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The effect of omega invariant on some topological graph
indices
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ABSTRACT. For a realizable set of non-negative integers, it is well-known that there are many ways of re-
alizing it as a graph having this set as degree sequence. For a given degree sequence, a new graph invariant
denoted by Ω which is related to the cyclomatic number and Euler characteristic is recently defined. It is already
shown that this new invariant releases important combinatorial properties and gives direct information com-
pared to the better known Euler characteristic on many normal or extremal problems related to the realizability,
cyclicness, components, chords, loops, connectedness, etc. Many similar classification problems can be solved
by means of Ω. Topological graph indices are used in applications of graph theory as they give us some math-
ematical results by means of some graph model of a real life situation which can frequently be used in other
applied sciences. Therefore it is one of the main problems of graph theory to search for the possible values of
these indices. Many problems dealing with the range of a topological index become easier if we could determine
the lower and upper bounds for this topological index. In this paper, we study the change of several topological
graph indices, the first and second Zagreb indices, forgotten index, sigma index and Narumi-Katayama index
amongst all possible (fundamental) realizations of a given degree sequence.

1. SIGNIFICANCE OF THE WORK

Recently, a new graph invariant has been defined and shown to have a very informative
nature about all the realizations of a given degree sequence. Topological graph indices
have been defined and applied in the last 8 decades to obtain mathematical and chemical
data and their number already exceeded 3000. Due to their applications, the values that a
graph index attain is an open problem which has partial solutions for several indices and
the problem is known as inverse problem. In this work, to help to solve inverse problem,
we obtain lower and upper bounds for several frequently used topological graph indices
and reduce the computation time that needed to solve the inverse problem.

2. INTRODUCTION

We study with finite undirected graphs G = (V,E) with size m = |E(G)| and order
n = |V (G)|. The degree of a vertex v ∈ V (G) is denoted by dGv or briefly dv if there is no
confusion. If the degree of v is one, then it is called a pendant vertex. The biggest vertex
degree in G is denoted by ∆. If u and v are connected to each other by an edge e, this
situation is denoted by e = uv and the vertices u and v will be called adjacent vertices
while the edge e is said to be incident with u and v. A graph is connected if there is a
path between every two vertices. A graph that is not connected is called disconnected.
A graph having no cycle will be called acyclic and the remaining graphs are called cyclic
graphs. A graph having exactly one, two and three cycles is called unicyclic, bicyclic and
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tricyclic graph, respectively. An edge connecting a vertex to itself is called a loop, and two
or more edges connecting two vertices will be called multiple edges.
A degree sequence is a set

DS(G) = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)}
with ai’s being non-negative integers. A graph G is called a realization of a set D if the
degree sequence of G is equal to D. A realizable degree sequence has a large number of
realizations. The most popular test of realizability is the Havel-Hakimi process [10, 11]
and the realizability of multigraphs is studied in [3]. If we omit the connectedness condi-
tion, then every set of positive integers satisfying the Hand-Shaking lemma is realizable.
So the interesting question is the realizability condition for connected graphs.

Let
D = {1(a1), 2(a2), · · · ,∆(a∆)}. (2.1)

The invariant Ω(D) is defined [4] in terms of D as

Ω(D) = a3 + 2a4 + 3a5 + · · ·+ (∆− 2)a∆ − a1

=

∆∑
i=1

(i− 2)ai.

The Ω is fixed for all the realizations of a given degree sequence and therefore is a graph
invariant. For any graph G, the fact that Ω(G) = 2(m−n) was shown in [4] and therefore,
Ω invariant is directly related to the cyclomatic number. In [4] and [5], several properties
of this Ω invariant have been obtained. In [5], all the graphs are classified into three classes
according to Ω ≤ −4, Ω = −2 and Ω ≥ 0. It is shown that many classification problems can
be classified into these three groups of graphs and some new notion called fundamental
realization is defined in each of these cases. Although the set of fundamental realizations
is a subset of all realizations, they give us insight information on many general properties
as they can be used as reference points in some extremal problems. For Ω ≥ 0, a con-
nected realization having a cycle of length a2 +a3 +a4 +a5 + · · ·+a∆, some loops, chords
and a1 pendant edges was called a cyclic fundamental realization. At the same reference,
there are two more definitions for fundamental realizations when Ω = −2 and Ω ≤ −4,
respectively called as the acyclic and mixed type fundamental realizations. Omega invari-
ant is recently applied to the cyclicness of graphs in [7]. In [2], Ω invariant is calculated
for the union, join and corona products. In [8, 16], Ω invariant is utilized to classify all
the Fibonacci and Lucas graphs. The relation between Ω invariant and matching number
of graphs is studied in [12, 18]. The relation between Ω invariant and the independence
number of graphs in [14]. Also the effect of edge and vertex deletion on Ω invariant is
studied in [6]. Several works related to topological graph indices are [1, 13, 15, 17].

3. PROPERTIES OF Ω INVARIANT

Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)}. If D is realizable as a connected planar graph
G, then the number r of faces was given by r = Ω(G)

2 + 1 in [4]. In the case of discon-
nected graphs, it is easy to see that Ω is additive over the set of the components of G.
So a direct generalization to disconnected graphs with c components was given in [4] as
r = Ω(G)

2 + c. The fact that c ≥ −Ω(G)
2 or equivalently, c ≥ n−m can be deduced from the

above results. The relation between the Euler characteristic and Ω invariant was estab-
lished in [4] as Ω(G) = 2(r−χ(G)).Hence the newly defined Ω invariant is closely related
to the well-known Euler characteristic. Therefore one may expect the omega invariant
to give information on same properties of graphs as χ does, but it is already shown that
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Ω invariant give more information on many properties of a degree sequence or its graph
realizations such as connectedness, forcibly connectedness, possibly connectedness, num-
ber of faces, chords, pendant edges, loops, multiple edges, components, etc., see [4], [5]
and [7]. If Ω(D) ≤ −4, then it was shown in [4] that any realization G of a degree se-
quence D cannot be forcibly or potentially connected. The following result shows that
every degree sequence D with Ω(D) ≥ 0 is potentially connected:

Theorem 3.1. Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)}. If Ω(D) ≥ 0, then D is potentially
connected and its connected realizations are having a cycle of length a2 +a3 +a4 +a5 + · · ·+a∆,
loops, chords and a1 pendant edges. That is, when Ω(D) ≥ 0, every connected realization of D
must be cyclic.

Proof. By construction. We give an algorithm to construct the required graph:
1) Draw a cycle with a3 +a4 + · · ·+a∆ edges. Then we have a graph with degree sequence
{2(a3+a4+···+a∆)}.
2) If a1 > 0, then add a1 pendant edges to the vertices of the constructed cycle so that the
choice of the vertices is made as distinct as possible. The resulting graph will have degree
sequence {1(a1), 2(a3+a4+···+a∆−a1), 3(a1)}.
3) Add a total of Ω/2 chords, loops and multiple edges conveniently to the vertices of this
graph to get a new fundamental graph realization with degree sequence {1(a1), 2(a2), 3(a3),

· · · , ∆(a∆)}which is the required result.
4) If Ω(D) = 0, then we are done. If not, continue according to the priority which is adding
chords as much as possible and if necessary, adding the rest as loops and if still needed,
as multiple edges. �

4. CHANGE OF GRAPH INDICES

In this section, we shall determine the change of six important topological graph in-
dices for the family of graph realizations of a given degree sequence. The following theo-
rem given in [4] will be the main tool for our calculations in this section. It determines the
possible connected realizations of a given degree sequence with zero Ω invariant:

Theorem 4.2. Let D = {1(a1), 2(a2), · · · ,∆(a∆)} where a1 > 0 and a2, a3, · · · , a∆ ≥ 0. If
Ω(D) = 0, then D can be realized as a connected unicyclic graph where the length of this unique
cycle could be anything between 1 and a2 + a3 + · · ·+ a∆.

The main idea used in the proof was due to an algorithm based on a cut-and-paste
process. Start with an a2 +a3 + · · ·+a∆-gon C = Ca2+a3+···+a∆

so that all vertices on C are
placed consecutively from smallest degree to largest degree. Using the fact that Ω(D) = 0,
it was shown that we can add one pendant edge to the vertices of degree 3, two pendant
edges to the vertices of degree 4, three pendant edges to the vertices of degree 5, and
finally ∆−2 pendant edges to the vertices of degree ∆. This is the fundamental realization
defined in [5]. An algorithm was then defined to obtain all unicylic realizations having
all positive integers between a2 + a3 + · · · + a∆ and 1 as cycle length. Let us denote the
realizations obtained at each step of the algorithm by Ca2+a3+···+a∆−1, Ca2+a3+···+a∆−2,
· · · , C1. For example, if a2 + a3 + · · ·+ a∆ = 8, then starting with C = C8, there are 7 steps
giving C7, C6, · · · , C1 as possible cycles.

As the graphs are used in modelling some real life cases, instead of studying chemical,
physical, social, etc. properties of such cases, we can use some mathematical formulae to
calculate some number which we can comment to get information on the real life case.
Such mathematical formulae are called topological graph indices and they are used in
many applications since 1947. We now calculate the change of five important graph in-
dices amongst all the connected realizations mentioned in Theorem 4.2. First we recall
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these indices. The first and second Zagreb indices, the forgotten index, the sigma index
and the Narumi-Katayama index of a graph G were defined by

M1(G) =
∑

v∈V (G)

d2
v, (4.2)

M2(G) =
∑

uv∈E(G)

du · dv, (4.3)

F (G) =
∑

v∈V (G)

d3
v =

∑
uv∈E(G)

(du + dv)2, (4.4)

σ(G) =
∑

uv∈E(G)

(du − dv)2, (4.5)

NK(G) =
∏

v∈V (G)

du. (4.6)

Theorem 4.3. Let the graphG be one of the realizations of the degree sequenceD given in Theorem
4.2 so that Ω(D) = 0. If ∆ ≤ 9, then M2(G) has its smallest and largest values amongst all real-
izations given in Theorem 4.2 for C and C1, respectively. If ∆ ≥ 10, then M2(G) has its smallest
and largest values amongst all realizations given in Theorem 4.2 for C1 and C, respectively.

Proof. We use the steps of above algorithm to prove the results. We start by a a2 + a3 +
· · · + a∆-gon C. We first show that the number of pendant edges added to the vertices
of C is equal to a1. Indeed, this number is a3 + 2a4 + 3a5 + · · · + (∆ − 2)a∆ which is
equal, by the definition, to Ω + a1 which is a1 in this case. In C, there are a3 (1, 3)-vertices,
2a4 (1, 4)-vertices, 3a5 (1, 5)-vertices, · · · , (∆ − 2)a∆ (1,∆)-vertices, a2 − 1 (2, 2)-vertices,
a3 − 1 (3, 3)-vertices, · · · , a∆ − 1 (∆,∆)-vertices, one (2, 3)-vertex, one (3, 4)-vertex, · · · ,
one (∆ − 1,∆)-vertex, and finally one (∆, 2)-vertex. So the second Zagreb index of this
realization is equal to

M2(C) =
∑∆

i=2

[
(ai − 1) · i2 + ai · (i− 2) · (1 · i) + i · (i− 1)

]
+ 2∆− 2

=
∑∆

i=2 2i · (i− 1) · ai − ∆2−3∆+2
2 .

Next, we draw an a2 + a3 + a4 + · · · + a∆ − 1-gon by omitting one of the vertices, say
v, having the smallest degree on C together with any pendant edges incident with it and
the end vertices incident with these edges. To keep the Ω(G) unchanged, we add a new
vertex which we call v again, onto one, say uva2+a3+···+a∆

, of the da2+a3+···+a∆
−2 existing

pendant edges. So the second Zagreb index of this new graph Ca2+a3+···+a∆−1 is

M2(Ca2+a3+···+a∆−1) =
∑∆

i=2

[
(ai − 1) · i2 + ai · (i− 2) · i+ i · (i− 1)

]
+ 3∆− 4.

Continuing in the same fashion, we reach to a 1-gon (loop) C1 which has the second
Zagreb index

M2(C1) =
∑∆

i=2 2i · (i− 1) · ai − ∆2+∆−36
2 .

Now define a function f such that

f(∆) = M2(Ca2+a3+···+a∆
)−M2(C1)

= 2∆− 19.

First note that f ′(∆) = 2 and f is always increasing. Also for ∆ < 19/2,M2(Ca2+a3+···+a∆
)

< M2(C1) and for ∆ > 19/2, M2(Ca2+a3+···+a∆
) > M2(C1). This completes the proof.

�

Theorem 4.4. Let the degree sequence D be realizable and let Ω(D) = 0. Then
i the first Zagreb index of G is the same for all graphs G given in Theorem 4.2;



Omega invariant on some topological graph indices 179

ii the forgotten index of G is the same for all graphs G given in Theorem 4.2.
iii the Narumi-Katayama index of G is the same for all graphs G given in Theorem 4.2.

Proof. The first two indices are defined as the sum of powers of the vertex degrees. The
third one is the product of all vertex degrees. As the degree sequence is the same for all
the realizations, each of these three indices takes the same value. �

Finally we study the sigma index. Recall that the inverse problem for this irregularity
index was settled in [9]. Now we have

Theorem 4.5. Let the graphG be one of the realizations of the degree sequenceD given in Theorem
4.2 so that Ω(D) = 0. Then σ(G) has its smallest and largest values amongst all realizations given
in Theorem 4.2 for C1 and C, respectively.

Proof. By Theorem 4.2, to go from Ck to Ck−1, we carry a vertex u of degree du on the
cycle Ck in graph G onto one of the pendant edges at the vertex w of degree dw in graph
G∗, see Fig. 1.

Figure 1. Carrying the vertex u in Ck onto a pendant edge at the vertex w in Ck−1

Recall that we had du ≤ dv ≤ dw in the proof of Theorem 4.2. Note that

σ(G∗)− σ(G) = (dv − dw)2 + (du− 1)2 − (du− dv)2 − (dw − 1)2

= −2(dv − 1)(dw − du).

Note that dv − 1 > 0 and dw − du > 0 implying σ(G∗) < σ(G). Therefore each time we
carry a vertex onto a pendant edge as explained in the proof of Theorem 4.2, the sigma
index gets smaller. Therefore we have the largest sigma index for the unicyclic graph C
with the largest cycle length and smallest sigma index for the unicyclic graph C1 having
cycle length 1 amongst all fundamental realizations defined in Theorem 4.2. �

5. RESULTS AND DISCUSSION

Omega invariant of a degree sequence or of a graph has recently been introduced as a
new graph invariant and is shown to have a very useful nature about all the realizations
of a given degree sequence or of a given graph. It gives information on realizability,
connectedness, cyclicness, chords, loops, components, etc. Over 3000 topological graph
indices have been defined and applied in the last eight decades to study mathematical
and chemical properties. Due to their applications, the values that a graph index attain
is an open problem which has been solved partially for several well-known indices and
the problem is known as the inverse problem for graph indices. In this work, to help with
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the solution of the inverse problem, lower and upper bounds for several frequently used
topological graph indices are obtained and the computation time that needed to solve
inverse problem is reduced.

6. CONCLUSIONS

Classical method of giving lower and upper bounds is applied to obtain limits on the
values of several impactful topological indices. By the help of our results, it is possible to
solve the inverse problem for the indices under investigation in polynomial time.
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