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Intuitionistic level subgroups in the Klein-4 group

S. DIVYA MARY DAISE1 , S. DEEPTHI MARY TRESA1 and SHERY FERNANDEZ2∗

ABSTRACT. In this paper we check the status of the already known result “level subgroups of any fuzzy
subgroup of a finite group forms a chain” in Intuitionistic Fuzzy environment. The tool we use for this is the
Klein-4 group V , which is a non-cyclic group. We prove that V has 64 distinct Intuitionistic Fuzzy Subgroups
(IFSGs) upto isomorphism. The Intuitionistic Level Subgroups (ILSGs) of only 40 among them form chains and
so the result is not true in intuitionistic fuzzy case. To strengthen our findings we provide a python program to
construct the geometric representations of all the 64 IFSGs and its output.

1. INTRODUCTION

The concept of fuzzy sets was introduced by Lotfi A. Zadeh [29] in 1965 as an exten-
sion of the classical notion of set. It revolutionized the concept of belongingness of an
element to a set by making partial belongingness possible. According to Zadeh, a fuzzy
set is a pair (X,m) where X is a set and m : X → [0, 1] is a membership function. The
reference set X is called universe of discourse, and for each x ∈ X the value m(x) is called
the grade of membership of x in X . The function m is called the membership function of the
fuzzy set A = (X,m). Following this in 1976 Sanchez E. [24] came up with fuzzy relations
based on formal models capable of perceiving the human way of dealing with complex
phenomena, which are now used throughout fuzzy mathematics and has applications in
areas such as linguistics [12], decision-making [17], clustering [4], etc. Apart from these,
various concepts in fuzzy mathematics have a wide range of applications in a variety of
fields such as engineering [26], computer science [16], medical diagnosis [19], social be-
havior studies [8], decision making [20], cryptographic models and signature schemes
[28], fuzzy codes [2], etc. Because of this extensive applicability of fuzzy sets and rela-
tions, researchers throughout the world were motivated to generalize most of the abstract
mathematical concepts to the fuzzy context and subject them to conscientious research.
As a part of this advancement, many of the abstract algebraic concepts were generalized
to fuzzy setting, because of the vital role played by them in a variety of researches in com-
puter sciences, information sciences, cryptography, coding theory, etc. The development
in this direction started with the introduction of fuzzy approach to the theory of groups by
Rosenfeld [22] who defined the notion of fuzzy subgroups of a group. Subsequently, nu-
merous studies appeared in the literature on various fuzzy algebraic structures. Later, in
1983, K. T. Atanassov [3] proposed the concept of intuitionistic fuzzy sets as an extension
of the theory of the fuzzy set. In 1989, Biswas [6] extended Atanassov’s definition of intu-
itionistic fuzzy sets to group theory and fromulated the theory of intuitionistic fuzzy sub-
groups of a group. Even now, many new results continue to appear in this area of study.
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[1], [5], [13] and [14] are some of the very recent works in the field of intuitionistic fuzzy
group theory, which contain studies about novel concepts like anti-intuitionistic fuzzy
subgroups, pythagorean fuzzy subgroups, t-intuitionistic fuzzy subgroups and complex
intuitionistic fuzzy subgroups.
In 1981, P. S. Das [11] studied about the level subgroups of fuzzy subgroups of a group
and found out that they form a chain. Later in 2006, Ahn et.al.[27] studied some proper-
ties of level subgroups of intuitionistic fuzzy subgroups of cyclic groups. But no one has
made an attempt to check whether the level subgroups of a group form a chain in the in-
tuitionistic fuzzy context also. The intention of our work is to explore whether the finding
of Das can be translated into the arena of intuitionistic fuzzy subgroups of a group. In
this paper, we try to study the status of the findings of P. S. Das[11] in intuitionistic fuzzy
subgroups of Klein-4 group.

2. PRELIMINARIES

Definition 2.1. [29] Let X be any non-empty set. A Fuzzy Subset A in X is defined to be
a function A : X → I = [0, 1] which assigns a degree of membership between 0 and 1 to
each element of X .

Definition 2.2. [11] If A is a fuzzy subset of a non-empty set X and t ∈ I , then t-cut of A
(or Level Subset of A at t), denoted by At, is defined as At = {x ∈ X : A(x) ≥ t}.

Definition 2.3. [22] A fuzzy subset A of a group G is said to be a Fuzzy Subgroup (FSG)
of G if, for x, y ∈ G
(1) A(xy) ≥ ∧[A(x), A(y)] (∧ being the min operator on I)
(2) A(x−1) = A(x).

Proposition 2.1. [22] If A is FSG of a group G with identity element e, then A(e) ≥ A(x),∀x ∈
G.

Proposition 2.2. [11] In a group G, a fuzzy subset A will be a FSG of G if and only if At is a
subgroup of G for 0 ≤ t ≤ A(e).

Definition 2.4. [11] For a FSG A of a group G, the subgroup At is called Level Subgroup
of A at t, for 0 ≤ t ≤ A(e).

Proposition 2.3. [11] Let A be a FSG of a finite group G with Im(A) = {ti : i = 1, 2, 3, ..., n}.
Then the collection {Ati : i = 1, 2, 3, ..., n} contains all level subgroups of A.
Moreover, if t1 > t2 > t3 > ... > tn, then all these level subgroups will form a chain GA = At1 ⊂
At2 ⊂ At3 ⊂ ... ⊂ Atn = G, where GA = {x ∈ G : A(x) = A(e)}.

Definition 2.5. [3] An Intuitionistic Fuzzy Subset (IFS) of a set X is an object of the form
A = {〈x,mA(x), nA(x)〉 : x ∈ X}where the functionsmA, nA : X → I represent the degree
of membership and degree of non membership of any element x ∈ X and should satisfy the
condition 0 ≤ mA(x) + nA(x) ≤ 1,∀ x ∈ X .

Definition 2.6. [25] Let A = {〈x,mA(x), nA(x)〉 : x ∈ G} be an IFS in a set X and α, β ∈ I .
Then the Intuitionistic Level Subset (ILS) of A at (α, β) (or (α, β)–cut of IFS A) is the
crisp set Aα,β = {x ∈ X : mA(x) ≥ α and nA(x) ≤ β}.

Definition 2.7. [21] An IFS A = {〈x,mA(x), nA(x)〉 : x ∈ G} of a group G is said to be an
Intuitionistic Fuzzy Subgroup (IFSG) of G if and only if
(1) mA(xy) ≥ ∧[mA(x),mA(y)] (∧ being the min operator on I)
(2) mA(x

−1) = mA(x)
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(3) nA(xy) ≤ ∨[nA(x), nA(y)] (∨ being the max operator on I) and
(4) nA(x−1) = nA(x).

Proposition 2.4. [21] Let A = {〈x,mA(x), nA(x)〉 : x ∈ G} be an IFSG in a group G with
identity element e. Then, mA(e) ≥ mA(x) and nA(e) ≤ nA(x), ∀ x ∈ G.

Proposition 2.5. [25] Let A = {〈x,mA(x), nA(x)〉 : x ∈ G} be an IFS in a group G. Then,
(1) Aα,β = φ, for all α > mA(e) and β < nA(e)
(2) A is an IFSG in G ⇔ Aα,β is a subgroup of G for 0 ≤ α ≤ mA(e) and nA(e) ≤ β ≤ 1 with
α+ β ≤ 1.

Definition 2.8. [9] LetA = {〈x,mA(x), nA(x)〉 : x ∈ G} be an IFSG in a groupG. Then the
subgroup Aα,β (where 0 ≤ α ≤ mA(e) and nA(e) ≤ β ≤ 1) of G is called Intuitionistic
Level Subgroup (ILSG) of A at (α, β).

Proposition 2.6. [25] Let A = {〈x,mA(x), nA(x)〉 : x ∈ G} be an IFSG in a group G and
α1, α2, β1, β2 ∈ I be such that α1 ≥ α2 and β1 ≤ β2. Then Aα1,β1

⊆ Aα2,β2
.

Proposition 2.7. [9] Let A = {〈x,mA(x), nA(x)〉 : x ∈ G} be an IFSG in a finite group G,
Im(mA) = {ti : i = 1, 2, 3, ..., n} and Im(nA) = {sj : j = 1, 2, 3, ...,m}. Then the collection{

Ati,sj : i = 1, 2, 3, ..., n; j = 1, 2, 3, ...,m
}

contains all ILSG’s of G.

Remark 2.1. Proposition 2.7 states that the Intuitionistic Fuzzy analogue of the first part
of Proposition 2.3 holds true.

Definition 2.9. [10] Let A = {〈x,mA(x), nA(x)〉 : x ∈ X} be an IFS of a non-empty finite
set X with Im(mA) = {ti : i = 1, 2, 3, ..., n} and Im(nA) = {sj : j = 1, 2, 3, ...,m} where
1 ≥ t1 > t2 > ... > tn ≥ 0 and 0 ≤ s1 < s2 < ... < sm ≤ 1. The finite sequence consisting of
all intuitionistic level subsets ofA, given by Ł̃(A)={At1,s1 , At1,s2 , ..., At1,sm ,At2,s1 ,At2,s2 , ...,
At2,sm , ..., Atn,s1 , Atn,s2 , ..., Atn,sm}, is called the Intuitionistic Level Representation (ILR)
of A.

Definition 2.10. [Isomorphic Intuitionistic Fuzzy Subsets][10] LetA={〈x,mA(x), nA(x)〉 :
x ∈ X} and B = {〈x,mB(x), nB(x)〉 : x ∈ X} be two IFS’s of a non-empty set X . We say
that A and B are isomorphic, denoted by A ∼= B, if for all x, y ∈ X
(I1)mA(x) < mA(y)⇔ mB(x) < mB(y)
(I2)mA(x) = mA(y)⇔ mB(x) = mB(y)
(I3) nA(x) < nA(y)⇔ nB(x) < nB(y)
(I4) nA(x) = nA(y)⇔ nB(x) = nB(y)

If two IFS’s A and B of a non-empty set X are isomorphic, then the degrees of member-
ship and non-membership of various elements of X w.r.t. A and B will have the same
hierarchical ordering, but may differ in values.

Definition 2.11. [15] The Klein 4-group is a group with four elements, in which (i) each
element is self-inverse and (ii) composing any two of the three non-identity elements
produces the third one. It is usually denoted by V = {e, a, b, c}, where e is the identity
element.

It may be observed that V is a non-cyclic group as none of its elements can be a generator
for it.
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3. ILSGS IN KLEIN-4 GROUP

Throughout this section we will denote the Klein 4-group by V = {e, a1, a2, a3}, where
a1 = a, a2 = b, a3 = c.

Proposition 3.8. Let A = {〈x,mA(x), nA(x)〉 : x ∈ V } be an IFSG in V . Then |Im(mA)| ≤ 3
and |Im(nA)| ≤ 3.

Proof. Suppose |Im(mA)| > 3. Then |Im(mA)| = 4 (since, mA : V → I and |V | = 4). Let
Im(mA) = {t1, t2, t3, t4} where 1 ≥ t1 > t2 > t3 > t4 ≥ 0. By proposition 2.4 mA(e) = t1.
Let mA(ai) = t2,mA(aj) = t3,mA(ak) = t4 for any i, j, k = 1, 2, 3 where i 6= j 6= k. Then
mA(ak) < mA(aj), which is a contradiction to first axiom of IFSG in definition 2.7. This
rules out the possibility of |Im(mA)| > 3. Hence |Im(mA)| ≤ 3.
It can be similarly proved that |Im(nA)| ≤ 3. �

Proposition 3.9. LetA = {〈x,mA(x), nA(x)〉 : x ∈ V } be an IFSG in V . IfmA(ai) > mA(aj),
then mA(ak) = mA(aj) for any i, j, k = 1, 2, 3 where i 6= j 6= k.

Proof. Suppose this is not true. That is, mA(ai) > mA(aj) but mA(ak) 6= mA(aj). Also
by first axiom of IFSG in definition 2.7, mA(ak) ≥ ∧[mA(ai),mA(aj)] = mA(aj). Hence
mA(ak) > mA(aj). Then the remaining possibilities are

mA(ak) > mA(ai) > mA(aj)

mA(ak) = mA(ai) > mA(aj)

mA(ai) > mA(ak) > mA(aj)

(3.1)

If mA(ak) > mA(ai) > mA(aj), then mA(aj) < mA(ai) = ∧[mA(ai),mA(ak)] which is a
contradiction to first axiom of IFSG in definition 2.7. The other three possibilities in (3.1)
will also give rise to contradictions similar to this. Thus all possibilities listed in (3.1) are
eliminated. Hence mA(ak) = mA(aj). �

Proposition 3.10. LetA = {〈x,mA(x), nA(x)〉 : x ∈ V } be an IFSG in V . If nA(ai) < nA(aj),
then nA(ak) = nA(aj) for any i, j, k = 1, 2, 3 where i 6= j 6= k.

Proof. Similar to proof of proposition 3.9. �

Proposition 3.11. Let A = {〈x,mA(x), nA(x)〉 : x ∈ V } be an IFSG in V . If mA(ai) =
mA(aj), then mA(ak) ≥ mA(ai) = mA(aj) for any i, j, k = 1, 2, 3 where i 6= j 6= k.

Proof. If mA(ak) < mA(ai) = mA(aj), then mA(ak) < ∧[mA(ai),mA(aj)] which is a con-
tradiction to first axiom of IFSG in definition 2.7. This completes the proof of the proposi-
tion. �

Proposition 3.12. LetA = {〈x,mA(x), nA(x)〉 : x ∈ V } be an IFSG in V . If nA(ai) = nA(aj),
then nA(ak) ≤ nA(ai) = nA(aj) for any i, j, k = 1, 2, 3 where i 6= j 6= k.

Proof. Similar to proof of proposition 3.11. �

Remark 3.2. Propositions 3.9 and 3.11 imply that the hierarchy of membership degrees in
any IFSG in V should be as follows:

mA(e) ≥ mA(ai) > mA(aj) = mA(ak)

mA(e) ≥ mA(ak) = mA(ai) = mA(aj)

mA(e) ≥ mA(ak) > mA(ai) = mA(aj)

for any i, j, k = 1, 2, 3 where i 6= j 6= k. It may be noted that, the third one is equivalent to
the first and hence can be omitted.
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Similarly, by propositions 3.10 and 3.12 the hierarchy of non-membership degrees in any
IFSG in V should be:

nA(e) ≤ nA(ai) < nA(aj) = nA(ak)

nA(e) ≤ nA(ai) = nA(aj) = nA(ak)

for any i, j, k = 1, 2, 3 where i 6= j 6= k.
All the possible hierarchies of membership and non-membership degrees in any IFSG A
in V are listed in the table 1.

TABLE 1. The possible hierarchies of membership and non-membership
degrees in any IFSG A in V

Membership degrees Non-membership degrees
1 mA(e) > mA(a1) > mA(a2) = mA(a3) nA(e) < nA(a1) < nA(a2) = nA(a3)
2 mA(e) > mA(a2) > mA(a1) = mA(a3) nA(e) < nA(a2) < nA(a1) = nA(a3)
3 mA(e) > mA(a3) > mA(a1) = mA(a2) nA(e) < nA(a3) < nA(a1) = nA(a2)
4 mA(e) > mA(a1) = mA(a2) = mA(a3) nA(e) < nA(a1) = nA(a2) = nA(a3)
5 mA(e) = mA(a1) > mA(a2) = mA(a3) nA(e) = nA(a1) < nA(a2) = nA(a3)
6 mA(e) = mA(a2) > mA(a1) = mA(a3) nA(e) = nA(a2) < nA(a1) = nA(a3)
7 mA(e) = mA(a3) > mA(a1) = mA(a2) nA(e) = nA(a3) < nA(a1) = nA(a2)
8 mA(e) = mA(a1) = mA(a2) = mA(a3) nA(e) = nA(a1) = nA(a2) = nA(a3)

Proposition 3.13. Given t1, t2, t3, s1, s2, s3 ∈ I with 1 ≥ t1 ≥ t2 ≥ t3 ≥ 0 and 0 ≤ s1 ≤ s2 ≤
s3 ≤ 1, there exist exactly 64 non-isomorphic IFSG’s in V with membership degrees t1, t2, t3 and
non-membership degrees s1, s2, s3.

Proof. It is clear from table 1 that, there are 8 possible hierarchies of membership degrees
and 8 possible hierarchies of non-membership degrees in any IFSG in V.This means, mem-
bership degrees can be assigned in 8 different ways, following which non-membership
degrees can also be assigned in 8 different ways. Hence, by the fundamental principle of
counting, exactly 8×8=64 distinct (non-isomorphic) IFSG’s can be defined in V . �

Proposition 3.14. Let A={〈x,mA(x), nA(x)〉 : x∈V } be an IFSG in V . If mA(ai)≥mA(aj)
and nA(ai)≤nA(aj) for any i, j = 1, 2, 3 where i 6= j, then the ILSG’s of A form a chain.

Proof. Suppose mA(ai) ≥ mA(aj) and nA(ai) ≤ nA(aj). Then from the previous discus-
sions we get: mA(e) ≥ mA(ai) ≥ mA(aj) = mA(ak) and nA(e) ≤ nA(ai) ≤ nA(aj) =
nA(ak) where i 6= j 6= k. Hence there exist non-negative real numbers t1 ≥ t2 ≥ t3
and s1 ≤ s2 ≤ s3 in I , such that mA(e) = t1,mA(ai) = t2,mA(aj) = mA(ak) = t3 and
nA(e) = s1, nA(ai) = s2, nA(aj) = nA(ak) = s3. Then ILR of A is:

Ł̃(A) = {At1,s1 , At1,s2 , At1,s3 , At2,s1 , At2,s2 , At2,s3 , At3,s1 , At3,s2 , At3,s3}
= {{e} , {e} , {e} , {e} , {e, ai} , {e, ai} , {e} , {e, ai} , V }

Hence, the distinct ILSG’s of A are: {e} , {e, ai} , V which form the chain At1,s1 ⊆ At2,s2 ⊆
At3,s3 . �

Proposition 3.15. Let A = {〈x,mA(x), nA(x)〉 : x ∈ V } be an IFSG in V . If mA(ai) >
mA(aj) and nA(ai) > nA(aj) for any i, j = 1, 2, 3 where i 6= j, then the ILSG’s of A does
not form a chain.
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Proof. Suppose mA(ai) > mA(aj) and nA(ai) > nA(aj). Then from the previous discus-
sions we get: mA(e) ≥ mA(ai) > mA(aj) = mA(ak) and nA(e) ≤ nA(aj) < nA(ai) =
nA(ak) where i 6= j 6= k. Hence there exist non-negative real numbers t1 ≥ t2 > t3
and s1 ≤ s2 < s3 in I , such that mA(e) = t1,mA(ai) = t2,mA(aj) = mA(ak) = t3 and
nA(e) = s1, nA(aj) = s2, nA(ai) = nA(ak) = s3. Then ILR of A is:

Ł̃(A) = {At1,s1 , At1,s2 , At1,s3 , At2,s1 , At2,s2 , At2,s3 , At3,s1 , At3,s2 , At3,s3}
= {{e} , {e} , {e} , {e} , {e} , {e, aj} , {e} , {e, ai} , V }

Hence, the distinct ILSG’s of A are: {e} , {e, ai} , {e, aj} , V which does not form a chain.
�

Remark 3.3. Proposition 3.15 says that, the only possibilities where the ILSG’s do not
form a chain are when the membership and non-membership degrees of any two elements
follow the same hierarchical ordering (other than equality).

Combining the above two propositions we get the following result.

Theorem 3.1. LetA={〈x,mA(x), nA(x)〉 : x ∈ V } be an IFSG in V . Then the ILSGs ofA form
a chain if, and only if, mA(ai) ≥ mA(aj) and nA(ai) ≤ nA(aj) for all i, j = 1, 2, 3 with i 6= j.

Remark 3.4. Throughout the rest of this paper we may denote the IFSGs in V by A(i; j);
i; j = 1; 2; 3; . . . 8, where the membership degrees in A(i; j) are chosen as per the ith row
and the non-membership degrees as per the jth row of table 1.

Remark 3.5. According to theorem 3.1, corresponding to each of the hierarchies of mem-
bership levels in rows 1, 2, 3, 5, 6 and 7 of table 1, exactly four hierarchies of non-
membership levels will form IFSGs in V whose ILSGs does not form a chain and cor-
responding to each of the hierarchies of membership levels in rows 4 and 8 of table 1, all
hierarchies of non-membership levels will form IFSGs in V whose ILSGs form chains.
For example, corresponding to the hierarchy of membership levels in row 1 of table 1
(mA(a1) > mA(a2) and mA(a1) > mA(a3)), the ILSGs of all the IFSGs except A(1, 2)
[nA(a1) > nA(a2)], A(1, 3) [nA(a1) > nA(a3)], A(1, 6) [nA(a1) > nA(a2)] and A(1, 7)
[nA(a1) > nA(a3)] form chains.

Proposition 3.16. The probability that the ILSG’s corresponding to a randomly defined IFSG of
V forms a chain is 13/16.

Proof. As stated in proposition 3.13, 64 distinct IFSG’s can be defined on V (upto isomor-
phism). By theorem 3.1, ILSG’s corresponding to exactly 24 among them will not form a
chain. Hence the proportion of IFSG’s in which the ILSG’s form a chain is 40

64 = 5
8 . �

4. A PYTHON PROGRAM TO CONSTRUCT IFSGS IN KLEIN-4 GROUP

In this section we reinforce our findings in the previous sections by actually construct-
ing all the 64 IFSGs of V for a given set of membership and non-membership levels. Since
it is difficult to do it manually, we have done it using a python program[7, 23, 18]. Here
we present that python program which gives as output the diagrammatic representations
of all the 64 IFSGs with the membership and non-membership levels input by the user,
and the outputs obtained.
In this section we will use the usual notation of Klein-4 group, which is V = {e, a, b, c}, in
order to avoid complications in the figures.
Remark 4.6. We can give a geometric representation to an IFS A = {〈x,mA(x), nA(x)〉 :
x ∈ X} in a non-empty finite setX . For this,mA is taken along x-axis and nA along y-axis.
Then an element x of X is represented as an element of A by the point (mA(x), nA(x)) in
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the coordinate plane. In this representation all elements of A will lie inside the triangle
bounded by the lines x = 0, y = 0 and x+ y = 1.

Example 4.1. Consider the IFSG A(1, 1) in V . Then according to table 1, membership
function will be given as: mA(1,1)(e) = t1,mA(1,1)(a) = t2,mA(1,1)(b) = mA(1,1)(c) = t3
and non-membership function will be given as: nA(1,1)(e) = s1, nA(1,1)(a) = s2, nA(1,1)(b)
= nA(1,1)(c) = s3, where 1 ≥ t1 ≥ t2 ≥ t3 ≥ 0 and 0 ≤ s1 ≤ s2 ≤ s3 ≤ 1. The geometric
representation of this IFSG is given in figure 1.Also from figure 1 it is evident that the
ILSGs of A(1, 1) are A(1, 1)t1,s1 = {e} [the region marked as (I)], A(1, 1)t2,s2 = {e, a} [the
region marked as (II)] and A(1, 1)t3,s3 = V [the region marked as (III)].

FIGURE 1. Geometric representation of A(1, 1) as in example 4.1

Example 4.2. Consider the IFSG A(4, 8) in V . Then according to table 1, membership
function will be given as: mA(4,8)(e) = t1,mA(4,8)(a) = mA(4,8)(b) = mA(4,8)(c) = t2
and non-membership function will be given as: nA(4,8)(e) = mA(4,8)(a) = mA(4,8)(b) =
mA(4,8)(c) = s1, where 1 ≥ t1 ≥ t2 ≥ 0 and 0 ≤ s1 ≤ 1. The geometric representation of
this IFSG is given in figure 2. Also from figure 2 it is evident that the ILSGs of A(4, 8) are
A(4, 8)t1,s1 = {e} and A(4, 8)t2,s1 = V .

FIGURE 2. Geometric representation of A(4, 8) as in example 4.2

The python program for constructing diagrammatic representations of all the 64 IFSGs
with the membership and non-membership levels input by the user is as follows:
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LISTING 1. Python program for pictorising ILSGs in V
import m a t p l o t l i b . pyplot as p l t
#Swap Func t i on
def swapEntries ( l i s t , entry1 , entry2 ) :

l i s t [ entry1 ] , l i s t [ entry2 ] = l i s t [ entry2 ] , l i s t [ entry1 ]
return l i s t

#IFSG p l o t t i n g f u n c t i o n
def plotIFSG (M,N, B ,A) :

p l t . f i g u r e ( f i g s i z e = ( 2 , 2 ) )
p l t . xlim ( 0 , 1 )
p l t . ylim ( 0 , 1 )
p l t . t i t l e ( ”A(%s , %s ) ”%(B ,A) )
p l t . s c a t t e r (M, N)
p l t . annotate ( ”e” , (M[ 0 ] , N[ 0 ] ) )
p l t . annotate ( ”a” , (M[ 1 ] , N[ 1 ] ) )
p l t . annotate ( ”b” , (M[ 2 ] , N[ 2 ] ) )
p l t . annotate ( ” c ” , (M[ 3 ] , N[ 3 ] ) )
p l t . show ( )

#To p l o t IFSGs w. r . t d i f f e r e n t h i e r a r c h i e s o f non membership l e v e l s
def nIFSGs ( s1 , s2 , s3 , a , b ) :

n = [ s1 , s2 , s3 , s3 ]
plotIFSG (m, n , b , a )
for i in range ( 1 , 3 ) :

n = swapEntries ( n , i , i +1)
plotIFSG (m, n , b , a+ i )

n = [ s1 , s2 , s2 , s2 ]
plotIFSG (m, n , b , a +3)

#Main program
print ( ” Enter the membership degrees in decreas ing order \n” )
t1 = f l o a t ( input ( ) )
t 2 = f l o a t ( input ( ) )
t 3 = f l o a t ( input ( ) )
print ( ” Enter the non membership degrees in i n c r e a s i n g order \n
( The sum of highes t membership and non membership degrees should be
l e s s than or equal to 1 ) \n” )
s1 = f l o a t ( input ( ) )
s2 = f l o a t ( input ( ) )
s3 = f l o a t ( input ( ) )
#To p l o t IFSGs w. r . t d i f f e r e n t h i e r a r c h i e s o f membership l e v e l s
for k in range ( 1 , 6 , 4 ) :

m = [ t1 , t2 , t3 , t 3 ]
nIFSGs ( s1 , s2 , s3 , 1 , k )
s1=s2
nIFSGs ( s1 , s2 , s3 , 5 , k )
for j in range ( 1 , 3 ) :

m = swapEntries (m, j , j +1)
nIFSGs ( s1 , s2 , s3 , 1 , k+ j )
s1=s2
nIFSGs ( s1 , s2 , s3 , 5 , k+ j )

m = [ t1 , t2 , t2 , t 2 ]
nIFSGs ( s1 , s2 , s3 , 1 , k+3)
s1=s2
nIFSGs ( s1 , s2 , s3 , 5 , k+3)
t1=t2

The diagrammatic representations of the 64 distinct IFSGs corresponding to the member-
ship degrees t1 = 0.6, t2 = 0.4, t3 = 0.2 and non-membership degrees s1 = 0.1, s2 =
0.3, s3 = 0.4, obtained by execution of the above Python program are shown in figure 3.
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Remark 4.7. While running the program the 64 outputs are obtained one below the other.
We have arranged and compiled them into a single figure for the sake of better under-
standing.

FIGURE 3. Output obtained from the Python Program

5. CONCLUSIONS

It was verified in the process of fuzzifying the abstract algebraic principles and theories
that a chain is formed by the level subgroups of a fuzzy subgroup of any group. The
aim of our research is to investigate whether this result can be extended to intuitionistic
fuzzy subgroups. In this paper, we carry out this inquisition in Klein-4 group V . We
have proved that, any IFSG of the Klein-4 group V can have at most three membership
and non-membership levels. We have also proved that, V has 64 distinct IFSGs upto
isomorphism. For only 40 among them the ILSGs form chains. We then support our
findings by constructing all the 64 IFSGs of V for a given set of membership and non-
membership levels using a python program. The python program and the geometric
representations of all the 64 IFSGs of V obtained as its output are also provided.
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