notin L$ and that the set of all L with $z=1$ has dimension 3. The case $o \notin L$ is done taking the residual exact sequence of $H:=H_{12}$. Now assume $o \in L$. In this case $p_{a}(T \cup L)=1$ and hence $T \cup L$ is a complete intersection of 2 reducible quadrics. Thus $h^{1}\left(\mathcal{I}_{T \cup L}(d)\right)=0$ and $h^{0}\left(\mathcal{I}_{T \cup L}(d)\right)=h^{0}\left(\mathcal{I}_{T}(d)\right)-d+1$. Since the set of such lines have dimension 2 , we see that $Y_{X}=T$ for a general $X \in\left|\mathcal{I}_{T}(d)\right|$. But this case is in the boundary of the one described in step (c2.1): instead of $R_{1} \cup R_{2} \cup R_{3}$ take a family of all curves $R_{1} \cup R_{2} \cup E$ with E a general line meeting R_{2}.

Proof of Theorem 1.1: Fix $2 d$ general hyperplanes $H_{1}, \ldots, H_{d}, M_{1}, \ldots, M_{d}$ and let T be the union of the d^{2} lines $L_{i, j}:=H_{i} \cap M_{j}, 1 \leq i \leq d, 1 \leq j \leq d$. Set $X_{1}:=H_{1} \cup \cdots \cup H_{d}$ and $X_{2}:=M_{1} \cup \cdots \cup M_{d}$. Since T is the complete intersection of the two degree d surfaces X_{1} and $X_{2}, h^{1}\left(\mathcal{I}_{T}(t)\right)=0$ for all $t \in \mathbb{Z}$ and the homogeneous ideal of T is generated by 2 forms with zero-loci X_{1} and X_{2}. Take for the moment any integer $y \geq d$ and let S be a general element of $\left|\mathcal{I}_{T}(y)\right|$.

Claim 1: S is irreducible.
Proof of Claim 1: Assume S reducible, say $S=S_{1} \cup S_{2}$ with $\operatorname{deg}\left(S_{1}\right)=a$ and $\operatorname{deg}\left(S_{2}\right)=y-a$. Thus $\operatorname{Sing}(S) \supseteq S_{1} \cap S_{2}$. Since $\mathcal{I}_{T}(d)$ is globally generated and $y \geq d, \mathcal{I}_{T}(y)$ is globally generated. Bertini's theorem gives $\operatorname{Sing}(S) \subseteq T$. Since $\operatorname{dim}\left(S_{1} \cap S_{2}\right) \geq 1$, there is a line $L:=L_{i, j}=H_{i} \cap M_{j} \subseteq \operatorname{Sing}(S)$. Since T has finitely many irreducible components and S is general in the irreducible variety $\left|\mathcal{O}_{T}(y)\right|, L$ is contained in all $X \in\left|\mathcal{I}_{T}(y)\right|$. If $y=d$, this is contradicted by X_{1}, whose singular locus is the union of all lines $H_{u} \cap H_{v}$, $u \neq v$, while by the generality of $H_{1}, \ldots, H_{d}, M_{1}, \ldots, M_{d}, H_{u} \cap H_{v} \cap M_{j}$ is a unique point for all $u \neq v$. If $y>d$ instead of X_{1} we take $W \cup X_{1}$ with W a general surface of degree $y-k$ (which does not contain L), concluding the proof of Claim 1.

The multiplication by the equations of X_{1} and X_{2} induces the following exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(t-2 d) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(t-d)^{\oplus 2} \rightarrow \mathcal{I}_{T}(t) \rightarrow 0 \tag{2.3}
\end{equation*}
$$

Observation 1: From (2.3) we get $h^{0}\left(\mathcal{I}_{T}(t)\right)=2\binom{t-d+3}{3}$ for $t \leq 2 d-1$. Restricting (2.3) to any plane $H \subset \mathbb{P}^{3}$ containing no irreducible component of T we get the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{H}(t-2 d) \rightarrow \mathcal{O}_{H}(t-d)^{\oplus 2} \rightarrow \mathcal{I}_{T \cap H, H}(t) \rightarrow 0 \tag{2.4}
\end{equation*}
$$

Observation 2: From (2.4) we get $h^{0}\left(H, \mathcal{I}_{T \cap H, H}(t)\right)=2\binom{t-d+2}{2}$ for $t \leq 2 d-1$.
(a) In this step we prove the theorem for $x=d^{2}$ taking $E_{d^{2}}:=T$.

Claim 2: Fix any $y \geq d$ such that $y \neq d+1$. For a general T a general $S \in\left|\mathcal{I}_{T}(y)\right|$ contains no line $L \nsubseteq T$ such that there is $i \in\{1, \ldots, d\}$ with $L \subset H_{i} \cup M_{i}$. This is false for $y=d+1$. A general $S \in\left|\mathcal{I}_{T}(y+1)\right|$ contains exactly $2 d$ lines $L \nsubseteq T$ such that there is $i \in\{1, \ldots, d\}$ with $L \subset H_{i} \cup M_{i}$ and for each i there is exactly one $L_{i} \subset H_{i}$ and exactly one $R_{i} \subset M_{i}$.

Proof of Claim 2: Assume the existence of L for a general $(T, S), S \in\left|\mathcal{I}_{T}(y)\right|$. First assume $y=d$. Just to fix the notation we assume $L \subset H_{i}$ and hence $L \subset X_{1}$. Since $L \nsubseteq X_{2}$,
$T \cap L_{i}$ is a degree $d+1$ plane curve. Hence $H_{i} \subset S$. Thus S is reducible, contradicting the generality of S. If $y \geq 2 d$ fix an integral $S^{\prime} \in\left|\mathcal{I}_{T}(d)\right|$ (Claim 1) and take $S^{\prime} \cup W$ with W a general surface of degree $y-d \geq 2$. Now assume $y=d+1$ and fix a general $S \in\left|\mathcal{I}_{T}(y+1)\right|$. By Claim $1 S$ is irreducible. Hence $S \cap H_{i} \neq H_{i}$. Thus $S \cap H_{i}$ is a degree $d+1$ plane curve containing the d lines $T \cap H_{i}$. Thus either $S \cap H_{i}$ has a line $H_{i} \cap M_{j}$ appearing with multiplicity 2 or $S \cap H_{i}$ contains a line $L_{i} \nsubseteq T$. The former case is excluded by a dimensional count and the fact that $\operatorname{deg}(T)$ is finite; indeed, for each $i, j \in\{1, \ldots, d\}$ the set of all irreducible $S \in\left|\mathcal{I}_{T}(d+1)\right|$ with $L_{i, j}$ appearing with multiplicity 2 in $S \cap H_{i}$ has codimension 2 in $\left|\mathcal{I}_{T}(d+1)\right|$, because $\mathcal{I}_{T}(d)$ is globally generated. The same proof works for the planes M_{i} and gives a unique line $R_{i} \subset M_{i}, R_{i} \nsubseteq T$. Since $L \nsubseteq T$, there are no i, j such $L \subseteq H_{i} \cap M_{j}$, i.e. $\#\left\{L_{1}, \ldots, L_{d}, R_{1}, \ldots, R_{d}\right\}=2 d$.
(a1) Assume $y=d$. Take a general $S \in\left|\mathcal{I}_{T}(d)\right|$. Fix any line $L_{S} \subset S$ such that $L_{S} \nsubseteq T$. After an étale covering of a non-empty open subset of $\left|\mathcal{I}_{T}(d)\right|$ we may assume that L_{S} depends algebraically on S even if S contains more than $d^{2}+1$ lines.

Claim 3: $L_{S} \cap \operatorname{Sing}(T)=\emptyset$.
Proof of Claim 3: We first prove that $\#\left(L_{S} \cap \operatorname{Sing}(T)\right) \leq 1$. Assume $\#\left(L_{S} \cap \operatorname{Sing}(T)\right)>$ 1. Thus L_{S} is the line spanned by two different elements of $\operatorname{Sing}(T)$. Since $\operatorname{Sing}(T)$ is finite, we would get $L_{S}=L_{S^{\prime}}$ for a general $\left(S, S^{\prime}\right) \in\left|\mathcal{I}_{T}(d)\right|^{2}$. Since $G(2,4)$ is projective, we would get $L_{S} \subset X_{i}$ for $i=1,2$ and hence $L_{S} \subset X_{1} \cap X_{2}=T$, contradicting one of our assumptions. Now assume $\#\left(L_{S} \cap \operatorname{Sing}(T)\right)=1$, say $L_{S} \cap \operatorname{Sing}(T)=\left\{p_{S}\right\}$. Since $H_{1}, \ldots, H_{d}, M_{1}, \ldots, M_{d}$ are general, the set $\operatorname{Sing}(T)$ is the union of the set $\Sigma_{1}:=$ $\left\{H_{u} \cap H_{v} \cap M_{j}\right\}_{1 \leq u<v \leq d, 1 \leq j \leq d}$ and the set $\Sigma_{2}:=\left\{M_{u} \cap M_{v} \cap H_{j}\right\}_{1 \leq u<v \leq d, 1 \leq j \leq d}$. Note that $\Sigma_{1} \cap \Sigma_{2}=\emptyset$. Thus there is a unique $i \in\{1,2\}$ such that $p_{S} \in \Sigma_{i}$. Now we move the $2 d$-ple of planes $\left(H_{1}, \ldots, H_{d}, M_{1}, \ldots, M_{d}\right) \in G(2,4)^{d}$ and come back to the same set of $2 d$ planes with a different ordering, e.g. exchanging each H_{i} with M_{i}. We exchange Σ_{1} and Σ_{2} and get a contradiction.

Claim 4: $\#\left(L_{S} \cap T\right)=d$ and L_{S} meets each H_{i} (resp. each M_{j}) at a unique point, $p_{i, S}$ (resp. $q_{j, S}$) and $p_{i, S} \in T$ (resp. $q_{j, S} \in T$).

Proof of Claim 4: Assume for instance $L_{S} \subset H_{i}$. We would get that $H_{i} \cap S$ contains a degree $d+1$ plane curve and hence $H_{i} \subset S$, contradicting the irreducibility of S. Thus $\#\left(L_{S} \cap H_{i}\right)=1$, say $L_{S} \cap H_{i}=\left\{p_{i, S}\right\}$. Since $S \cap H_{i}$ is a degree plane curve and H_{i} is not an irreducible component of $S, p_{i, S} \in T \cap H_{i}$. The proof for M_{j} is similar.

Since each $p_{i, S}$ and each $q_{j, S}$ is a smooth point of $T, \#\left(\left\{p_{1, S}, \ldots, p_{d, S}\right\}\right)=\#\left(\left\{q_{1, S}, \ldots, q_{d, S}\right\}\right)=$ d.

Claims 3 and 4 gives $\left\{p_{1, S}, \ldots, p_{d, S}, q_{1, S}, \ldots, q_{d, S}\right\} \subseteq T \cap L_{S}$ and $\#\left(L_{S} \cap X_{1}\right)=\#\left(L_{S} \cap\right.$ $\left.X_{2}\right)=d$. Since T is the complete intersection of 2 degree d surfaces and $L_{S} \nsubseteq S$, we get $\#\left(\left\{p_{1, S}, \ldots, p_{d, S}, q_{1, S}, \ldots, q_{d, S}\right\}\right) \leq d$. Thus for each $i \in\{1, \ldots, d\}$ there is a unique $\sigma(i) \in\{1, \ldots, d\}$ such that $q_{\sigma(i), S}=p_{i, S}$.

Observation 3: Any 3 disjoint lines of \mathbb{P}^{3} are contained in a unique quadric $Q \subset \mathbb{P}^{3}$ and this quadric Q is smooth. The 3 disjoint lines belong to the same ruling of Q. By Bezout a line meets all these 3 lines if and only if it is an element of the other ruling of Q.

Observation 4: Let $Q, Q^{\prime} \subset \mathbb{P}^{3}$ be smooth quadrics such that $Q \cap Q^{\prime}$ contains 2 disjoint lines $L^{\prime}, L^{\prime \prime}$. The scheme $Q \cap Q^{\prime}$ is a divisor of bidegree $(2,2)$ of both Q and Q^{\prime}. Thus $Q \cap Q^{\prime}$ is the union of $L^{\prime} \cup L^{\prime \prime}$ and either two disjoint lines R and D in the rulings of Q and Q^{\prime} not containing L^{\prime} or the divisor $2 R$ in the rulings of Q and Q^{\prime} not containing L^{\prime}.

Now we use that $d \geq 5$. The lines $L_{1, \sigma(1)}, L_{2, \sigma(2)}, L_{3, \sigma(3)}, L_{4, \sigma(4)}$ are pairwise disjoint. Thus for each $E \subset\{1,2,3,4\}$ with $\# E=3$ there is a unique quadric surface Q_{E} containing all lines $L_{i, \sigma(i)}, i \in E$, and this quadric is smooth. Q_{E} is the union of the lines of \mathbb{P}^{3} intersecting all lines $L_{i, \sigma(i)}, i \in E$. Thus $L \subset Q_{E}$ for all E (Observation 1). For each $i \in\{1,2,3,4\}$ set $E_{i}:=\{1,2,3,4\} \backslash\{i\}$. Thus we get 4 different smooth quadrics $Q_{E_{i}}$,
$1 \leq i \leq 4$, with $Q_{E_{i}}$ containing $\cup_{j \in E_{i}} L_{j, \sigma(j)}$ and each of these lines meets L. Thus $L \subset Q_{E_{i}}$ (Observation 1). For each $j \in E_{i}$ set $E_{i j}:=\{1,2,3,4\} \backslash\{i, j\}$ and call $R_{i j}$ the line $\neq L$ given by Observation 1 applied to the smooth quadrics $Q_{E_{i}}$ and $Q_{E_{j}}$ with the convention $R_{i j}=$ L if $Q_{E_{i}} \cap Q_{E_{j}}$ contains L with multiplicity 2 . There are at most 2 lines in $Q_{E_{1}} \cap Q_{E_{2}} \cap Q_{E_{3}}$ in the same ruling of these quadric containing L, say L and L^{\prime} with perhaps $L=L_{5}$. For a general H_{5} and a general $M_{\sigma(5)}$ the line $L_{5, \sigma(5)}$ does not meet $R \cup R^{\prime}$, a contradiction.
(a2) Assume $y>d$.
(a2.1) If $y \geq 4+d$ we take as S a generalization of $S^{\prime} \cup W$, where S^{\prime} is a general element of $\left|\mathcal{I}_{T}(d)\right|$ and W is a quartic surface containing no line. Thus we could assume $d+1 \leq y \leq d+3$. Assume $y \in\{d+2, d+3\}$. Taking a generalization of $X_{1} \cup W$ with W a general surface of degree $y-d$ we see that $L_{S} \cap T=\emptyset$ for a general $S \in\left|\mathcal{I}_{T}(y)\right|$. Thus (2.3) and (2.4) give $h^{0}\left(\mathcal{I}_{T \cup L_{S}}(y)\right)=2\binom{y-d+2}{3}+2\binom{y-d+1}{2}$. Since $\operatorname{dim} G(2,4)=4$ and a general $S \in\left|\mathcal{I}_{T}(y)\right|$ contains the line L_{S}, we have $h^{0}\left(\mathcal{I}_{T \cup L_{S}}(y)\right) \geq h^{0}\left(\mathcal{I}_{T}(y)\right)-4$. Thus (2.3) gives $h^{0}\left(\mathcal{I}_{T}(y)\right)=2\left({ }_{3}^{y-d+3}\right)=2\left({ }_{3}^{y-d+2}\right)+2(\underset{2}{y-d+2})$. Thus $2\left(\left(\begin{array}{c}y+2-d\end{array}\right)-\binom{y+1-d}{2}\right) \leq 4$, i.e. $2(y-d+1) \leq 4$, a contradiction.
(a2.2) Assume $y=d+1$. Assume for the moment $h^{0}\left(H, \mathcal{I}_{T \cap H \backslash T \cap L_{S}}(d)\right)=2$. In this case the last inequality in step (a2.1) does not give a contradiction, but it is an equality. To prove that a general $S \in\left|\mathcal{I}_{T}(d+1)\right|$ contains no line $L \nsubseteq T$ with $h^{0}\left(H, \mathcal{I}_{T \cap H \backslash T \cap L}(d)\right)=2$ it is sufficient to observe that there are ∞^{2} degree $d+1$ surfaces containing T and each of them contains ∞^{2} lines: the union of any $S^{\prime} \in\left|\mathcal{I}_{T}(d)\right|$ and a plane. Let $\operatorname{Res}_{L}(T)$ denote the residual scheme of $T \cap H$ with respect to the Cartier divisor of H. If $H \cap T$ is reduced, then $\operatorname{Res}_{L}(T \cap H)=T \cap H \backslash L \cap T$ for the residual scheme of $T \cap H$ with respect to the Cartier divisor L of H. Thus we only need to exclude the lines $L \subset \mathbb{P}^{3}$ such that $h^{0}\left(H, \mathcal{I}_{\operatorname{Res}_{L}(T \cap H)}(d)\right)>2$ for a general plane containing L. The schemes $L \cap T$ and $\operatorname{Res}_{L}(T \cap H)$ are linked by the complete intersection $T \cap H$ and hence there is a relation between the numerical invariants of these sets, as we will now explain. Set $z:=\operatorname{deg}(T \cap L)$. Since $\operatorname{deg}(T \cap L)=z$ and $\operatorname{deg}(T \cap H)=d^{2}, \operatorname{deg}\left(\operatorname{Res}_{L}(T \cap H)\right)=d^{2}-z$. Since $T \cap L$ is a degree z scheme contained in a line, $h^{1}\left(H, \mathcal{I}_{T \cap L, H}(t)\right)=0$ and $h^{0}\left(H, \mathcal{I}_{T \cap L, H}(t)\right)=\binom{t+2}{2}-z$ for all $t \geq z-1$, while $h^{0}\left(H, \mathcal{I}_{T \cap L, H}(t)\right)=\binom{t+1}{2}$ and $h^{1}\left(H, \mathcal{I}_{T \cap L, H}(t)\right)=z-t-1$ for all $0 \leq t \leq z-1$. We have $h^{0}\left(H, \mathcal{I}_{\operatorname{Res}_{L}(H \cap T), H}(t)\right)=h^{1}\left(H, \mathcal{I}_{L \cap T, H}(2 d-t+3)\right)$ for all integers t ([25], the case in which $T \cap H$ is reduced is [?, Lemma at p. 199]). Thus $h^{0}\left(H, \mathcal{I}_{\operatorname{Res}_{L}(H), H}(d+1)\right)=0$. Since $h^{0}\left(H, \mathcal{I}_{T \cap H, H}(d+1)\right)=6$, we conclude the proof of this case.
(b) Now we take $x=d k$ for some integer k such that $0<k<d$. We take as E_{x} the intersection of X_{1} with the surface $M_{1} \cup \cdots \cup M_{k}$. Since E_{x} is a complete intersection, $h^{1}\left(\mathcal{I}_{E_{x}}(t)\right)=0$ for all t. Since $E_{x} \subsetneq T$ and $\mathcal{I}_{T}(y)$ is globally generated, $\left|\mathcal{I}_{T}(y)\right| \subsetneq\left|\mathcal{I}_{E_{x}}(y)\right|$. Thus it is sufficient to exclude the lines $L \subset T$ such that $L \nsubseteq E_{d k}$. Since there are only finitely many such lines, it is sufficient to prove $h^{0}\left(\mathcal{I}_{E_{d k} \cup L}(y)\right)<h^{0}\left(\mathcal{I}_{E_{d k}}(y)\right)$ for each line $L \subset T$ such that $L \nsubseteq E_{d k}$. Fix any such a line L. Take any surface S^{\prime} of degree $y-d k$ not containing L. The surface $M_{1} \cup \cdots \cup M_{k} \cup S^{\prime}$ gives $h^{0}\left(\mathcal{I}_{E_{d k} \cup L}(y)\right)<h^{0}\left(\mathcal{I}_{E_{d k}}(y)\right)$.
(c) Now we take $x=d k+e$ with $0 \leq k<d$ and $0<e<d$. We take as E_{x} the union of all lines $L_{i, j}$ such that either $j \leq k$ or $j=k+1$ and $1 \leq i \leq e$. As in step (b) we see that it is sufficient to prove that $h^{0}\left(\mathcal{I}_{E_{x} \cup L}(y)\right)<h^{0}\left(\mathcal{I}_{E_{x} \cup L}(y)\right)$ for any line $L \subset T$ such that $L \nsubseteq E_{x}$. If $L \nsubseteq M_{k+1}$ (and hence $e \leq d-2$) it is sufficient to take the union of $M_{1} \cup \cdots \cup M_{k+1}$ and a surface of degree $y-k+1$ not containing L. Thus we may assume $L \subset M_{k+1}$. The curve $E_{x}\left(\right.$ resp. $\left.E_{x} \cup L\right)$ is linked by the complete intersection of X_{1} and $M_{1} \cup \cdots \cup M_{d+1}$ to a plane curve E (resp. F) of degree $d-e$ (resp. degree $d-e-1$). By [23, Remarque III.1.3] $h^{1}\left(\mathcal{I}_{E_{x}}(t)\right)=h^{1}\left(\mathcal{I}_{E_{x} \cup L}(t)\right)=0$ for all $t \in \mathbb{Z}$. Since $\operatorname{deg}\left(E_{x} \cup L\right)=\operatorname{deg}\left(E_{x}\right)+1$, RiemannRoch gives $h^{0}\left(\mathcal{I}_{E_{x}}(y)\right)-h^{0}\left(\mathcal{I}_{E_{x} \cup L}(y)\right)=y-p_{a}\left(E_{x} \cup L\right)+p_{a}\left(E_{x} \cup L\right)+h^{1}\left(\mathcal{I}_{E_{x}}(y)\right)-$
$h^{1}\left(\mathcal{I}_{E_{x} \cup L}(y)\right)$. Since $\operatorname{deg}\left(L \cap E_{x}\right)=e, p_{a}\left(E_{x} \cup L\right)-p_{a}\left(E_{x}\right)=e-1$. Since $y \geq d+k-e+1-1$, the restriction map $H^{0}\left(\mathcal{O}_{L}(y)\right) \rightarrow H^{0}\left(\mathcal{O}_{L \cap E_{x}}(y)\right)$ is surjective.Thus Mayer-Vietoris exact sequence

$$
0 \rightarrow \mathcal{O}_{E_{x} \cup L}(y) \rightarrow \mathcal{O}_{E_{x}}(y) \oplus \mathcal{O}_{L}(y) \rightarrow \mathcal{O}_{L \cap E_{x}}(y) \rightarrow 0
$$

gives $h^{1}\left(\mathcal{I}_{E_{x} \cup L}(y)\right)=h^{1}\left(\mathcal{I}_{E_{x}}(y)\right)$. Thus $h^{0}\left(\mathcal{I}_{E_{x} \cup L}(y)\right)=h^{0}\left(\mathcal{I}_{E_{x}}(y)\right)-y+e-1$.
Remark 2.2. In the set-up of Theorem 1.1 take $x \equiv 0(\bmod d)$, say $x=d m$ for some $m \in\{1, \ldots, d\}$. The definition of E_{x} as a complete intersection gives $h^{0}\left(\mathcal{I}_{E_{d m}}(m-1)\right)=0$. However, if $m \neq d h^{0}\left(\mathcal{I}_{Y_{d m}}(m)\right)=1$ and the unique element S of $\left|\mathcal{I}_{E_{d m}}(m)\right|$ is a union of planes and hence $E_{d m} \neq Y_{S}$.

Proof of Theorem 1.3: The family of all degree d surfaces with a quadric as an irreducible component has dimension $\operatorname{dim}\left|\mathcal{O}_{\mathbb{P}^{3}}(d-1)\right|+\operatorname{dim}\left|\mathcal{O}_{\mathbb{P}^{3}}(2)\right|=\binom{d+3}{3}-(d+1)^{2}+8=\binom{d+1}{3}+8$. Since each irreducible quadric surface contains ∞^{1} lines, we get the lower bound.

Fix a general $X \in \mathcal{J}$. If X is irreducible, then it is sufficient to use part (c). Assume that X is reducible and call z the minimal degree of an irreducible component of X. The minimality of z implies $z \leq d / 2$. By assumption $z \geq 3$. Thus we may assume $d \geq 6$. Since not all surfaces of degree z or of degree $d-z$ contain infinitely many lines, we get $\operatorname{dim} \mathcal{J} \leq\binom{ d-z+3}{3}+\binom{z+3}{3}-4$. The function $f_{d}(z)=\binom{d-z+3}{3}+\binom{z+3}{3}-4$ has a strict minimum at 3 and $d-3$ and these equal minima give the inequality $\operatorname{dim} \mathcal{J} \leq\binom{ d}{3}+16$.

3. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORKS

There are several important papers on linear subspaces contained in complete intersections ($[4,5,11,14]$). Although slice rank is defined only for hypersurfaces, complete intersections briefly occurred in the proof of at least one theorem on the strength of hypersurfaces ([2, §2]). We did not tried to extend the results proved in this paper to the case of complete intersections (not an easy task for the interested reader), because we are unable to find a clear link between the results of the present paper (not just the old papers $[4,5,10,11,14,21])$. All the quoted papers use algebraic or complex analytic tools. Hypersurfaces may be defined over \mathbb{R} and they may contain linear subspaces defined over \mathbb{R} (the interested ones) or pairs of complex conjugate linear subspaces defined over \mathbb{C} (the ones to avoid). Certainly tools of Real Algebraic Geometry and Real Semialgebraic Geometry may be used to study them. One of the referees suggested to try also Hard Real Analysis, e.g. [13].

References

[1] Ananyan, T.; Hochster M. Small subalgebras of polynomial rings and Stillman's conjecture. J. Amer. Math. Soc. 33 (2020), 291-309.
[2] Ballico, E.; Bik, A.; Oneto, A.; Ventura, E. Strength and slice rank of forms are generically equal. arXiv:2102.11549.
[3] Ballico, E.; Bolondi, G; Ellia, Ph.; Mirò-Roig, R. M., Curves of maximum genus in the range A and stickfigures. Trans. Amer. Math. Soc. 349 (1997), no. 11, 4589-4608
[4] Bastianelli, F.; Ciliberto, C.; Flamini, F.; Supino, P. On complete intersections containing a linear subspace. Geom. Dedicata 204 (2020), 231-239.
[5] Bastianelli, F.; Ciliberto, C.; Flamini, F.; Supino, P. On Fano schemes of linear spaces of general complete intersections. Arch. Math. (Basel) 115 (2020), no. 6, 639-645.
[6] Bik, A. Strength and Noetherianity for infinite Tensors. PhD Thesis Bern, 2020.
[7] Bik, A.; Draisma, J.; Eggermont, R. H.; Snowden, A. The geometry of polynomial representations. in preparation.
[8] Bik, A.; Oneto, A., On the strength of general polynomial. arXiv:2005.08617.
[9] Boissière, S.; Sarti, A. Counting lines on surfaces. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), no. 1, 39-52.
[10] Bolondi, G.; Migliore, J. Configurations of linear projective varieties, in: Algebraic Curves and Projective Geometry, Proceedings, Trento 1988, Lect. Notes Math. 1389, Springer-Verlag, Berlin, 1989, 19-31.
[11] Borcea, C. Deforming varieties of k-planes of projective complete intersections. Pac. J. Math. 143 (1990), 25-36.
[12] Carlini, E.; Chiantini, L.; Geramita, A. Complete intersections on general hypersurfaces. Michigan Math. J. 57 (2008), 121-136.
[13] Colding, T. H.; Minicozzi, W. P. A course in minimal surfaces, Graduate Studies in Mathematics 121, American Mathematical Society, Providence, RI, 2011.
[14] Debarre, O.; Manivel, L. Sur la variété des espaces linéaires contenus dans une intersection complète. Math. Ann. 312 (1998), 549-574.
[15] Fröberg, R. An inequality for Hilbert series of graded algebras. Math. Scand. 56 (1985), no. 2, 117-144.
[16] Green, M. Components of maximal dimension in the Noether-Lefschetz theorem. J. Differential Geomety 27 (1988), 295-302.
[17] Harris, J. The genus of space curves. Math. Ann. 249 (1980), no. 3, 191-204.
[18] Hartshorne, R. Families of curves in \mathbb{P}^{3} and Zeuthen's problem. Mem. Amer. Math. Soc. 130 (1997), no. 617
[19] Hartshorne, R.; Hirschowitz, A. Droites en position générale dans \mathbb{P}^{n}, in Algebraic Geometry, Proceedings, La Rábida 1981, Lect. Notes in Math. 961, Springer, Berlin, 1982, 169-188.
[20] Hochster, M.; Laksov, D. The linear syzygies of generic forms. Comm. Algebra 15 (1987), no. 1-2, 227-239.
[21] Langer, A. Fano schemes of linear spaces on hypersurfaces. Manuscr. Math. 93 (1997), 21-28.
[22] Manivel, L., Sur les hypersurfaces contenant des espaces Iinéaires. C. R. Acad. Sci. Paris 328, Ser. I, (199), 307-312.
[23] Martin-Deschamps, M.; Perrin, D. Sur la classification des courbes gauches. Astérisque no. 184-185, 1990.
[24] Miyaoka, Y. The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann. 268 (1981), 159-171.
[25] Peskine, C.; Szpiro, L. Liaison des variétés algébriques. I. Inv. Math. 26 (1974), 271-302.
[26] Voisin, C. Composantes de petite codimension du lieu de Noether-Lefschetz. Comm. Math. Helvetici 64 (1989), 515-526.

Department of Mathematics
University of Trento
via Sommarive 14,38123 , Trento, Italy
Email address: edoardo.ballico@unitn.it

[^0]: Received: 11.01.2021. In revised form: 22.05.2021. Accepted: 29.05.2021
 2010 Mathematics Subject Classification. 14N05.
 Key words and phrases. slice rank, projective space, linear subspaces, lines, multivariate form.
 Corresponding author: Edoardo Ballico; edoardo.ballico@unitn.it

