CREAT. MATH. INFORM. Volume **30** (2021), No. 2, Pages 197 - 202 Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2021.02.10

Special issue "30 years of publication of CMI

Generalized $(\alpha,\beta)\text{-derivations}$ and left I deals in Prime Rings

MD HAMIDUR RAHAMAN

ABSTRACT. Let *R* be a prime ring with center Z(R), λ a nonzero left ideal, α , β are automorphisms of *R* and *R* admits a generalized (α , β)-derivation *F* associated with a nonzero (α , β)-derivation *d* such that $d(Z(R)) \neq (0)$. In the present paper, we prove that if any one of the following holds:

(i) $F([x,y]) - b\alpha(x \circ y) \in Z(R)$

(*ii*) $F([x, y]) + b\alpha(x \circ y) \in Z(R)$

 $(iii)\;F(x\circ y)-b\alpha([x,y])\in Z(R)$

 $(iv) \ F(x \circ y) + b\alpha([x, y]) \in Z(R)$

for all $x, y \in \lambda$ and for some $b \in R$ then R is commutative. Also some related results have been obtained.

1. INTRODUCTION

In all that follows, unless stated otherwise, R will be an associative ring with the center Z(R), α , β be the automorphisms of R, λ a left ideal of R. For any $x, y \in R$, the symbols [x, y] and $x \circ y$ stand for the Lie commutator xy - yx and Jordan commutator xy + yx, respectively. A ring R is called 2-torsion free, if whenever 2a = 0, with $a \in R$, then a = 0. If $S \subseteq R$, then we can define the left (resp. right) annihilator of S as $l(S) = \{x \in R \mid xs = 0 \text{ for all } s \in S\}$ (resp. $r(S) = \{x \in R \mid sx = 0 \text{ for all } s \in S\}$).

Recall that a ring R is prime if for any $x, y \in R$, $xRy = \{0\}$ implies x = 0 or y = 0, and is semiprime if for any $x \in R$, $xRx = \{0\}$ implies x = 0. An additive subgroup Lof R is said to be a Lie ideal of R if $[u, r] \in L$ for all $u \in L$ and $r \in R$, and a Lie ideal L is called square-closed if $u^2 \in L$ for all $u \in L$. By a derivation, we mean an additive mapping $d : R \longrightarrow R$ such that d(xy) = d(x)y + xd(y) for all $x, y \in R$. Let α and β be automorphisms of R, an additive mapping $d : R \longrightarrow R$ is said to be an (α, β) -derivation if $d(xy) = d(x)\alpha(y) + \beta(x)d(y)$ holds for all $x, y \in R$. Following [1], an additive mapping $F : R \longrightarrow R$ is called a generalized (α, β) -derivation on R if there exists an (α, β) derivation $d : R \longrightarrow R$ such that $F(xy) = F(x)\alpha(y) + \beta(x)d(y)$ holds for all $x, y \in R$. Note that for I_R the identity map on R, this notion includes those of (α, β) -derivation when F = d, derivation when F = d and $\alpha = \beta = I_R$ and generalized derivation, which is the case when $\alpha = \beta = I_R$.

Many results indicate that the global structure of a ring R is often tightly connected to the behaviour of additive mappings defined on R. A well known result of Posner [10] states that if R is a prime ring and d a non-zero derivation of R such that $[d(x), x] \in Z(R)$ for all $x \in R$, then R must be commutative. Over the last few decades, several authors

Received: 30.05.2020. In revised form: 03.04.2021. Accepted: 10.04.2021

²⁰¹⁰ Mathematics Subject Classification. 16W25, 16R50, 16N60.

Key words and phrases. Prime and semiprime rings, generalized (α, β) -derivations, (α, β) -derivations, automorphisms and ideals.

have investigated the relationship between the commutativity of the ring R and certain specific types of derivations of R (see [3], [4], [5] and [7] where further references can be found).

Daif and Bell [6] showed that if in a semiprime ring R there exists a nonzero ideal I of R and a derivation d such that d([x, y]) - [x, y] = 0 or d([x, y]) + [x, y] = 0 for all $x, y \in I$. then $I \subseteq Z(R)$. In particular, if I = R then R is commutative. At this point the natural question is what happens in case the derivation is replaced by a generalized derivation. In [11], Quadri et al., proved that if R is a prime ring, I a nonzero ideal of R and F a generalized derivation associated with a nonzero derivation d such that any one of the following holds: (i) F([x, y]) - [x, y] = 0 (ii) F([x, y]) + [x, y] = 0 (iii) $F(x \circ y) - x \circ y = 0$ 0 (iv) $F(x \circ y) + x \circ y = 0$ for all $x, y \in I$, then R is commutative. Following this line of investigation, Asma Ali, D. Kumar and P. Miyan [1], explored the commutativity of a prime ring R admitting a generalized derivation F satisfying any one of the following conditions: (i) $F([x,y]) - [x,y] \in Z(R)$ (ii) $F([x,y]) + [x,y] \in Z(R)$ (iii) $F(x \circ y) - x \circ y \in Z(R)$ Z(R) (iv) $F(x \circ y) + x \circ y \in Z(R)$ for all $x, y \in I$, a nonzero right ideal of R. On the other hand, Marubavashi et al.[8], established that if a 2-torsion free prime ring R admits a nonzero generalized (α , β)-derivation F associated with an (α , β)-derivation d such that either F([u, v]) = 0 or $F(u \circ v) = 0$ for all $u, v \in U$, where U is a nonzero square-closed Lie ideal of R, then $U \subseteq Z(R)$. In the present paper, our purpose is to prove the similar results for the case when the generalized (α, β) -derivation F acts on one sided ideal of R.

2. MAIN RESULTS

Throughout the present paper we shall make use of the following identities without any specific mention: For all $x, y, z \in R$

(i) [xy, z] = x[y, z] + [x, z]y, (ii) [x, yz] = y[x, z] + [x, y]z, (iii) xo(yz) = (xoy)z - y[x, z] = y(xoz) + [x, y]z, (iv) (xy)oz = x(yoz) - [x, z]y = (xoz)y + x[y, z].

Theorem 2.1. Let *R* be a prime ring with center Z(R) and λ a nonzero left ideal of *R*. Suppose that *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $d(Z(R)) \neq (0)$. If $F([x, y]) - b\alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then *R* is commutative.

Proof. It is easy to check that $d(Z(R)) \subseteq Z(R)$. Since $d(Z(R)) \neq (0)$, there exists $0 \neq a \in Z(R)$ such that $0 \neq d(a) \in Z(R)$. By assumption, we have

$$F([x,y]) - b\alpha(x \circ y) \in Z(R) \text{ for all } x, y \in \lambda.$$
(2.1)

Replacing y by ay in (2.1), we get

$$(F([x,y]) - b\alpha(x \circ y))\alpha(a) + \beta([x,y])d(a) \in Z(R) \text{ for all } x, y \in \lambda.$$
(2.2)

Combining equation (2.1) and (2.2) and using the fact $\alpha(a) \in Z(R)$, we get $\beta([x, y])d(a) \in Z(R)$, which implies that $[\beta([x, y])d(a), r] = 0 = [\beta([x, y]), r]d(a)$ for all $x, y \in \lambda$ and $r \in R$. Since R is prime and $0 \neq d(a) \in Z(R)$, we have

$$[\beta([x,y]),r] = 0 \text{ for all } x, y \in \lambda; r \in R.$$
(2.3)

Replacing y by yx in (2.3) and using (2.3), we get

$$\beta([x,y])[\beta(x),r] = 0 \text{ for all } x, y \in \lambda; r \in R.$$
(2.4)

Replacing r by $r\beta(s)$ in (2.4) and using (2.4), we arrive at $\beta([x, y])r[\beta(x), \beta(s)] = 0$ for all $x, y \in \lambda$ and $r, s \in R$. The primeness of R yields that for each $x \in \lambda$, either $\beta([x, y]) = 0$ or $[\beta(x), \beta(s)] = 0$. Equivalently, either $[x, \lambda] = 0$ or [x, R] = 0. Set $\lambda_1 = \{x \in \lambda \mid [x, \lambda] = 0\}$ and $\lambda_2 = \{x \in \lambda \mid [x, R] = 0\}$. Then, λ_1 and λ_2 are both additive subgroups of λ such that $\lambda = \lambda_1 \cup \lambda_2$. Thus, by Brauer's trick, we have either $\lambda = \lambda_1$ or $\lambda = \lambda_2$. If $\lambda = \lambda_1$, then $[\lambda, \lambda] = 0$, and if $\lambda = \lambda_2$, then $[\lambda, R] = 0$. In both cases, we conclude that λ is commutative and so, by a result of [9], R is commutative.

Using similar arguments as used in the above theorem, we can prove the following:

Theorem 2.2. Let *R* be a prime ring with center Z(R) and λ a nonzero left ideal of *R*. Suppose that *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $d(Z(R)) \neq (0)$. If $F([x, y]) - b\alpha([x, y]) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then *R* is commutative.

Corollary 2.1. Let *R* be a prime ring with center Z(R) and λ a nonzero left ideal of *R*. Suppose that *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $d(Z(R)) \neq (0)$. If $F(xy) - b\alpha(xy) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then *R* is commutative.

Proof. For any $x, y \in \lambda$, we have $F(xy) - b\alpha(xy) \in Z(R)$. Interchanging the role of x and y, we have $F(yx) - b\alpha(yx) \in Z(R)$. Therefore we have that $(F(xy) - \alpha(xy)) - (F(yx) - \alpha(yx)) \in Z(R)$ that is $F([x, y]) - b\alpha([x, y] \in Z(R)$ and hence the result follows. \Box

Theorem 2.3. Let *R* be a prime ring with center Z(R) and λ a nonzero left ideal of *R*. Suppose that *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $d(Z(R)) \neq (0)$. If $F([x, y]) + b\alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then *R* is commutative.

Proof. If $F([x, y]) + b\alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$, then the generalized (α, β) -derivation -F satisfies the condition $F([x, y]) - b\alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$. It follows from Theorem 2.1 that R is commutative.

Theorem 2.4. Let *R* be a prime ring with center Z(R) and λ a nonzero left ideal of *R*. Suppose that *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $d(Z(R)) \neq (0)$. If $F(x \circ y) - b\alpha([x, y]) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then *R* is commutative.

Proof. By assumption We have that

$$F(x \circ y) - b\alpha([x, y]) \in Z(R) \text{ for all } x, y \in \lambda.$$
(2.5)

Since $d(Z(R)) \neq (0)$, there exists $0 \neq c \in Z(R)$ such that $0 \neq d(c) \in Z(R)$.

Replacing y by cy in (2.5), we get

$$(F(x \circ y) - \alpha([x, y])\alpha(c) + \beta(x \circ y)d(c) \in Z(R) \text{ for all } x, y \in \lambda.$$
(2.6)

Combining (2.5) and (2.6), we find that $\beta(x \circ y)d(c) \in Z(R)$ and hence $\beta(x \circ y) \in Z(R)$. This implies that

$$[\beta(x \circ y), r] = 0 \text{ for all } x, y \in \lambda; r \in R.$$
(2.7)

Replacing yx for y in (2.7) and using (2.7), we have

$$\beta(x \circ y)[\beta(x), r] = 0 \text{ for all } x, y \in \lambda; r \in R.$$
(2.8)

Replacing *r* by $r\beta(s)$ in (2.8) and using (2.8), we have $\beta(x \circ y)r[\beta(x), \beta(s)] = 0$ for all $x, y \in \lambda$ and $r, s \in R$. The primeness of *R* yields that for each $x \in \lambda$, either $\beta(x \circ y) = 0$ or $[\beta(x), \beta(s)] = 0$. Now applying similar arguments as used in the proof of Theorem 2.1, we have either $x \circ y = 0$ for all $x, y \in \lambda$; or $[\lambda, R] = 0$. In the former case, replacing *x* by

xz and using the fact $x \circ y = 0$ we find [x, y]z = 0 for all $x, y, z \in \lambda$. This implies that $[x, y]\lambda = 0$ and hence $[x, y]R\lambda = 0$. Since λ is a nonzero left ideal and R is prime, we get $[\lambda, \lambda] = 0$. Thus, λ is commutative and so R. In the latter case, we have $[\lambda, R] = 0$, in particular $[\lambda, \lambda] = 0$ and hence we get the required result.

Using similar arguments as above with necessary variations, we can prove the following:

Theorem 2.5. Let *R* be a prime ring with center Z(R) and λ a nonzero left ideal of *R*. Suppose that *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $d(Z(R)) \neq (0)$. If $F(x \circ y) - b\alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then *R* is commutative.

Theorem 2.6. Let *R* be a prime ring with center Z(R) and λ a nonzero left ideal of *R*. Suppose that *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $d(Z(R)) \neq (0)$. If $F(x \circ y) + b\alpha([x, y]) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then *R* is commutative.

Proof. If $F(x \circ y) + b\alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$, then the generalized (α, β) -derivation -F satisfies the condition $F(x \circ y) - b\alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$. It follows from Theorem 2.4 that R is commutative.

Theorem 2.7. Let *R* be a prime ring with center Z(R) and λ a nonzero left ideal of *R*. Suppose that *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $d(Z(R)) \neq (0)$. If $F(x \circ y) + b\alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, then *R* is commutative.

Corollary 2.2. Let *R* be a prime ring with center Z(R) and λ a nonzero left ideal of *R*. Suppose that *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $d(Z(R)) \neq (0)$. If $F(xy) + b\alpha(xy) \in Z(R)$ for all $x, y \in \lambda$ and $b \in \{0, 1, -1\}$, then *R* is commutative.

Proof. For any $x, y \in \lambda$, we have $F(xy) + b\alpha(xy) \in Z(R)$. Interchanging the role of x and y, we have $F(yx) + b\alpha(yx) \in Z(R)$. Therefore we have that $(F(xy) + b\alpha(xy)) + (F(yx) + b\alpha(yx)) \in Z(R)$ that is $F(x \circ y) + b\alpha(x \circ y) \in Z(R)$ and hence the result follows. \Box

Theorem 2.8. Let *R* be a prime ring and λ a nonzero left ideal of *R* such that $r(\lambda) = 0$. If *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $F(\alpha([x, y])) = 0$ for all $x, y \in \lambda$, then *R* is commutative.

Proof. By assumption, we have

$$F(\alpha([x, y])) = 0 \text{ for all } x, y \in \lambda.$$
(2.9)

Replacing *y* by *yx* in (2.9) and using (2.9) , we get $\beta \alpha([x, y])d(\alpha(x) = 0)$, which implies

$$[x, y]\alpha^{-1}\beta^{-1}(d(\alpha(x))) = 0 \text{ for all } x, y \in \lambda.$$
(2.10)

Now substituting ry for y in (2.10) and using (2.10), we obtain $[x, r]y\alpha^{-1}\beta^{-1}(d(\alpha(x))) = 0$ for all $x, y \in \lambda$ and $r \in R$. In particular, $[x, R]R\lambda\alpha^{-1}\beta^{-1}(d(\alpha(x))) = 0$ for all $x \in \lambda$. The primeness of R yields that for each $x \in \lambda$, either [x, R] = 0 or $\lambda\alpha^{-1}\beta^{-1}(d(\alpha(x))) = 0$, in this case $d(\alpha(x)) = 0$. In view of similar arguments as used in the proof of Theorem 2.1, we have either $[\lambda, R] = 0$ or $d(\alpha(\lambda)) = 0$. If $[\lambda, R] = 0$, then λ is commutative and we are done. If $d(\alpha(\lambda)) = 0$, then $0 = d(\alpha(R\lambda)) = d(\alpha(R))\alpha^2(\lambda) + \beta(\alpha(R))d(\alpha(\lambda))$, which reduces to $d(\alpha(R))\alpha^2(\lambda) = 0$. And hence $d(\alpha(R))\alpha^2(R\lambda) = 0 = d(\alpha(R))\alpha^2(R)\alpha^2(\lambda) = d(\alpha(R))R\alpha^2(\lambda)$. Since λ is nonzero and the last relation forces that $d(\alpha(R)) = 0$ i.e. d = 0, contradiction.

Using the same techniques with necessary variations, we can prove the following:

Theorem 2.9. Let *R* be a prime ring and λ a nonzero left ideal of *R* such that $r(\lambda) = 0$. If *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $F(\alpha(x \circ y)) = 0$ for all $x, y \in \lambda$, then *R* is commutative.

Corollary 2.3. Let *R* be a prime ring and λ a nonzero left ideal of *R* such that $r(\lambda) = 0$. If *R* admits a generalized (α, β) -derivation *F* associated with a nonzero (α, β) -derivation *d* such that $F(\alpha(x^2)) = 0$ for all $x, y \in \lambda$, then *R* is commutative.

Proof. By our assumption, we have

$$F(\alpha(x^2)) = 0 \text{ for all } x \in \lambda.$$
(2.11)

Linearization of the above equation (2.11) and using equation (2.11), we have

$$F(\alpha(x \circ y)) = 0 \text{ for all } x, y \in \lambda.$$
(2.12)

By the Theorem 2.9, we get the result.

The following example illustrates that *R* to be prime is essential in the hypothesis of Theorem 2.2, Theorem 2.3, Theorem 2.6 and Theorem 2.8.

Example 2.1. Let
$$R = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} | a, b, c \in S \right\}$$
 and $\lambda = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} | a, b \in S \right\}$,

a nonzero left ideal of R, where S is any ring. Define maps F, $d, \alpha, \beta : R \longrightarrow R$ as follows:

$$F\left(\begin{array}{cc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 & -c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \ d\left(\begin{array}{cc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & -a & b \\ 0 & 0 & -c \\ 0 & 0 & 0 \end{array}\right)$$
$$\alpha\left(\begin{array}{cc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & -a & b \\ 0 & 0 & -c \\ 0 & 0 & 0 \end{array}\right) \text{ and } \beta\left(\begin{array}{cc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & -a & b \\ 0 & 0 & -c \\ 0 & 0 & 0 \end{array}\right).$$

Then, it is straightforward to check that *F* is a generalized (α, β) -derivation associated with a nonzero (α, β) -derivation *d* such that $d(Z(R)) \neq (0)$.

It is easy to see that

- (i) $F([x,y]) b\alpha([x,y]) \in Z(R)$,
- (ii) $F([x, y]) + b\alpha([x, y]) \in Z(R)$,
- (iii) $F(x \circ y) b\alpha(x \circ y) \in Z(R)$ (*iv*) $F(x \circ y) + b\alpha(x \circ y) \in Z(R)$ for all $x, y \in \lambda$ and for some $b \in R$, however R is not commutative.

REFERENCES

- Ali, A.; Kumar, D.; Miyan, P. On generalized derivations and commutativity of prime ang semiprime rings. *Hacettepe J. Math. Statistics* 40 (2011), 367–374.
- [2] Ashraf, M.; Ali, A.; Ali, S. On Lie ideals and generalized (θ , ϕ)-derivations in prime rings. *Comm. Algebra* **32** (2004), 2977–2985.
- [3] Ashraf, M.; Rehman, N. On commutativity of rings with derivations. Results Math. 42 (2002), 3-8.
- [4] Bell, H. E.; Daif, M. N. On commutativity and strong commutativity-preserving maps Canad. Math. Bull. 37 (1994), 443–447.
- [5] Bell, H. E.; Daif, M. N. On derivations and commutativity in prime rings. Acta. Math. Hungerica 66 (1995), 337–343.

Md Hamidur Rahaman

- [6] Daif, M. N.; Bell, H. E. Remarks on derivations on semiprime rings. Int. J. Math. & Math. Sci. 15 (1992), 205–206.
- [7] Golbasi, O. Commutativity of semiprime rings with genearlized derivations. Indian J. Pure appl. Math. 40 (2009), 191–199.
- [8] Marubayashi, H.; Ashraf, M.; Rehman, N.; Ali, S. On generalized (α, β)-derivations in prime rings. Algebra Colloquium 17 (2010), 865–874
- [9] Mayne, J. H. Centralizing mappings of prime rings. Canad. Math. Bull. 27 (1984), 122-126.
- [10] Posner, E. C. Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [11] Quadri, M. A.; Khan, M. S.; Rehman, N. Generalized derivations and commutativity of prime rings. *Indian J. Pure Appl. Math.* 34 (2003), 1393–1396.

DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH-202002, INDIA Email address: rahamanhamidmath@gmail.com

202