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Slice ranks: lines in hypersurfaces

EDOARDO BALLICO

ABSTRACT. Motivated by the notion of slice ranks of multivariate forms we study families of hypersurfaces
of Pn, mainly for n = 3, 4, containing a prescribed number of lines or having infinitely many lines. In many
cases we compute their dimension and describe their irreducible components with maximal dimension.

1. INTRODUCTION

Let K be an algebraically closed base field with characteristic 0. For any d ∈ K let
K[x0, . . . , xn]d denote the

(
n+d
n

)
-dimensional K-vector space of all degree d forms in the

variables x0, . . . , xn. For any f ∈ K[x0, . . . , xn]d, f 6= 0, d ≥ 2, the slice rank sl(f) of f is
the minimal integer r such that f =

∑r
i=1 figi for some fi ∈ K[x0, . . . , xn]1 and some gi ∈

K[x0, . . . , xn]d−1 ([1, 2, 6, 7, 8, 12]). There are very strong reasons for these studies which
allowed to get insights and proofs of old conjectures and promise further extensions of
classical papers ([15, 20]). Set X := {f = 0} ∈ |OPn(d)|. Since sl(f) = sl(cf) for all c ∈
K\{0}, the integer sl(X) := sl(f) is well-defined. The integer sl(X) is called the slice rank
of X . It is easy to check that sl(X) = n− v, where v is the maximal dimension of a linear
space L ⊂ X ([1, 6, 7, 8, 12]). Thus to study the integers sl(X), X ∈ |OPn(d)|, one can use
several papers devoted to the study of linear spaces contained in a specific hypersurface.
For any hypersurfaceX ⊂ Pn with sl(X) = n−v let S(X) ⊂ G(v+1, n+1) denote the set of
all of v-dimensional linear subspaces contained in v. The papers [14, 22] by O. Debarre and
L. Manivel are important to use this observation. The first one gives sl(X) for a general
X ∈ |OPn(d)| for all n ands all d. In particular if d ≥ 2n−2 a generalX ∈ |OPn(d)| contains
no positive dimensional linear subspace ([14]). L. Manivel studied the case in which X
is not general ([22]) and this is the case considered in this paper. More precisely, for each
d ≥ 2n−2 a general X ∈ |OPn(d)| contains no positive dimensional linear subspace ([14]).
We will always work in the range d ≥ 2n − 2 and consider hypersurfaces X ∈ |OPn(d)|
such that sl(X) = n−1. For any X with sl(X) = n−1 set YX := ∪L∈S(X)L ⊆ X . Since the
Grassmannian G(2, n+ 1) is a projective variety and X is closed in Pn, S(X) and YX ⊂ X
are projective algebraic sets.

In this paper we consider the following questions:

(1) Fix a closed algebraic subset T ⊂ Pn which is a union of lines, but contains no
plane. Fix an integer d ≥ 2n − 2 such that h0(IT (d)) 6= 0. Is YX = T for a general
X ∈ |IT (d)|?

(2) Fix the numerical invariants for T ; for instance if T is finite fix the integer #T and,
maybe, the arithmetic genus of the curve ∪L∈TL. Compute or give lower/upper
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bounds for the dimension of all X ∈ |OPn(d)| such that sl(X) = n− 1 and YX has
the numerical invariants of T .

We now list our main results and introduce the notation needed to state them.

Theorem 1.1. Fix integers y, d and x such that 0 ≤ x ≤ d2 and y ≥ d ≥ 5. If x = dk + e with
k ∈ {0, . . . , d− 1} and 0 < e < d assume y ≥ max{d, d+ k− e− 1}. There is a union Ex ⊂ P3

of x distinct lines such that h1(IEx
(t)) = 0 for all t ∈ Z, h0(IEx

(d)) ≥ 2 and for each integer
y ≥ d a general S ∈ |IEx

(y)| is irreducible and contains exactly x lines.

Remark 1.1. Fix integers n ≥ 3 and d ≥ 2, i > 0. Fix X ∈ |OPn(d)|. O. Debarre and L.
Manivel computed the dimension a(n, d, i) of the set A(n, d, i) of all X ∈ |OPn(d)| with
sl(X) = i ([14, 22]) and L. Manivel proved that if A(n, d, i) 6= ∅ and a(n, d, i) <

(
n+d
n

)
− 1,

then a general X ∈ A(n, d, i) contains a unique (n − i)-dimensional linear subspace ([22,
part 2 of Theorem at p. 307]). Let A(n, d, i, k), k ≥ 0, be the set of X ∈ A(n, d, i) such that
dimS(X) = k.

Theorem 1.2. Fix an integer d ≥ 2. Then:
(1) a(4, d, 3, x) = 0 for all x > 3;
(2) a(4, d, 3, 3) =

(
4+d
4

)
−
(
d+2
4

)
, A(4, d, 3, 3) is irreducible and X ∈ A(4, d, 3, 3) if and

only if X contains no plane, but it has a smooth quadric hypersurface as an an irreducible
component.

Theorem 1.3. Fix an integer d ≥ 4 and set x := d3d/2e. Let J ⊂ |OP3(d)| be an irreducible
family such that all X ∈ J contain infinitely many lines, but no irreducible component of X is a
plane.

(a) dimJ ≤
(
d+1
3

)
+ 8 and equality holds if and only if all elements of J have a quadric as

a component.
(b) Assume that no element of J has a quadric as a component. Then

dimJ ≤
(
d

3

)
+ 16.

For all positive integer d and t let β(d, t) (resp. β1(d, t)) denote the dimension of all
X ∈ |OP3(d)| (resp. all integral X ∈ |OP3(d)|) such that #YX = t, with the convention
dim ∅ = −∞. Obviously β(d, t) = β1(d, t) = −∞ for d = 1, 2. It is classically known
that β(3, t) = β1(3, t) = −∞ for all t > 27. Let E(d, t) (resp. E1(d, t)|) be the set of all
X ∈ |OP3(d)| (resp. of all integral X ∈ |OP3(d)|) such that #S(X) = t.

Proposition 1.1. Fix an integer d ≥ 4.
(a) β(d, 1) = β1(d, 1) =

(
d+3
3

)
− d− 2 and E(d, 1) and E1(d, 1) are irreducible.

(b) β(d, 2) = β1(d, 1) =
(
d+3
3

)
− 2d + 1 and E(d, 2) and E1(d, 2) have two irreducible

components, both of maximal dimension, one formed by the surfaces containing a reducible conic
and the other one by the surfaces containing 2 disjoint lines.

(c) E(d, 3) and E1(d, 3) have 4 irreducible components, all of dimension
(
d+3
3

)
− 3d + 8,

distinguished by the set YX of any X in the irreducible family:
(1) 3 disjoint lines;
(2) a reducible conic and a disjoint line;
(3) a planar union of 3 lines;
(4) a connected union of 3 lines with arithmetic genus 0.

Several papers studied finite unions T ⊂ P3 of lines ([3, 9, 10, 16, 24, 26]). For general
unions of a prescribed number of lines in Pn, n ≥ 3, see [19]. As far as we know our is the
first systematic attempt to study the two questions we raised in the introduction.
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We conclude the introduction with the following questions.
Take S, S′ ∈ |OPn(d)| such that S(S) = S(S′).

(1) Under which assumptions on n, d and S(S) are S = S′?
(2) Under which assumptions on n and d the hypersurfaces S and S′ are related in a

certain way, e.g. there are an integer d′, E ∈ |OPn(d′)| and W,W ′ ∈ |OPn(d − d′)|
such that sl(E) = S(E), S = E + W , S′ = E + W ′ and either sl(W ) < sl(S) or
sl(W ) = sl(S) and sl(W ) ⊆ sl(S), either sl(W ′) < sl(S) or sl(W ′) = sl(S) and
sl(W ′) ⊆ sl(S)?

Of course, we may exclude the latter possibility if we assume that at least one among
S and S′ is irreducible.

2. PROOFS

Let A ⊂ Pn be a closed subscheme. Fix any Q ∈ |OPn(m)|, m > 0. The residual scheme
ResQ(A) of A with respect to Q is the closed subscheme of Pn with IA : IQ as it ideal
sheaf. If A is a reduced scheme, then ResQ(A) is the closure of A \ A ∩ Q in Pn, i.e. the
union of all irreducible components of A not contained in Q. For any t ∈ Z there is an
exact sequence of coherent sheaves:

0→ IResQ(A)(t−m)→ IA(t)→ IA∩Q,Q(t)→ 0 (2.1)

Proof of Theorem 1.2: Fix any X ∈ A(4, d, 3, x) with x ≥ 3. Since X contains no plane, any
surface S ⊂ X contains at most∞1 lines. Since X contains no plane, if X is a cone (i.e. if
there is p ∈ X contained in∞2 lines contained in X), then a general hyperplane section of
X contains no line. Thus the assumption x ≥ 3 and the properness of the Grassmannian
G(2, 5) imply that X is not a cone, that x = 3 and that there is an irreducible component
W of X such that each p ∈ W is contained in exactly ∞1 lines contained in W . Set
t := deg(W ). To conclude the proof of the theorem it is sufficient to prove that t = 2.
Fix p ∈ Xreg ∩W , so that TpX = TpW is a 3-dimensional linear space. Each line L ⊂ W
containing p is contained in TpW . Thus TpW ∩W contains a 2-dimensional cone Cp with
vertex p. Set e := deg(Cp) ≤ t.

Assume for the moment that the dual variety W∨ ⊂ P4∨ of W is a hypersurface. Since
we are in characteristic zero and p is general in W , TpW is tangent to W only at p and
TpW ∩ TpX has a quadratic singularity. Thus e = 2 and there is an open neighborhood U
of p ∈ W such that the scheme-theoretic intersection TpW ∩W is smooth at all points of
U \ {p}. Thus t = e and hence t = 2.

Now assume that the dual variety W∨ has dimension b for some 1 ≤ b ≤ 2. Since we
are in characteristic zero, this implies that TpW is tangent to W along a 3− b linear space.
Since X contains no plane, we get b = 2. Thus (again because we are in characteristic 0)
the closure in W of a general fiber of the Gaussian map γW : Wreg → G(4, 5) is a line.
Call Lp the closure of the fiber of γW containing p. For a general q ∈ Lp, q ∈ Wreg and
TqW = TpW . Thus Cq = Cp. Hence Cp is a cone with vertex containing a line. Thus the
surface Cp contains a plane. Since Cp ⊂W ⊂ X , we obtained a contradiction. �

Proof of Proposition 1.1: Let At be a plane curve of degree t. Let E1 (resp. E2) be a union
of 2 (resp. 3) disjoint lines. Let E3 be the union of a reducible conic and a line disjoint
from it. Since d ≥ 4, h1(IAt

(d)) = h1(IEi
(d)) = 0, i = 1, 2, 3. Thus h0(IAt

(d)) =
(
d+3
3

)
−(

d+2
2

)
+
(
d−t+2

2

)
, h0(IE1

(d)) =
(
d+3
3

)
−d−1, h0(IE2

(d)) =
(
d+3
3

)
−3d−3, and h0(IE3

(d)) =(
d+3
3

)
− 2d− 2. Note that dimG(2, 3) = 2, that dimG(2, 4) = 4 and that the set of all lines

of P3 intersecting a given line has dimension 3. Part (a) follows considering all L 6= A1.
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Now we prove part (c), leaving the similar (but shorter) proof of part (b) to the reader.
A union T ⊂ P3 of 3 distinct lines may have 3, 2 or 1 connected components and in the
latter case we need to distinguish if T is contained in a plane or not. We see that E(d, 3)
and E1(d, 3) are the union of 4 disjoint algebraic sets and we first study them separately.

(a) Take T with 3 connected components. The set of all such T has dimension 12. In
this case h0(IT (d)) =

(
d+3
3

)
− 3d − 3. Take a line L ⊂ P3 such that L * T and set z :=

deg(L∩T ). Let U(z) be the set of of all lines L with deg(L∩T ) = z. It is easy to check that
dimU(z) = 4− z for all z. Since d ≥ 4, in all cases the residual exact sequence of a general
plane containing L gives h1(IT∪L(d)) = 0 and hence h0(IT∪L(d)) = h0(IT (d))− d− 1 + z.
Since in all cases we have d+ 1− z > dimU(z), the part of E(d, 3) and E1(d, 3) associated
to a fixed T in case (a) is irreducible and of codimension 3d+ 3. Hence the part of E(d, 3)

andE1(d, 3) associated to some T in case (a) is irreducible and of dimension
(
d+3
3

)
−3d+8.

(b) Take T with 2 connected components, a reducible conic A and a line R. The set
of all such T has dimension 11. In this case h0(IT (d)) =

(
d+3
3

)
− 3d − 2. Call U(a, b) the

set of all lines L ⊂ P3 such that L * T , deg(L ∩ R) = a and deg(L ∩ R) = b. Obviously
a ∈ {0, 1, 2} and b ∈ {0, 1}. Let H be the plane spanned by R. Consider the residual exact
sequence of H :

0→ IResH(T∪L)(d− 1)→ IT∪L(d)→ IH∩(T∪L),H(d)→ 0 (2.2)

Since ResH(T ∪ L) is either R or R ∪ L, h1(IResH(T∪L)(d − 1)) = 0. Since H ∩ (T ∪ L)

is either A or A ∪ L or the union of A and a point, h1(H, IH∩(T∪L),H(d)) = 0. Thus
h0(IT∪L(d)) = h0(IT (d))− d− 1 + a+ b. We have dimU(2, 1) = 1 (all lines of H passing
through R ∩ H) dimU(2, 0) = 2, dimU(1, 1) = 2, dimU(1, 0) = 3, dimU(0, 1) = 3 and
dimU(0, 0). Thus in all cases d + 1 > a + b + dimU(a, b). Hence the part of E(d, 3)
and E1(d, 3) associated to a fixed T in case (b) is irreducible and of codimension 3d + 2.
Hence the part of E(d, 3) and E1(d, 3) associated to some T in case (b) is irreducible and
of dimension

(
d+3
3

)
− 3d− 8.

(c) Assume that T is connected. This is divided into two cases, T contained in a plane
or not.

(c1) Assume that T is contained in a plane H . In this case h0(IT (d)) =
(
d+3
3

)
− 3d.

Since dimG(3, 4) = 3, the set of all such degree 3 curves T is irreducible and of dimension
9. Fix a line L ⊆ T and set z := deg(L ∩ T ). If L ⊂ H , then z = 3. If L * H , then
z ∈ {0, 1}. Consider the residual exact sequence (2.2) of H . If L ⊂ H , then T ∪ L is a
plane curve, h1(IT∪L(d)) = 0 and h0(IT∪L(d)) = h0(IT (d))− d + 1. Note that the family
of possible L’s has dimension 2. Now assume L * H and hence z ≤ 1, ResH(T ∪ L) = L
and again h1(IT∪L(d)) = 0, i.e. h0(IT∪L(d)) = h0(IT (d)) − d − 1 + z. The family of all
L has dimension 4 − z. Using both cases for L we get YX = T for a general X ∈ |IT (d)|.
Varying T , this case gives an irreducible family of E(d, 3) and E1(d, 3) with dimension(
d+3
3

)
− 3d+ 8.

(c2) Assume that T is not contained in a plane.
(c2.1) Assume that T is nodal. Thus we may order the irreducible components

R1, R2, R3 of T so that R1 ∩ R3 = ∅. The set of all such T is irreducible and of dimen-
sion 10. Fix a line L * T and set z := deg(L ∩ T ). Since T is scheme-theoretically cut
out by reducible quadrics, z ≤ 2. Note that z = 2 if and only if either L is contained in
one of the plane spanned by R1 ∪R2 or R2 ∪R3 or T ∪ L is the complete intersection of 2
reducible quadric surfaces. In the latter case we have h1(IT∪L(d)) = 0. In the other cases,
even the ones with z ≤ 1, we get h1(IT∪L(d)) = 0 using the residual exact sequence of
one of the planes containing 2 irreducible components of T . Hence YX = T for a general
X ∈ |IT (d)|.



Slice ranks 133

(c2.2) Assume that T is not nodal. Thus there is o ∈ P3 such that T = R1 ∪ R2 ∪ R3

with R1, R2, R3 distinct lines containing o and no plane contains T . Varying o we get a
family ∆ of unions of lines with dim ∆ = 9. Call Hij the plane spanned by Ri ∪ Rj ,
i 6= j. Fix a line L * T . First assume L ⊂ Hij for some i, j. Set H := Hij and write
{k} := {1, 2, 3} \ {i, j}. The residual exact sequence (2.2) of H has ResH(T ∪ L) = Rk and
hence h1(IResH(T∪L)(d− 1)) = 0. Since T ∪L is a planar curve, h1(H, IH∩(T∪L),H(d)) = 0.
Thus h0(IT∪L(d)) = h0(IT (d))− d+ 1. This case is in the closure of the case described in
step (c1.1) and so, although it occurs, it does not give an irreducible component of E(d, 3)
and E1(d, 3).

Now assume that L is contained in no plane Hij . The set of such T (for any o ∈ P3) has
dimension 9. Set z := deg(L∩T ). Note that z ≤ 1 if o /∈ L and that the set of allLwith z = 1
has dimension 3. The case o /∈ L is done taking the residual exact sequence of H := H12.
Now assume o ∈ L. In this case pa(T ∪ L) = 1 and hence T ∪ L is a complete intersection
of 2 reducible quadrics. Thus h1(IT∪L(d)) = 0 and h0(IT∪L(d)) = h0(IT (d))−d+1. Since
the set of such lines have dimension 2, we see that YX = T for a general X ∈ |IT (d)|. But
this case is in the boundary of the one described in step (c2.1): instead of R1 ∪ R2 ∪ R3

take a family of all curves R1 ∪R2 ∪ E with E a general line meeting R2. �

Proof of Theorem 1.1: Fix 2d general hyperplanes H1, . . . ,Hd,M1, . . . ,Md and let T be the
union of the d2 lines Li,j := Hi ∩Mj , 1 ≤ i ≤ d, 1 ≤ j ≤ d. Set X1 := H1 ∪ · · · ∪Hd and
X2 := M1 ∪ · · · ∪Md. Since T is the complete intersection of the two degree d surfaces
X1 and X2, h1(IT (t)) = 0 for all t ∈ Z and the homogeneous ideal of T is generated by
2 forms with zero-loci X1 and X2. Take for the moment any integer y ≥ d and let S be a
general element of |IT (y)|.

Claim 1: S is irreducible.
Proof of Claim 1: Assume S reducible, say S = S1 ∪ S2 with deg(S1) = a and

deg(S2) = y−a. Thus Sing(S) ⊇ S1∩S2. Since IT (d) is globally generated and y ≥ d, IT (y)
is globally generated. Bertini’s theorem gives Sing(S) ⊆ T . Since dim(S1 ∩ S2) ≥ 1, there
is a line L := Li,j = Hi∩Mj ⊆ Sing(S). Since T has finitely many irreducible components
and S is general in the irreducible variety |OT (y)|, L is contained in all X ∈ |IT (y)|. If
y = d, this is contradicted by X1, whose singular locus is the union of all lines Hu ∩ Hv ,
u 6= v, while by the generality of H1, . . . ,Hd,M1, . . . ,Md, Hu ∩Hv ∩Mj is a unique point
for all u 6= v. If y > d instead of X1 we take W ∪X1 with W a general surface of degree
y − k (which does not contain L), concluding the proof of Claim 1.

The multiplication by the equations ofX1 andX2 induces the following exact sequence:

0→ OP3(t− 2d)→ OP3(t− d)⊕2 → IT (t)→ 0 (2.3)

Observation 1: From (2.3) we get h0(IT (t)) = 2
(
t−d+3

3

)
for t ≤ 2d − 1. Restricting

(2.3) to any plane H ⊂ P3 containing no irreducible component of T we get the exact
sequence

0→ OH(t− 2d)→ OH(t− d)⊕2 → IT∩H,H(t)→ 0 (2.4)

Observation 2: From (2.4) we get h0(H, IT∩H,H(t)) = 2
(
t−d+2

2

)
for t ≤ 2d− 1.

(a) In this step we prove the theorem for x = d2 taking Ed2 := T .
Claim 2: Fix any y ≥ d such that y 6= d + 1. For a general T a general S ∈ |IT (y)|

contains no line L * T such that there is i ∈ {1, . . . , d} with L ⊂ Hi ∪Mi. This is false
for y = d + 1. A general S ∈ |IT (y + 1)| contains exactly 2d lines L * T such that there
is i ∈ {1, . . . , d} with L ⊂ Hi ∪Mi and for each i there is exactly one Li ⊂ Hi and exactly
one Ri ⊂Mi.

Proof of Claim 2: Assume the existence of L for a general (T, S), S ∈ |IT (y)|. First
assume y = d. Just to fix the notation we assume L ⊂ Hi and hence L ⊂ X1. Since L * X2,
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T ∩ Li is a degree d + 1 plane curve. Hence Hi ⊂ S. Thus S is reducible, contradicting
the generality of S. If y ≥ 2d fix an integral S′ ∈ |IT (d)| (Claim 1) and take S′ ∪ W
with W a general surface of degree y − d ≥ 2. Now assume y = d + 1 and fix a general
S ∈ |IT (y + 1)|. By Claim 1 S is irreducible. Hence S ∩Hi 6= Hi. Thus S ∩Hi is a degree
d + 1 plane curve containing the d lines T ∩ Hi. Thus either S ∩ Hi has a line Hi ∩Mj

appearing with multiplicity 2 or S∩Hi contains a line Li * T . The former case is excluded
by a dimensional count and the fact that deg(T ) is finite; indeed, for each i, j ∈ {1, . . . , d}
the set of all irreducible S ∈ |IT (d + 1)| with Li,j appearing with multiplicity 2 in S ∩Hi

has codimension 2 in |IT (d + 1)|, because IT (d) is globally generated. The same proof
works for the planes Mi and gives a unique line Ri ⊂ Mi, Ri * T . Since L * T , there are
no i, j such L ⊆ Hi ∩Mj , i.e. #{L1, . . . , Ld, R1, . . . , Rd} = 2d.

(a1) Assume y = d. Take a general S ∈ |IT (d)|. Fix any line LS ⊂ S such that
LS * T . After an étale covering of a non-empty open subset of |IT (d)| we may assume
that LS depends algebraically on S even if S contains more than d2 + 1 lines.

Claim 3: LS ∩ Sing(T ) = ∅.
Proof of Claim 3: We first prove that #(LS∩Sing(T )) ≤ 1. Assume #(LS∩Sing(T )) >

1. Thus LS is the line spanned by two different elements of Sing(T ). Since Sing(T ) is
finite, we would get LS = LS′ for a general (S, S′) ∈ |IT (d)|2. Since G(2, 4) is projec-
tive, we would get LS ⊂ Xi for i = 1, 2 and hence LS ⊂ X1 ∩ X2 = T , contradicting
one of our assumptions. Now assume #(LS ∩ Sing(T )) = 1, say LS ∩ Sing(T ) = {pS}.
Since H1, . . . ,Hd,M1, . . . ,Md are general, the set Sing(T ) is the union of the set Σ1 :=
{Hu∩Hv ∩Mj}1≤u<v≤d,1≤j≤d and the set Σ2 := {Mu∩Mv ∩Hj}1≤u<v≤d,1≤j≤d. Note that
Σ1 ∩Σ2 = ∅. Thus there is a unique i ∈ {1, 2} such that pS ∈ Σi. Now we move the 2d-ple
of planes (H1, . . . ,Hd,M1, . . . ,Md) ∈ G(2, 4)d and come back to the same set of 2d planes
with a different ordering, e.g. exchanging each Hi with Mi. We exchange Σ1 and Σ2 and
get a contradiction.

Claim 4: #(LS ∩T ) = d and LS meets each Hi (resp. each Mj) at a unique point, pi,S
(resp. qj,S) and pi,S ∈ T (resp. qj,S ∈ T ).

Proof of Claim 4: Assume for instance LS ⊂ Hi. We would get that Hi ∩ S contains
a degree d + 1 plane curve and hence Hi ⊂ S, contradicting the irreducibility of S. Thus
#(LS ∩Hi) = 1, say LS ∩Hi = {pi,S}. Since S ∩Hi is a degree plane curve and Hi is not
an irreducible component of S, pi,S ∈ T ∩Hi. The proof for Mj is similar.

Since each pi,S and each qj,S is a smooth point of T , #({p1,S , . . . , pd,S}) = #({q1,S , . . . , qd,S}) =
d.

Claims 3 and 4 gives {p1,S , . . . , pd,S , q1,S , . . . , qd,S} ⊆ T ∩LS and #(LS ∩X1) = #(LS ∩
X2) = d. Since T is the complete intersection of 2 degree d surfaces and LS * S, we
get #({p1,S , . . . , pd,S , q1,S , . . . , qd,S}) ≤ d. Thus for each i ∈ {1, . . . , d} there is a unique
σ(i) ∈ {1, . . . , d} such that qσ(i),S = pi,S .

Observation 3: Any 3 disjoint lines of P3 are contained in a unique quadric Q ⊂ P3

and this quadric Q is smooth. The 3 disjoint lines belong to the same ruling of Q. By
Bezout a line meets all these 3 lines if and only if it is an element of the other ruling of Q.

Observation 4: LetQ,Q′ ⊂ P3 be smooth quadrics such thatQ∩Q′ contains 2 disjoint
lines L′, L′′. The schemeQ∩Q′ is a divisor of bidegree (2, 2) of bothQ andQ′. ThusQ∩Q′
is the union of L′ ∪L′′ and either two disjoint lines R and D in the rulings of Q and Q′ not
containing L′ or the divisor 2R in the rulings of Q and Q′ not containing L′.

Now we use that d ≥ 5. The lines L1,σ(1), L2,σ(2), L3,σ(3), L4,σ(4) are pairwise disjoint.
Thus for eachE ⊂ {1, 2, 3, 4}with #E = 3 there is a unique quadric surfaceQE containing
all lines Li,σ(i), i ∈ E, and this quadric is smooth. QE is the union of the lines of P3

intersecting all lines Li,σ(i), i ∈ E. Thus L ⊂ QE for all E (Observation 1). For each
i ∈ {1, 2, 3, 4} set Ei := {1, 2, 3, 4} \ {i}. Thus we get 4 different smooth quadrics QEi

,
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1 ≤ i ≤ 4, withQEi
containing ∪j∈Ei

Lj,σ(j) and each of these lines meets L. Thus L ⊂ QEi

(Observation 1). For each j ∈ Ei setEij := {1, 2, 3, 4}\{i, j} and callRij the line 6= L given
by Observation 1 applied to the smooth quadrics QEi

and QEj
with the convention Rij =

L if QEi
∩QEj

contains L with multiplicity 2. There are at most 2 lines in QE1
∩QE2

∩QE3

in the same ruling of these quadric containing L, say L and L′ with perhaps L = L5. For
a general H5 and a general Mσ(5) the line L5,σ(5) does not meet R ∪R′, a contradiction.

(a2) Assume y > d.
(a2.1) If y ≥ 4 + d we take as S a generalization of S′ ∪ W , where S′ is a general

element of |IT (d)| and W is a quartic surface containing no line. Thus we could assume
d + 1 ≤ y ≤ d + 3. Assume y ∈ {d + 2, d + 3}. Taking a generalization of X1 ∪W with
W a general surface of degree y − d we see that LS ∩ T = ∅ for a general S ∈ |IT (y)|.
Thus (2.3) and (2.4) give h0(IT∪LS

(y)) = 2
(
y−d+2

3

)
+ 2
(
y−d+1

2

)
. Since dimG(2, 4) = 4 and

a general S ∈ |IT (y)| contains the line LS , we have h0(IT∪LS
(y)) ≥ h0(IT (y)) − 4. Thus

(2.3) gives h0(IT (y)) = 2
(
y−d+3

3

)
= 2
(
y−d+2

3

)
+ 2
(
y−d+2

2

)
. Thus 2(

(
y+2−d

2

)
−
(
y+1−d

2

)
) ≤ 4,

i.e. 2(y − d+ 1) ≤ 4, a contradiction.
(a2.2) Assume y = d + 1. Assume for the moment h0(H, IT∩H\T∩LS

(d)) = 2. In this
case the last inequality in step (a2.1) does not give a contradiction, but it is an equality. To
prove that a general S ∈ |IT (d+ 1)| contains no line L * T with h0(H, IT∩H\T∩L(d)) = 2

it is sufficient to observe that there are ∞2 degree d + 1 surfaces containing T and each
of them contains ∞2 lines: the union of any S′ ∈ |IT (d)| and a plane. Let ResL(T ) de-
note the residual scheme of T ∩ H with respect to the Cartier divisor of H . If H ∩ T is
reduced, then ResL(T ∩ H) = T ∩ H \ L ∩ T for the residual scheme of T ∩ H with re-
spect to the Cartier divisor L of H . Thus we only need to exclude the lines L ⊂ P3 such
that h0(H, IResL(T∩H)(d)) > 2 for a general plane containing L. The schemes L ∩ T and
ResL(T ∩H) are linked by the complete intersection T ∩H and hence there is a relation be-
tween the numerical invariants of these sets, as we will now explain. Set z := deg(T ∩ L).
Since deg(T ∩L) = z and deg(T ∩H) = d2, deg(ResL(T ∩H)) = d2−z. Since T ∩L is a de-
gree z scheme contained in a line, h1(H, IT∩L,H(t)) = 0 and h0(H, IT∩L,H(t)) =

(
t+2
2

)
− z

for all t ≥ z − 1, while h0(H, IT∩L,H(t)) =
(
t+1
2

)
and h1(H, IT∩L,H(t)) = z − t − 1 for

all 0 ≤ t ≤ z − 1. We have h0(H, IResL(H∩T ),H(t)) = h1(H, IL∩T,H(2d − t + 3)) for
all integers t ([25], the case in which T ∩ H is reduced is [?, Lemma at p. 199]). Thus
h0(H, IResL(H),H(d + 1)) = 0. Since h0(H, IT∩H,H(d + 1)) = 6, we conclude the proof of
this case.

(b) Now we take x = dk for some integer k such that 0 < k < d. We take as Ex the
intersection of X1 with the surface M1 ∪ · · · ∪Mk. Since Ex is a complete intersection,
h1(IEx(t)) = 0 for all t. Since Ex ( T and IT (y) is globally generated, |IT (y)| ( |IEx(y)|.
Thus it is sufficient to exclude the lines L ⊂ T such that L * Edk. Since there are only
finitely many such lines, it is sufficient to prove h0(IEdk∪L(y)) < h0(IEdk

(y)) for each line
L ⊂ T such that L * Edk. Fix any such a line L. Take any surface S′ of degree y − dk not
containing L. The surface M1 ∪ · · · ∪Mk ∪ S′ gives h0(IEdk∪L(y)) < h0(IEdk

(y)).
(c) Now we take x = dk+ewith 0 ≤ k < d and 0 < e < d. We take as Ex the union of

all lines Li,j such that either j ≤ k or j = k+1 and 1 ≤ i ≤ e. As in step (b) we see that it is
sufficient to prove that h0(IEx∪L(y)) < h0(IEx∪L(y)) for any line L ⊂ T such that L * Ex.
If L *Mk+1 (and hence e ≤ d− 2) it is sufficient to take the union of M1 ∪ · · · ∪Mk+1 and
a surface of degree y−k+1 not containing L. Thus we may assume L ⊂Mk+1. The curve
Ex (resp. Ex ∪ L) is linked by the complete intersection of X1 and M1 ∪ · · · ∪Md+1 to a
plane curve E (resp. F ) of degree d− e (resp. degree d− e− 1). By [23, Remarque III.1.3]
h1(IEx(t)) = h1(IEx∪L(t)) = 0 for all t ∈ Z. Since deg(Ex ∪ L) = deg(Ex) + 1, Riemann-
Roch gives h0(IEx(y)) − h0(IEx∪L(y)) = y − pa(Ex ∪ L) + pa(Ex ∪ L) + h1(IEx(y)) −
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h1(IEx∪L(y)). Since deg(L∩Ex) = e, pa(Ex∪L)−pa(Ex) = e−1. Since y ≥ d+k−e+1−1,
the restriction map H0(OL(y)) → H0(OL∩Ex

(y)) is surjective.Thus Mayer-Vietoris exact
sequence

0→ OEx∪L(y)→ OEx
(y)⊕OL(y)→ OL∩Ex

(y)→ 0

gives h1(IEx∪L(y)) = h1(IEx(y)). Thus h0(IEx∪L(y)) = h0(IEx(y))− y + e− 1. �

Remark 2.2. In the set-up of Theorem 1.1 take x ≡ 0 (mod d), say x = dm for some
m ∈ {1, . . . , d}. The definition of Ex as a complete intersection gives h0(IEdm

(m−1)) = 0.
However, if m 6= d h0(IYdm

(m)) = 1 and the unique element S of |IEdm
(m)| is a union of

planes and hence Edm 6= YS .

Proof of Theorem 1.3: The family of all degree d surfaces with a quadric as an irreducible
component has dimension dim |OP3(d−1)|+dim |OP3(2)| =

(
d+3
3

)
−(d+1)2+8 =

(
d+1
3

)
+8.

Since each irreducible quadric surface contains∞1 lines, we get the lower bound.
Fix a general X ∈ J . If X is irreducible, then it is sufficient to use part (c). Assume

that X is reducible and call z the minimal degree of an irreducible component of X . The
minimality of z implies z ≤ d/2. By assumption z ≥ 3. Thus we may assume d ≥ 6.
Since not all surfaces of degree z or of degree d − z contain infinitely many lines, we get
dimJ ≤

(
d−z+3

3

)
+
(
z+3
3

)
−4. The function fd(z) =

(
d−z+3

3

)
+
(
z+3
3

)
−4 has a strict minimum

at 3 and d− 3 and these equal minima give the inequality dimJ ≤
(
d
3

)
+ 16. �

3. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORKS

There are several important papers on linear subspaces contained in complete inter-
sections ([4, 5, 11, 14]). Although slice rank is defined only for hypersurfaces, complete
intersections briefly occurred in the proof of at least one theorem on the strength of hy-
persurfaces ([2, §2]). We did not tried to extend the results proved in this paper to the
case of complete intersections (not an easy task for the interested reader), because we are
unable to find a clear link between the results of the present paper (not just the old papers
[4, 5, 10, 11, 14, 21]). All the quoted papers use algebraic or complex analytic tools. Hy-
persurfaces may be defined over R and they may contain linear subspaces defined over R
(the interested ones) or pairs of complex conjugate linear subspaces defined over C (the
ones to avoid). Certainly tools of Real Algebraic Geometry and Real Semialgebraic Ge-
ometry may be used to study them. One of the referees suggested to try also Hard Real
Analysis, e.g. [13].
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