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The Golden Inheritance of Renaissance
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ABSTRACT. Federico Commandino (1509–1575) was born into an influential family from Urbino, Italy. His
family’s political connections secured him a position as the private secretary to pope Clement VII in 1534.
He dedicated most of his life translating several fundamental works from ancient Greek into Latin, includ-
ing Archimedes, Ptolemy, Euclid, Aristarchus, Pappus, Apollonius, Eutocius, Heron and Serenus [Rosen, E.,
Biography in Dictionary of Scientific Biography (New York 1970-1990)]. Most notable is his 1565 work titled De
centro gravitatis, where an interesting novel idea is presented and explored. In this work, one particular element
from Euclid’s Elements is extended to tetrahedra: the center of gravity. In our paper we explore the heritage
of his work on tetrahedra and we reflect on the educational value of this cornerstone moment in the history of
geometry.

Federico Commandino was a true man of the Renaissance with a life composed of
completed studies in medicine at the top universities of his century, service as private sec-
retary to the Pope and, when he felt the world of politics did not present as much interest
for him as a scholarly life, he translated the most important authors of mathematics from
the ancient Greek world into Latin and Italian. It may sound like a fantastic story, but the
life of Fredrico Commandino is undoubtedly true as it was cultivated in a fertile era of
multi-disciplinary crossroads.

FIGURE 1. Federico Commandino (1509–1575)
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Commandino’s inclination to spread mathematical enlightenment resulted in his own
pursuit of original mathematical research. He asked himself whether certain properties
of planar figures, investigated by Euclid in his Elements, could be extended to three-
dimensional figures.

We present below this theorem called, in some sources, (competently preserving the
memory of centuries past, e.g. [3]) Commandino’s Theorem. The importance of this con-
tribution is that it brings forth a better understanding of tetrahedra, superior to any work
done before.

For any student pursuing the calculus sequence, a revealing moment awaits in the
sections where the space geometry is investigated through methods of vector calculus.
Some of the viewpoints incorporated in current textbooks present only vector solutions to
three dimensional problems. However there are different methods available, pertaining
to synthetic geometry in which our introduction outlined the historical period where such
ideas originated. In the present note we propose an exploration advocating for a dual approach,
represented on one hand by three dimensional synthetic solutions, and on the other hand three
dimensional analytic solutions. What if our calculus textbooks presented dual perspectives
like this?
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These ideas belong, no doubt, in multivariable calculus sections where the geometry of
lines and planes is investigated. Such a dual presentation would promote an integrated
viewpoint that would make the whole idea more enjoyable and revealing to any curious
mind. We start our exploration by setting forth the fact called in several sources Com-
mandino’s Theorem.

Question 1. (1835 in [3]; Problem 934 in [11].) Prove that the straight lines joining the vertices
of a tetrahedron ABCD with the points of the intersection of medians on each of the faces meet in
the same point G.

Synthetic solution. Consider the tetrahedron ABCD and denote the midpoints by M,N,
P,and Q of edges CD,BC,AD, and AB, respectively. Let I be the center of gravity in
∆BCD and J the center of gravity in ∆ACD. Medians BJ and AI of the tetrahedron
meet in point G.

Due to similarity, we have the following string of proportions all coming from plane
(ABM) :

IG

GA
=

JG

GB
=

IJ

BA
=

IM

MB
=

MJ

MA
=

1

3
.

These ratios show that each pair of medians in the tetrahedron meet in a point G,
namely that point dividing the median in ratio 1:3. �

This was the original way of thinking, very close to Euclid’s spirit. However, it might
be possible that for the calculus student raised in our century, the analytic approach looks
more familiar.
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Analytic solution. Consider the tetrahedron ABCD such that the coordinates are as fol-
lows. B(0, 0, 0), A(m,n, p), C(c, 0, 0), and D(a, b, d). Then the center of gravity of the face

BCD is I
(
a + c

3
,
b

3
,
d

3

)
, and hence the direction of the median AI in the tetrahedron is

#  �

AI =

(
a + c

3
−m,

b

3
− n,

d

3
− p

)
.

The symmetric equations of line (AG) are

X −m
a+c
3 −m

=
Y − n
b
3 − n

=
Z − p
d
3 − p

.

To complete the proof we need to show that point G, with the property that the position

vector of G =
1

4
(A+B +C +D), satisfies the equation of line (AG). Since G

(
m + a + c

4
,

n + b

4
,
p + d

4

)
, a direct substitution yields immediately

m+a+c
4 −m

a+c
3 −m

=
n+b
4 − n
b
3 − n

=
p+d
4 − p
d
3 − p

=
3

4
.

Similar computations can show that point G lies on the other three medians of the tetra-
hedron. �

The following result was stated and proved first in the same reference.

Question 2. With the notations established in the previous problem, the straight line MG passes
through the midpoint of segment AB. Or, otherwise stated, in any tetrahedron the segments join-
ing midpoints of opposite edges pass through point G.

Synthetic argument It is just a direct consequence of the previous proof. MG lies on the
straight line MQ, which is median in triangle ABM.

Consistent to the dual approached spirit of our exploration, we present a second proof
using the analytic method.

Analytic argument. In the tetrahedron ABCD, denote by M, N, P , and Q the midpoints of

edges CD,BC,AD, and AB, respectively. Then P

(
m + a

2
,
n + b

2
,
p + d

2

)
,

M

(
a + c

2
,
b

2
,
d

2

)
, Q

(m
2
,
n

2
,
p

2

)
, and, finally, N

( c

2
, 0, 0

)
. A direct computation yields

#     �

PN =

(
m + a− c

2
,
n + b

2
,
p + d

2

)
, and thus

(PN) :
X − c

2
m+a−c

2

=
Y
n+b
2

=
Z
p+d
2

.

Point G
(
m + a + c

4
,
n + b

4
,
p + d

4

)
lies on (PN) since

m+a+c
4 − c

2
m+a−c

2

=
n+b
4

n+b
2

=
p+d
4

p+d
2

=
1

2
.
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Since the outcome of the ratio is
1

2
we can immediately conclude that G is the midpoint

of segment PN. Similarly, one can see that G lies on MQ, and that it is the midpoint of
MQ. �

The following problem was authored by Ion Tiotioi and was used as Problem 3 for the
Second round of the 2008 Romanian Olympiads ([5], p.47). Our presentation includes a
lovely synthetical argument (published in the mentioned source) and an approach by a
straightforward analytic idea.

Question 3. Consider the cube ABCDA′B′C ′D′ and the points M,N,P such that M is the
foot of the perpendicular from A to plane (A′CD), N is the foot of the perpendicular from B to the
diagonal A′C, and P is the symmetric of D with respect to C. Show that the points M,N,P are
collinear.

Synthetic argument ([5], p. 47). Denoting by a the length of the cube edge. Point M is
the midpoint of A′D. By the leg theorem, we express

CN =
BC2

A′C
=

a2

a
√

3
=

a√
3

=
A′C

3
.

Note that the three points M,N,P belong to plane (A′CD), which means that one
planar argument in (A′CD) suffices. By applying Menelaus Theorem in 4A′CD, the

collinearity of points M,N,P is insured by the relation
DP

PC
· CN

NA′
· A
′M

MD
= 1. Since

DP

PC
= 2,

CN

NA′
=

1

2
,
A′M

MD
= 1, the relation needed in Menelaus Theorem is satisfies,

hence the points M,N,P are collinear.
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N
M

A'

A(0,0,0) B(1,0,0)

C(1,1,0)

C'(1,1,1)

B'

D'

D(0,1,0)
P(2,1,0)

Analytic argument. Choose the system of coordinates such that A(0,0,0), B(1,0,0), C(1, 1,0),

D(0, 1,0), and A′(0, 0, 1). Then M

(
0,

1

2
,

1

2

)
, and P (2, 1, 0), which yields immediately

#      �

MP =< 2,
1

2
,−1

2
>, so the straight line (MP ) satisfies x = 2 + 2s, y = 1 +

1

2
s, and

z = −1

2
s, for some s ∈ R.

On the other hand,
#     �

A′C =< 1, 1,−1 > . The straight line (A′C) satisfies the parametric
equations x = t, y = t, z = 1 − t, for some t ∈ R. The plane through B perpendicular to
A′C is

1(x− 1) + 1(y − 0)− 1(z − 0) = 0,

which reduces to x− 1 + y − z = 0.

By intersecting this plane with the straight line (A′C) we obtain t =
2

3
, which means

that point N lies at
(

2

3
,

2

3
,

1

3

)
.

By checking these coordinates in the parametric equations of line (MP ), we see that

the parameter s = −2

3
corresponds to point N. This proves that N ∈ (MP ). �

These examples were well-suited to illustrate the educational benefits of developing
a multifaceted approach to problems of this nature. For this reason, we would hope to
present two different arguments in our classrooms today. More examples along the same
lines could be found to better point out the bivalent substance of methods available in the
three dimensional geometry.

This dual approach for three-dimensional geometry problems (analytic vs. synthetic,
see also the interesting discussion in [7]) intertwines several layers of methods developed
in various centuries. We have seen that Commandino’s original vision was motivated by a
synthetic quest. The fundamental ideas of analytic geometry originate in René Descartes’
(1596–1650) third appendix to Discourse de la méthode. At the end of the 19th century, in a
moment of synthesis [6], various authors thought about combining both methods in their
monographs and problem books. We referred above to [11], a work still of interest today
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(e.g. [8]). Gheorghe Ţiţeica (1873-1939), a former Ph.D. student of Gaston Darboux (1842-
1917), remains widely remembered as the founder of the affine differential geometry [1],
and revered as an exquisite educator. Besides his stellar research, he was interested in
promoting the education of gifted students, and this is how his collection of problems
was written (with a first edition in 1906, a major revisitation in 1929, and an editorial
upgrade done at over two decades after the author’s passing [11]).

When Élie Cartan visited Bucharest in 1931 [2], he discussed extensively with his for-
mer colleague Ţiţeica how such ideas nurture mathematical research training. Ţiţeica him-
self was taking the rôle of mentor very seriously. His guidance meant a lot for many of the
students raised in the tradition of the Gazette, e.g. Dan Barbilian or Sebastian Kaufmann
[10]. Building experiences such as these in mathematical education leaves us with the
firm belief that a dual presentation of some parts of three-dimensional geometry would
be particularly useful and possibly influential in our calculus classes today.
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[4] Glesser, A.; Rathbun, M.; Serrano, I. M.; Suceavă, B. D. Eclectic Illuminism: Applications of Affine Geome-
try. The College Mathematics Journal 50 (2019), no. 2, 82–92.

[5] Gologan, R.; Schwarz, D., (editors), Romanian Mathematical Competitions 2008, Soc. Ştiin. Matem. Romania,
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