Generalized (α, β)-derivations and left Ideals in Prime Rings

Md Hamidur Rahaman

Abstract

Let R be a prime ring with center $Z(R), \lambda$ a nonzero left ideal, α, β are automorphisms of R and R admits a generalized (α, β)-derivation F associated with a nonzero (α, β)-derivation d such that $d(Z(R)) \neq$ (0). In the present paper, we prove that if any one of the following holds: (i) $F([x, y])-b \alpha(x \circ y) \in Z(R)$ (ii) $F([x, y])+b \alpha(x \circ y) \in Z(R)$ (iii) $F(x \circ y)-b \alpha([x, y]) \in Z(R)$ (iv) $F(x \circ y)+b \alpha([x, y]) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$ then R is commutative. Also some related results have been obtained.

1. Introduction

In all that follows, unless stated otherwise, R will be an associative ring with the center $Z(R), \alpha, \beta$ be the automorphisms of R, λ a left ideal of R. For any $x, y \in R$, the symbols $[x, y]$ and $x \circ y$ stand for the Lie commutator $x y-y x$ and Jordan commutator $x y+y x$, respectively. A ring R is called 2 -torsion free, if whenever $2 a=0$, with $a \in R$, then $a=0$. If $S \subseteq R$, then we can define the left (resp. right) annihilator of S as $l(S)=\{x \in R \mid x s=0$ for all $s \in S\}($ resp. $r(S)=\{x \in R \mid s x=0$ for all $s \in S\})$.

Recall that a ring R is prime if for any $x, y \in R, x R y=\{0\}$ implies $x=0$ or $y=0$, and is semiprime if for any $x \in R, x R x=\{0\}$ implies $x=0$. An additive subgroup L of R is said to be a Lie ideal of R if $[u, r] \in L$ for all $u \in L$ and $r \in R$, and a Lie ideal L is called square-closed if $u^{2} \in L$ for all $u \in L$. By a derivation, we mean an additive mapping $d: R \longrightarrow R$ such that $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. Let α and β be automorphisms of R, an additive mapping $d: R \longrightarrow R$ is said to be an (α, β)-derivation if $d(x y)=d(x) \alpha(y)+\beta(x) d(y)$ holds for all $x, y \in R$. Following [1], an additive mapping $F: R \longrightarrow R$ is called a generalized (α, β)-derivation on R if there exists an (α, β) derivation $d: R \longrightarrow R$ such that $F(x y)=F(x) \alpha(y)+\beta(x) d(y)$ holds for all $x, y \in R$. Note that for I_{R} the identity map on R, this notion includes those of (α, β)-derivation when $F=d$, derivation when $F=d$ and $\alpha=\beta=I_{R}$ and generalized derivation, which is the case when $\alpha=\beta=I_{R}$.

Many results indicate that the global structure of a ring R is often tightly connected to the behaviour of additive mappings defined on R. A well known result of Posner [10] states that if R is a prime ring and d a non-zero derivation of R such that $[d(x), x] \in Z(R)$ for all $x \in R$, then R must be commutative. Over the last few decades, several authors

[^0]have investigated the relationship between the commutativity of the ring R and certain specific types of derivations of R (see [3], [4], [5] and [7] where further references can be found).

Daif and Bell [6] showed that if in a semiprime ring R there exists a nonzero ideal I of R and a derivation d such that $d([x, y])-[x, y]=0$ or $d([x, y])+[x, y]=0$ for all $x, y \in I$, then $I \subseteq Z(R)$. In particular, if $I=R$ then R is commutative. At this point the natural question is what happens in case the derivation is replaced by a generalized derivation. In [11], Quadri et al., proved that if R is a prime ring, I a nonzero ideal of R and F a generalized derivation associated with a nonzero derivation d such that any one of the following holds: $(i) F([x, y])-[x, y]=0(i i) F([x, y])+[x, y]=0(i i i) F(x \circ y)-x \circ y=$ 0 (iv) $F(x \circ y)+x \circ y=0$ for all $x, y \in I$, then R is commutative. Following this line of investigation, Asma Ali, D. Kumar and P. Miyan [1], explored the commutativity of a prime ring R admitting a generalized derivation F satisfying any one of the following conditions: $(i) F([x, y])-[x, y] \in Z(R)(i i) F([x, y])+[x, y] \in Z(R)(i i i) F(x \circ y)-x \circ y \in$ $Z(R)(i v) F(x \circ y)+x \circ y \in Z(R)$ for all $x, y \in I$, a nonzero right ideal of R. On the other hand, Marubayashi et al.[8], established that if a 2-torsion free prime ring R admits a nonzero generalized (α, β)-derivation F associated with an (α, β)-derivation d such that either $F([u, v])=0$ or $F(u \circ v)=0$ for all $u, v \in U$, where U is a nonzero square-closed Lie ideal of R, then $U \subseteq Z(R)$. In the present paper, our purpose is to prove the similar results for the case when the generalized (α, β)-derivation F acts on one sided ideal of R.

2. Main results

Throughout the present paper we shall make use of the following identities without any specific mention: For all $x, y, z \in R$
(i) $[x y, z]=x[y, z]+[x, z] y$,
(ii) $[x, y z]=y[x, z]+[x, y] z$,
(iii) $x o(y z)=(x o y) z-y[x, z]=y(x o z)+[x, y] z$,
(iv) $(x y) o z=x(y o z)-[x, z] y=(x o z) y+x[y, z]$.

Theorem 2.1. Let R be a prime ring with center $Z(R)$ and λ a nonzero left ideal of R. Suppose that R admits a generalized (α, β)-derivation F associated with a nonzero (α, β) derivation d such that $d(Z(R)) \neq(0)$. If $F([x, y])-b \alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then R is commutative.

Proof. It is easy to check that $d(Z(R)) \subseteq Z(R)$. Since $d(Z(R)) \neq(0)$, there exists $0 \neq a \in$ $Z(R)$ such that $0 \neq d(a) \in Z(R)$. By assumption, we have

$$
\begin{equation*}
F([x, y])-b \alpha(x \circ y) \in Z(R) \text { for all } x, y \in \lambda \tag{2.1}
\end{equation*}
$$

Replacing y by ay in (2.1), we get

$$
\begin{equation*}
(F([x, y])-b \alpha(x \circ y)) \alpha(a)+\beta([x, y]) d(a) \in Z(R) \text { for all } x, y \in \lambda \tag{2.2}
\end{equation*}
$$

Combining equation (2.1) and (2.2) and using the fact $\alpha(a) \in Z(R)$, we get $\beta([x, y]) d(a) \in$ $Z(R)$, which implies that $[\beta([x, y]) d(a), r]=0=[\beta([x, y]), r] d(a)$ for all $x, y \in \lambda$ and $r \in R$. Since R is prime and $0 \neq d(a) \in Z(R)$, we have

$$
\begin{equation*}
[\beta([x, y]), r]=0 \text { for all } x, y \in \lambda ; r \in R . \tag{2.3}
\end{equation*}
$$

Replacing y by $y x$ in (2.3) and using (2.3), we get

$$
\begin{equation*}
\beta([x, y])[\beta(x), r]=0 \text { for all } x, y \in \lambda ; r \in R \tag{2.4}
\end{equation*}
$$

Replacing r by $r \beta(s)$ in (2.4) and using (2.4), we arrive at $\beta([x, y]) r[\beta(x), \beta(s)]=0$ for all $x, y \in \lambda$ and $r, s \in R$. The primeness of R yields that for each $x \in \lambda$, either $\beta([x, y])=0$ or $[\beta(x), \beta(s)]=0$. Equivalently, either $[x, \lambda]=0$ or $[x, R]=0$. Set $\lambda_{1}=\{x \in \lambda \mid[x, \lambda]=0\}$ and $\lambda_{2}=\{x \in \lambda \mid[x, R]=0\}$. Then, λ_{1} and λ_{2} are both additive subgroups of λ such that $\lambda=\lambda_{1} \cup \lambda_{2}$. Thus, by Brauer's trick, we have either $\lambda=\lambda_{1}$ or $\lambda=\lambda_{2}$. If $\lambda=\lambda_{1}$, then $[\lambda, \lambda]=0$, and if $\lambda=\lambda_{2}$, then $[\lambda, R]=0$. In both cases, we conclude that λ is commutative and so, by a result of [9], R is commutative.

Using similar arguments as used in the above theorem, we can prove the following:
Theorem 2.2. Let R be a prime ring with center $Z(R)$ and λ a nonzero left ideal of R. Suppose that R admits a generalized (α, β)-derivation F associated with a nonzero (α, β) derivation d such that $d(Z(R)) \neq(0)$. If $F([x, y])-b \alpha([x, y]) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then R is commutative.

Corollary 2.1. Let R be a prime ring with center $Z(R)$ and λ a nonzero left ideal of R. Suppose that R admits a generalized (α, β)-derivation F associated with a nonzero (α, β) derivation d such that $d(Z(R)) \neq(0)$. If $F(x y)-b \alpha(x y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then R is commutative.

Proof. For any $x, y \in \lambda$, we have $F(x y)-b \alpha(x y) \in Z(R)$. Interchanging the role of x and y, we have $F(y x)-b \alpha(y x) \in Z(R)$. Therefore we have that $(F(x y)-\alpha(x y))-(F(y x)-$ $\alpha(y x)) \in Z(R)$ that is $F([x, y])-b \alpha([x, y] \in Z(R)$ and hence the result follows.
Theorem 2.3. Let R be a prime ring with center $Z(R)$ and λ a nonzero left ideal of R. Suppose that R admits a generalized (α, β)-derivation F associated with a nonzero (α, β) derivation d such that $d(Z(R)) \neq(0)$. If $F([x, y])+b \alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then R is commutative.

Proof. If $F([x, y])+b \alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$, then the generalized (α, β)-derivation $-F$ satisfies the condition $F([x, y])-b \alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$. It follows from Theorem 2.1 that R is commutative.

Theorem 2.4. Let R be a prime ring with center $Z(R)$ and λ a nonzero left ideal of R. Suppose that R admits a generalized (α, β)-derivation F associated with a nonzero (α, β) derivation d such that $d(Z(R)) \neq(0)$. If $F(x \circ y)-b \alpha([x, y]) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then R is commutative.
Proof. By assumption We have that

$$
\begin{equation*}
F(x \circ y)-b \alpha([x, y]) \in Z(R) \text { for all } x, y \in \lambda . \tag{2.5}
\end{equation*}
$$

Since $d(Z(R)) \neq(0)$, there exists $0 \neq c \in Z(R)$ such that $0 \neq d(c) \in Z(R)$.
Replacing y by $c y$ in (2.5), we get

$$
\begin{equation*}
(F(x \circ y)-\alpha([x, y]) \alpha(c)+\beta(x \circ y) d(c) \in Z(R) \text { for all } x, y \in \lambda . \tag{2.6}
\end{equation*}
$$

Combining (2.5) and (2.6), we find that $\beta(x \circ y) d(c) \in Z(R)$ and hence $\beta(x \circ y) \in Z(R)$. This implies that

$$
\begin{equation*}
[\beta(x \circ y), r]=0 \text { for all } x, y \in \lambda ; r \in R \tag{2.7}
\end{equation*}
$$

Replacing $y x$ for y in (2.7) and using (2.7), we have

$$
\begin{equation*}
\beta(x \circ y)[\beta(x), r]=0 \text { for all } x, y \in \lambda ; r \in R . \tag{2.8}
\end{equation*}
$$

Replacing r by $r \beta(s)$ in (2.8) and using (2.8), we have $\beta(x \circ y) r[\beta(x), \beta(s)]=0$ for all $x, y \in \lambda$ and $r, s \in R$. The primeness of R yields that for each $x \in \lambda$, either $\beta(x \circ y)=0$ or $[\beta(x), \beta(s)]=0$. Now applying similar arguments as used in the proof of Theorem 2.1, we have either $x \circ y=0$ for all $x, y \in \lambda$; or $[\lambda, R]=0$. In the former case, replacing x by
$x z$ and using the fact $x \circ y=0$ we find $[x, y] z=0$ for all $x, y, z \in \lambda$. This implies that $[x, y] \lambda=0$ and hence $[x, y] R \lambda=0$. Since λ is a nonzero left ideal and R is prime, we get $[\lambda, \lambda]=0$. Thus, λ is commutative and so R. In the latter case, we have $[\lambda, R]=0$, in particular $[\lambda, \lambda]=0$ and hence we get the required result.

Using similar arguments as above with necessary variations, we can prove the following:
Theorem 2.5. Let R be a prime ring with center $Z(R)$ and λ a nonzero left ideal of R. Suppose that R admits a generalized (α, β)-derivation F associated with a nonzero (α, β) derivation d such that $d(Z(R)) \neq(0)$. If $F(x \circ y)-b \alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then R is commutative.
Theorem 2.6. Let R be a prime ring with center $Z(R)$ and λ a nonzero left ideal of R. Suppose that R admits a generalized (α, β)-derivation F associated with a nonzero (α, β) derivation d such that $d(Z(R)) \neq(0)$. If $F(x \circ y)+b \alpha([x, y]) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then R is commutative.

Proof. If $F(x \circ y)+b \alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$, then the generalized (α, β)-derivation $-F$ satisfies the condition $F(x \circ y)-b \alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$. It follows from Theorem 2.4 that R is commutative.
Theorem 2.7. Let R be a prime ring with center $Z(R)$ and λ a nonzero left ideal of R. Suppose that R admits a generalized (α, β)-derivation F associated with a nonzero (α, β) derivation d such that $d(Z(R)) \neq(0)$. If $F(x \circ y)+b \alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then R is commutative.
Corollary 2.2. Let R be a prime ring with center $Z(R)$ and λ a nonzero left ideal of R. Suppose that R admits a generalized (α, β)-derivation F associated with a nonzero (α, β) derivation d such that $d(Z(R)) \neq(0)$. If $F(x y)+b \alpha(x y) \in Z(R)$ for all $x, y \in \lambda$ and $b \in\{0,1,-1\}$, then R is commutative.
Proof. For any $x, y \in \lambda$, we have $F(x y)+b \alpha(x y) \in Z(R)$. Interchanging the role of x and y, we have $F(y x)+b \alpha(y x) \in Z(R)$. Therefore we have that $(F(x y)+b \alpha(x y))+(F(y x)+$ $b \alpha(y x)) \in Z(R)$ that is $F(x \circ y)+b \alpha(x \circ y) \in Z(R)$ and hence the result follows.
Theorem 2.8. Let R be a prime ring and λ a nonzero left ideal of R such that $r(\lambda)=0$. If R admits a generalized (α, β)-derivation F associated with a nonzero (α, β)-derivation d such that $F(\alpha([x, y]))=0$ for all $x, y \in \lambda$, then R is commutative.
Proof. By assumption, we have

$$
\begin{equation*}
F(\alpha([x, y]))=0 \text { for all } x, y \in \lambda \tag{2.9}
\end{equation*}
$$

Replacing y by $y x$ in (2.9) and using (2.9), we get $\beta \alpha([x, y]) d(\alpha(x)=0$, which implies

$$
\begin{equation*}
[x, y] \alpha^{-1} \beta^{-1}(d(\alpha(x)))=0 \text { for all } x, y \in \lambda . \tag{2.10}
\end{equation*}
$$

Now substituting $r y$ for y in (2.10) and using (2.10), we obtain $[x, r] y \alpha^{-1} \beta^{-1}(d(\alpha(x))=$ 0 for all $x, y \in \lambda$ and $r \in R$. In particular, $[x, R] R \lambda \alpha^{-1} \beta^{-1}(d(\alpha(x)))=0$ for all $x \in \lambda$. The primeness of R yields that for each $x \in \lambda$, either $[x, R]=0$ or $\lambda \alpha^{-1} \beta^{-1}(d(\alpha(x)))=0$, in this case $d(\alpha(x))=0$. In view of similar arguments as used in the proof of Theorem 2.1, we have either $[\lambda, R]=0$ or $d(\alpha(\lambda))=0$. If $[\lambda, R]=0$, then λ is commutative and we are done. If $d(\alpha(\lambda))=0$, then $0=d(\alpha(R \lambda))=d(\alpha(R)) \alpha^{2}(\lambda)+\beta(\alpha(R)) d(\alpha(\lambda))$, which reduces to $d(\alpha(R)) \alpha^{2}(\lambda)=0$. And hence $d(\alpha(R)) \alpha^{2}(R \lambda)=0=d(\alpha(R)) \alpha^{2}(R) \alpha^{2}(\lambda)=$ $d(\alpha(R)) R \alpha^{2}(\lambda)$. Since λ is nonzero and the last relation forces that $d(\alpha(R))=0$ i.e $d=0$, contradiction.

Using the same techniques with necessary variations, we can prove the following:
Theorem 2.9. Let R be a prime ring and λ a nonzero left ideal of R such that $r(\lambda)=0$. If R admits a generalized (α, β)-derivation F associated with a nonzero (α, β)-derivation d such that $F(\alpha(x \circ y))=0$ for all $x, y \in \lambda$, then R is commutative.

Corollary 2.3. Let R be a prime ring and λ a nonzero left ideal of R such that $r(\lambda)=0$. If R admits a generalized (α, β)-derivation F associated with a nonzero (α, β)-derivation d such that $F\left(\alpha\left(x^{2}\right)\right)=0$ for all $x, y \in \lambda$, then R is commutative.
Proof. By our assumption, we have

$$
\begin{equation*}
F\left(\alpha\left(x^{2}\right)\right)=0 \text { for all } x \in \lambda \tag{2.11}
\end{equation*}
$$

Linearization of the above equation (2.11) and using equation (2.11), we have

$$
\begin{equation*}
F(\alpha(x \circ y))=0 \text { for all } x, y \in \lambda \tag{2.12}
\end{equation*}
$$

By the Theorem 2.9, we get the result.
The following example illustrates that R to be prime is essential in the hypothesis of Theorem 2.2, Theorem 2.3, Theorem 2.6 and Theorem 2.8.

Example 2.1. Let $R=\left\{\left.\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b, c \in S\right\}$ and $\lambda=\left\{\left.\left(\begin{array}{ccc}0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b \in S\right\}$, a nonzero left ideal of R, where S is any ring. Define maps $F, d, \alpha, \beta: R \longrightarrow R$ as follows:

$$
\begin{aligned}
F\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & 0 & -c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), d\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
\alpha\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & -a & b \\
0 & 0 & -c \\
0 & 0 & 0
\end{array}\right) \text { and } \beta\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & -a & b \\
0 & 0 & -c \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Then, it is straightforward to check that F is a generalized (α, β)-derivation associated with a nonzero (α, β)-derivation d such that $d(Z(R)) \neq(0)$.

It is easy to see that
(i) $F([x, y])-b \alpha([x, y]) \in Z(R)$,
(ii) $F([x, y])+b \alpha([x, y]) \in Z(R)$,
(iii) $F(x \circ y)-b \alpha(x \circ y) \in Z(R)(i v) F(x \circ y)+b \alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, however R is not commutative.

References

[1] Ali, A.; Kumar, D.; Miyan, P. On generalized derivations and commutativity of prime ang semiprime rings. Hacettepe J. Math. Statistics 40 (2011), 367-374.
[2] Ashraf, M.; Ali, A.; Ali, S. On Lie ideals and generalized (θ, ϕ)-derivations in prime rings. Comm. Algebra 32 (2004), 2977-2985.
[3] Ashraf, M.; Rehman, N. On commutativity of rings with derivations. Results Math. 42 (2002), 3-8.
[4] Bell, H. E.; Daif, M. N. On commutativity and strong commutativity-preserving maps Canad. Math. Bull. 37 (1994), 443-447.
[5] Bell, H. E.; Daif, M. N. On derivations and commutativity in prime rings. Acta. Math. Hungerica 66 (1995), 337-343.
[6] Daif, M. N.; Bell, H. E. Remarks on derivations on semiprime rings. Int. J. Math. \& Math. Sci. 15 (1992), 205-206.
[7] Golbasi, O. Commutativity of semiprime rings with genearlized derivations. Indian J. Pure appl. Math. 40 (2009), 191-199.
[8] Marubayashi, H.; Ashraf, M.; Rehman, N.; Ali, S. On generalized (α, β)-derivations in prime rings. Algebra Colloquium 17 (2010), 865-874
[9] Mayne, J. H. Centralizing mappings of prime rings. Canad. Math. Bull. 27 (1984), 122-126.
[10] Posner, E. C. Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[11] Quadri, M. A.; Khan, M. S.; Rehman, N. Generalized derivations and commutativity of prime rings. Indian J. Pure Appl. Math. 34 (2003), 1393-1396.

Department of Mathematics
Aligarh Muslim University
Aligarh-202002, INDIA
Email address: rahamanhamidmath@gmail.com

[^0]: Received: 30.05.2020. In revised form: 03.04.2021. Accepted: 10.04.2021
 2010 Mathematics Subject Classification. 16W25, 16R50, 16N60.
 Key words and phrases. Prime and semiprime rings, generalized (α, β)-derivations, (α, β)-derivations, automorphisms and ideals.

