Special issue " 30 years of publication of CMI

Balcobalancing numbers and balcobalancers

Ahmet Tekcan and Meryem Yildiz

ABSTRACT. In this work, we determine the general terms of balcobalancing numbers, balcobalancers and also Lucas-balcobalancing numbers in terms of balancing numbers. Further we formulate the sums of these numbers and derive some relations associated with Pell, Pell-Lucas and square triangular numbers.

1. Introduction

A positive integer n is called a balancing number ([2]) if the Diophantine equation

$$
\begin{equation*}
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r) \tag{1.1}
\end{equation*}
$$

holds for some positive integer r which is called balancer corresponding to n. If n is a balancing number with balancer r, then from (1.1)

$$
\begin{equation*}
r=\frac{-2 n-1+\sqrt{8 n^{2}+1}}{2} . \tag{1.2}
\end{equation*}
$$

From (1.2) we note that n is a balancing number if and only if $8 n^{2}+1$ is a perfect square. Though the definition of balancing numbers suggests that no balancing number should be less than 2. But from (1.2) we note that $8(0)^{2}+1=1$ and $8(1)^{2}+1=3^{2}$ are perfect squares. So we accept 0 and 1 to be balancing numbers. Let B_{n} denote the $n^{\text {th }}$ balancing number. Then $B_{0}=0, B_{1}=1, B_{2}=6$ and $B_{n+1}=6 B_{n}-B_{n-1}$ for $n \geq 2$.

Later Panda and Ray ([12]) defined that a positive integer n is called a cobalancing number if the Diophantine equation

$$
\begin{equation*}
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r) \tag{1.3}
\end{equation*}
$$

holds for some positive integer r which is called cobalancer corresponding to n. If n is a cobalancing number with cobalancer r, then from (1.3)

$$
\begin{equation*}
r=\frac{-2 n-1+\sqrt{8 n^{2}+8 n+1}}{2} . \tag{1.4}
\end{equation*}
$$

From (1.4) we note that n is a cobalancing number if and only if $8 n^{2}+8 n+1$ is a perfect square. Since $8(0)^{2}+8(0)+1=1$ is a perfect square, we accept 0 to be a cobalancing number, just like Behera and Panda accepted 0,1 to be balancing numbers. Cobalancing number is denoted by b_{n}, and $b_{0}=b_{1}=0, b_{2}=2$ and $b_{n+1}=6 b_{n}-b_{n-1}+2$ for $n \geq 2$.

It is clear from (1.1) and (1.3) that every balancing number is a cobalancer and every cobalancing number is a balancer, that is, $B_{n}=r_{n+1}$ and $R_{n}=b_{n}$ for $n \geq 1$, where R_{n} is

[^0]the $n^{\text {th }}$ the balancer and r_{n} is the $n^{\text {th }}$ cobalancer. Since $R_{n}=b_{n}$, we get from (1.1) that
\[

$$
\begin{equation*}
b_{n}=\frac{-2 B_{n}-1+\sqrt{8 B_{n}^{2}+1}}{2} \text { and } B_{n}=\frac{2 b_{n}+1+\sqrt{8 b_{n}^{2}+8 b_{n}+1}}{2} \tag{1.5}
\end{equation*}
$$

\]

Thus from (1.5), we see that B_{n} is a balancing number if and only if $8 B_{n}^{2}+1$ is a perfect square and b_{n} is a cobalancing number if and only if $8 b_{n}^{2}+8 b_{n}+1$ is a perfect square. So

$$
\begin{equation*}
C_{n}=\sqrt{8 B_{n}^{2}+1} \text { and } c_{n}=\sqrt{8 b_{n}^{2}+8 b_{n}+1} \tag{1.6}
\end{equation*}
$$

are integers which are called the Lucas-balancing number and Lucas-cobalancing number, respectively.

Let $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$ be the roots of the characteristic equation for Pell and Pell-Lucas numbers which are the numbers defined by $P_{0}=0, P_{1}=1, P_{n}=2 P_{n-1}+P_{n-2}$ and $Q_{0}=Q_{1}=2, Q_{n}=2 Q_{n-1}+Q_{n-2}$ for $n \geq 2$. Ray ([16]) derived some nice results on balancing numbers and Pell numbers his Phd thesis. Since x is a balancing number if and only if $8 x^{2}+1$ is a perfect square, he set $8 x^{2}+1=y^{2}$ for some integer $y \geq 1$. Then $y^{2}-8 x^{2}=$ 1 which is a Pell equation ($[1,3,9]$). The fundamental solution is $\left(y_{1}, x_{1}\right)=(3,1)$. So $y_{n}+x_{n} \sqrt{8}=(3+\sqrt{8})^{n}$ for $n \geq 1$ and similarly $y_{n}-x_{n} \sqrt{8}=(3-\sqrt{8})^{n}$. Let $\gamma=3+\sqrt{8}$ and $\delta=3-\sqrt{8}$. Then he get $x_{n}=\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}$ which is the Binet formula for balancing numbers, that is, $B_{n}=\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}$. Since $\alpha^{2}=\gamma$ and $\beta^{2}=\delta$, he conclude that the Binet formula for balancing numbers is $B_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}$. Similarly he get $b_{n}=\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{4 \sqrt{2}}-\frac{1}{2}, C_{n}=\frac{\alpha^{2 n}+\beta^{2 n}}{2}$ and $c_{n}=\frac{\alpha^{2 n-1}+\beta^{2 n-1}}{2}$ for $n \geq 1$ (see also [10, 11, 15]).

Balancing numbers and their generalizations have been investigated by several authors from many aspects. In [7], Liptai proved that there is no Fibonacci balancing number except 1 and in [8] he proved that there is no Lucas-balancing number. In [19], Szalay considered the same problem and obtained some nice results by a different method. In [5], Kovács, Liptai and Olajos extended the concept of balancing numbers to the (a, b)-balancing numbers defined as follows: Let $a>0$ and $b \geq 0$ be coprime integers. If

$$
(a+b)+\cdots+(a(n-1)+b)=(a(n+1)+b)+\cdots+(a(n+r)+b)
$$

for some positive integers n and r, then $a n+b$ is an (a, b)-balancing number. The sequence of (a, b)-balancing numbers is denoted by $B_{m}^{(a, b)}$ for $m \geq 1$. In [6], Liptai, Luca, Pintér and Szalay generalized the notion of balancing numbers to numbers defined as follows: Let $y, k, l \in \mathbb{Z}^{+}$with $y \geq 4$. Then a positive integer x with $x \leq y-2$ is called a (k, l)-power numerical center for y if

$$
1^{k}+\cdots+(x-1)^{k}=(x+1)^{l}+\cdots+(y-1)^{l}
$$

They studied the number of solutions of the equation above and proved several effective and ineffective finiteness results for (k, l)-power numerical centers. For positive integers k, x, let

$$
\Pi_{k}(x)=x(x+1) \ldots(x+k-1)
$$

Then it was proved in [5] that the equation

$$
B_{m}=\Pi_{k}(x)
$$

for fixed integer $k \geq 2$ has only infinitely many solutions and for $k \in\{2,3,4\}$ all solutions were determined. In [23] Tengely, considered the case $k=5$ and proved that this Diophantine equation has no solution for $m \geq 0$ and $x \in \mathbb{Z}$. In [14], Panda, Komatsu and Davala considered the reciprocal sums of sequences involving balancing and Lucas-balancing numbers and in [17], Ray considered the sums of balancing and Lucas-balancing numbers by matrix methods. In [13], Panda and Panda defined the almost balancing number
and its balancer. In [21], the first author considered amost balancing numbers, triangular numbers and square triangular numbers and in [22], he considered the sums and spectral norms of all almost balancing numbers.

2. RESULTS.

In this work, we set three new integer sequences called balcobalancing number, balcobalancer and Lucas-balcobalancing number and try to determine the general terms of them in terms of balancing numbers. We also want to derive some relations with Pell, Pell-Lucas and square triangular numbers.

If we sum both sides of (1.1) and (1.3), then we get the Diophantine equation

$$
\begin{equation*}
1+2+\cdots+(n-1)+1+2+\cdots+(n-1)+n=2[(n+1)+(n+2)+\cdots+(n+r)] . \tag{2.7}
\end{equation*}
$$

Thus a positive integer n is called a balcobalancing number if the Diophantine equation in (2.7) verified for some positive integer r which is called balcobalancer. For example, $10,348,11830, \cdots$ are balcobalancing numbers with balcobalancers $4,144,4900, \cdots$. (Here we want to use name "balcobalancing" since it comes from balancing and cobalancing numbers).

From (2.7), we get

$$
\begin{equation*}
r=\frac{-2 n-1+\sqrt{8 n^{2}+4 n+1}}{2} . \tag{2.8}
\end{equation*}
$$

Let $B_{n}^{b c}$ denote the balcobalancing number and let $R_{n}^{b c}$ denote the balcobalancer. Then from (2.8), $B_{n}^{b c}$ is a balcobalancing number if and only if $8\left(B_{n}^{b c}\right)^{2}+4 B_{n}^{b c}+1$ is a perfect square. Thus

$$
\begin{equation*}
C_{n}^{b c}=\sqrt{8\left(B_{n}^{b c}\right)^{2}+4 B_{n}^{b c}+1} \tag{2.9}
\end{equation*}
$$

is an integer which are called the Lucas-balcobancing number. (Here we notice that balcobalancing numbers should be greater that 0 . But in (2.9), $8(0)^{2}+4(0)+1=1$ is a perfect square, so we assume that 0 is a balcobalancing number, that is, $B_{0}^{b c}=0$. In this case, $R_{0}^{b c}=0$ and $C_{0}^{b c}=1$).

In order to determine the general terms of balcobalancing numbers, balcobalancers and Lucas-balcobalancing numbers we have to determine the set of all (positive) integer solutions of the Pell equation

$$
\begin{equation*}
x^{2}-2 y^{2}=-1 . \tag{2.10}
\end{equation*}
$$

We see from (2.8) that $B_{n}^{b c}$ is a balcobalancing number if and only if $8\left(B_{n}^{b c}\right)^{2}+4 B_{n}^{b c}+1$ is a perfect square. So we set $8\left(B_{n}^{b c}\right)^{2}+4 B_{n}^{b c}+1=y^{2}$ for some integer $y \geq 1$. If we multiply both sides of the last equation by 2 , then we get $16\left(B_{n}^{b c}\right)^{2}+8 B_{n}^{b c}+2=2 y^{2}$ and hence $\left(4 B_{n}^{b c}+1\right)^{2}+1=2 y^{2}$. Taking $x=4 B_{n}^{b c}+1$, we get the Pell equation in (2.10).

Let Ω denotes the set of all integer solutions of (2.10), that is, $\Omega=\left\{(x, y): x^{2}-2 y^{2}=\right.$ $-1\}$. Then we can give the following theorem.

Theorem 2.1. The set of all integer solutions of (2.10) is $\Omega=\left\{\left(c_{n}, 2 b_{n}+1\right): n \geq 1\right\}$.
Proof. For the Pell equation $x^{2}-2 y^{2}=-1$, the set of representatives $\operatorname{Rep}=\left\{\left[\begin{array}{ll} \pm 1 & 1\end{array}\right]\right\}$ and $M=\left[\begin{array}{ll}3 & 2 \\ 4 & 3\end{array}\right]$. In this case $\left[\begin{array}{ll}-1 & 1\end{array}\right] M^{n}$ generates all integer solutions $\left(x_{n}, y_{n}\right)$ for $n \geq 1$. It can be easily seen that the $n^{\text {th }}$ power of M is

$$
M^{n}=\left[\begin{array}{cc}
C_{n} & 2 B_{n} \\
4 B_{n} & C_{n}
\end{array}\right]
$$

for $n \geq 1$. So

$$
\left[\begin{array}{ll}
x_{n} & y_{n}
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
C_{n} & 2 B_{n} \\
4 B_{n} & C_{n}
\end{array}\right]=\left[\begin{array}{ll}
-C_{n}+4 B_{n} & -2 B_{n}+C_{n}
\end{array}\right] .
$$

Thus the set of all integer solutions is $\Omega=\left\{\left(-C_{n}+4 B_{n},-2 B_{n}+C_{n}\right): n \geq 1\right\}$. But it can be easily seen that $-C_{n}+4 B_{n}=c_{n}$ and $-2 B_{n}+C_{n}=2 b_{n}+1$. So we conclude that the set of all integer solutions of (2.10) is $\Omega=\left\{\left(c_{n}, 2 b_{n}+1\right): n \geq 1\right\}$.

From Theorem 2.1, we can give the following result.
Theorem 2.2. The general terms of balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers are

$$
B_{n}^{b c}=\frac{c_{2 n+1}-1}{4}, C_{n}^{b c}=2 b_{2 n+1}+1 \text { and } R_{n}^{b c}=\frac{4 b_{2 n+1}-c_{2 n+1}+1}{4}
$$

for $n \geq 1$.
Proof. We proved in Theorem 2.1 that $\Omega=\left\{\left(c_{n}, 2 b_{n}+1\right): n \geq 1\right\}$. Since $x=4 B_{n}^{b c}+1$, we get

$$
B_{n}^{b c}=\frac{x_{2 n+1}-1}{4}=\frac{c_{2 n+1}-1}{4}
$$

for $n \geq 1$. Thus from (2.9), we obtain

$$
\begin{aligned}
C_{n}^{b c} & =\sqrt{8\left(B_{n}^{b c}\right)^{2}+4 B_{n}^{b c}+1} \\
& =\sqrt{8\left(\frac{c_{2 n+1}-1}{4}\right)^{2}+4\left(\frac{c_{2 n+1}-1}{4}\right)+1} \\
& =\sqrt{\frac{c_{2 n+1}^{2}+1}{2}} \\
& =\sqrt{\frac{\left(\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{2}\right)^{2}+1}{2}} \\
& =\sqrt{\left[2\left(\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{2 \sqrt{2}}-\frac{1}{2}\right)+1\right]^{2}} \\
& =2 b_{2 n+1}+1 .
\end{aligned}
$$

Finally from (2.8), we deduce that

$$
R_{n}^{b c}=\frac{4 b_{2 n+1}-c_{2 n+1}+1}{4}
$$

as we wanted.
We can also give the general terms of balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers in terms of balancing and cobalancing numbers as follows.

Theorem 2.3. The general terms of balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers are

$$
B_{n}^{b c}=\frac{B_{2 n}+b_{2 n+1}}{2}, C_{n}^{b c}=2 b_{2 n+1}+1 \text { and } R_{n}^{b c}=\frac{-B_{2 n}+b_{2 n+1}}{2}
$$

for $n \geq 1$.

Proof. We proved in Theorem 2.2 that $B_{n}^{b c}=\frac{c_{2 n+1}-1}{4}$. So we easily deduce that

$$
\begin{aligned}
B_{n}^{b c} & =\frac{c_{2 n+1}-1}{4} \\
& =\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4} \\
& =\frac{\alpha^{4 n+1}\left(\frac{\alpha^{-1}+1}{4 \sqrt{2}}\right)+\beta^{4 n+1}\left(\frac{-\beta^{-1}-1}{4 \sqrt{2}}\right)}{2}-\frac{1}{4} \\
& =\frac{\frac{\alpha^{4 n}-\beta^{4 n}}{4 \sqrt{2}}+\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{4 \sqrt{2}}-\frac{1}{2}}{2} \\
& =\frac{B_{2 n}+b_{2 n+1}}{2} .
\end{aligned}
$$

$C_{n}^{b c}=2 b_{2 n+1}+1$ is already proved in Theorem 2.2. Similarly it can be proved that $R_{n}^{b c}=$ $\frac{-B_{2 n}+b_{2 n+1}}{2}$.

As in Theorem 2.3, we can give the general terms of balcobalancing numbers, Lucasbalcobalancing numbers and balcobalancers in terms of only balancing numbers or only Lucas-balancing numbers as follows.

Theorem 2.4. The general terms of balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers are

$$
B_{n}^{b c}=2 B_{n}\left(B_{n+1}-B_{n}\right), C_{n}^{b c}=B_{2 n+1}-B_{2 n}, R_{n}^{b c}=4 B_{n}^{2}
$$

or

$$
B_{n}^{b c}=\frac{C_{2 n+1}-C_{2 n}-2}{8}, C_{n}^{b c}=\frac{C_{2 n+1}+C_{2 n}}{4}, R_{n}^{b c}=\frac{C_{2 n}-1}{4}
$$

for $n \geq 1$.
Proof. From Theorem 2.3, we get

$$
\begin{aligned}
B_{n}^{b c} & =\frac{B_{2 n}+b_{2 n+1}}{2} \\
& =\frac{\frac{\alpha^{4 n}-\beta^{4 n}}{4 \sqrt{2}}+\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{4 \sqrt{2}}-\frac{1}{2}}{2} \\
& =\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4} \\
& =\frac{\alpha^{4 n+1}-\alpha^{2 n} \beta^{2 n+1}-\beta^{2 n} \alpha^{2 n+1}+\beta^{4 n+1}}{8} \\
& =2\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)\left(\frac{\alpha^{2 n+1}-\beta^{2 n+1}}{2 \sqrt{2}}\right) \\
& =2\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)\left(\frac{\alpha^{2 n}\left(\alpha^{2}-1\right)-\beta^{2 n}\left(\beta^{2}-1\right)}{4 \sqrt{2}}\right) \\
& =2\left(\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right)\left(\frac{\alpha^{2 n+2}-\beta^{2 n+2}}{4 \sqrt{2}}-\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}\right) \\
& =2 B_{n}\left(B_{n+1}-B_{n}\right) .
\end{aligned}
$$

The others can be proved similarly.
In Theorems 2.2, 2.3 and 2.4, we can give the general terms of balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers in terms of balancing, cobalancing,

Lucas-balancing and Lucas-cobalancing numbers. Conversely, we can give the general terms of balancing, cobalancing, Lucas-balancing and Lucas-cobalancing numbers in terms of balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers as follows.

Theorem 2.5. The general terms of balancing, cobalancing, Lucas-balancing and Lucas-cobalancing numbers are

$$
\begin{aligned}
B_{n} & =\left\{\begin{array}{cc}
B_{\frac{n}{2}}^{b c}-R_{\frac{n}{2}}^{b c} & n \geq 2 \text { even } \\
\left(B_{\frac{n+1}{2}}^{b c}+B_{\frac{n-1}{2}}^{b c}-2 R_{\frac{n+1}{2}}^{b c}\right) / 2 & n \geq 1 \text { odd }
\end{array}\right. \\
b_{n} & =\left\{\begin{array}{cc}
-B_{\frac{n}{2}}^{b c}+3 R_{\frac{n}{2}}^{b c} & n \geq 2 \text { even } \\
B_{\frac{n-1}{2}}^{b c}+R_{\frac{n-1}{2}}^{b c} & n \geq 1 \text { odd }
\end{array}\right. \\
C_{n} & =\left\{\begin{array}{cc}
-4 B_{\frac{n}{2}}^{b c}+2 C_{\frac{c}{2}}^{b c}-1 & n \geq 2 \text { even } \\
4 B_{\frac{n-1}{2}}^{b c}+2 C_{\frac{n-1}{2}}^{b c}+1 & n \geq 1 \text { odd }
\end{array}\right. \\
c_{n} & =\left\{\begin{array}{cc}
12 B_{\frac{n}{2}}^{b c}-4 C_{\frac{n}{2}}^{b c}+3 & n \geq 2 \text { even } \\
4 B_{\frac{n-1}{2}}^{b c}+1 & n \geq 1 \text { odd } .
\end{array}\right.
\end{aligned}
$$

Proof. From Theorem 2.3, we get $B_{n}^{b c}=\frac{B_{2 n}+b_{2 n+1}}{2}$ and $R_{n}^{b c}=\frac{-B_{2 n}+b_{2 n+1}}{2}$. Thus we get $B_{2 n}=B_{n}^{b c}-R_{n}^{b c}$ and hence

$$
B_{n}=B_{\frac{n}{2}}^{b c}-R_{\frac{n}{2}}^{b c}
$$

for even $n \geq 2$. The others can be proved similarly.
Thus we construct one-to-one correspondence between all balcobalancing numbers and all balancing numbers.

3. Binet Formulas, Recurrence Relations and Companion Matrix.

Theorem 3.6. Binet formulas for balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers are

$$
B_{n}^{b c}=\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4}, C_{n}^{b c}=\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{2 \sqrt{2}} \text { and } R_{n}^{b c}=\frac{\alpha^{4 n}+\beta^{4 n}}{8}-\frac{1}{4}
$$

for $n \geq 1$.
Proof. Since $B_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}$ and $b_{n}=\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{4 \sqrt{2}}-\frac{1}{2}$, we get from Theorem 2.3 that

$$
\begin{aligned}
B_{n}^{b c} & =\frac{B_{2 n}+b_{2 n+1}}{2} \\
& =\frac{\frac{\alpha^{4 n}-\beta^{4 n}}{4 \sqrt{2}}+\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{4 \sqrt{2}}-\frac{1}{2}}{2} \\
& =\frac{\alpha^{4 n}\left(\frac{1+\alpha}{4 \sqrt{2}}\right)+\beta^{4 n}\left(\frac{-1-\beta}{4 \sqrt{2}}\right)}{2}-\frac{1}{4} \\
& =\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4} .
\end{aligned}
$$

The others can be proved similarly.
Recall that balancing numbers satisfy recurrence relation $B_{n}=6 B_{n-1}-B_{n-2}$ for $n \geq 2$. Similarly we can give the following result.

Theorem 3.7. $B_{n}^{b c}, C_{n}^{b c}$ and $R_{n}^{b c}$ satisfy the recurrence relations

$$
\begin{aligned}
& B_{n}^{b c}=35\left(B_{n-1}^{b c}-B_{n-2}^{b c}\right)+B_{n-3}^{b c} \\
& R_{n}^{b c}=35\left(R_{n-1}^{b c}-R_{n-2}^{b c}\right)+R_{n-3}^{b c}
\end{aligned}
$$

for $n \geq 3$ and

$$
C_{n}^{b c}=34 C_{n-1}^{b c}-C_{n-2}^{b c}
$$

for $n \geq 2$.
Proof. Recall that $B_{n}^{b c}=\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4}$ by Theorem 3.6. Since $35 \alpha^{-3}-35 \alpha^{-7}+\alpha^{-11}=\alpha$ and $35 \beta^{-3}-35 \beta^{-7}+\beta^{-11}=\beta$, we get

$$
\begin{aligned}
& 35\left(B_{n-1}^{b c}-B_{n-2}^{b c}\right)+B_{n-3}^{b c} \\
& =35\left[\left(\frac{\alpha^{4 n-3}+\beta^{4 n-3}}{8}-\frac{1}{4}\right)-\left(\frac{\alpha^{4 n-7}+\beta^{4 n-7}}{8}-\frac{1}{4}\right)\right] \\
& +\frac{\alpha^{4 n-11}+\beta^{4 n-11}}{8}-\frac{1}{4} \\
& =\frac{\alpha^{4 n}\left(35 \alpha^{-3}-35 \alpha^{-7}+\alpha^{-11}\right)+\beta^{4 n}\left(35 \beta^{-3}-35 \beta^{-7}+\beta^{-11}\right)}{8}-\frac{1}{4} \\
& =\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4} \\
& =B_{n}^{b c}
\end{aligned}
$$

The others can be proved similarly.
Recall that the companion matrix for balancing numbers is

$$
M=\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right]
$$

It can be easily seen that the $n^{\text {th }}$ power of M is

$$
M^{n}=\left[\begin{array}{cc}
B_{n+1} & -B_{n} \tag{3.11}\\
B_{n} & -B_{n-1}
\end{array}\right]
$$

for $n \geq 1$. Since $B_{n}^{b c}=35\left(B_{n-1}^{b c}-B_{n-2}^{b c}\right)+B_{n-3}^{b c}$ and $R_{n}^{b c}=35\left(R_{n-1}^{b c}-R_{n-2}^{b c}\right)+R_{n-3}^{b c}$ by Theorem 3.7, the companion matrix for balcobalancing numbers and balcobalancers are same and is

$$
M^{b c}=\left[\begin{array}{ccc}
35 & -35 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

and since $C_{n}^{b c}=34 C_{n-1}^{b c}-C_{n-2}^{b c}$, the companion matrix for Lucas-balcobalancing numbers is

$$
N^{b c}=\left[\begin{array}{cc}
34 & -1 \\
1 & 0
\end{array}\right]
$$

As in (3.11), we can give the following theorem.

Theorem 3.8. The $n^{\text {th }}$ power of $M^{b c}$ is

$$
\left(M^{b c}\right)^{n}=\left[\begin{array}{lll}
\sum_{i=0}^{\frac{n}{2}} B_{4 i+1} & -\sum_{i=1}^{n} B_{2 i+1} & \sum_{i=0}^{\frac{n-2}{2}} B_{4 i+3} \\
\frac{n-2}{\sum_{i=0}^{2}} B_{4 i+3} & -\sum_{i=1}^{n-1} B_{2 i+1} & \sum_{i=0}^{\frac{n-2}{2}} B_{4 i+1} \\
\frac{n-2}{\sum_{i=0}^{2}} B_{4 i+1} & -\sum_{i=1}^{n-2} B_{2 i+1} & \frac{\sum_{i=0}^{2}}{\frac{n-4}{2}} B_{4 i+3}
\end{array}\right]
$$

for even $n \geq 4$ or

$$
\left(M^{b c}\right)^{n}=\left[\begin{array}{lll}
\frac{n-1}{\sum_{i=0}^{2}} B_{4 i+3} & -\sum_{i=1}^{n} B_{2 i+1} & \frac{\sum_{i=0}^{2}}{2} B_{4 i+1} \\
\frac{n-1}{2} B_{4 i+1} & -\sum_{i=1}^{n-1} B_{2 i+1} & \sum_{i=0}^{\frac{n-3}{2}} B_{4 i+3} \\
\frac{n-3}{2} B_{4 i+3} & -\sum_{i=1}^{n-2} B_{2 i+1} & \frac{\sum_{i=0}^{\frac{n-3}{2}} B_{4 i+1}}{\sum_{i=0}}
\end{array}\right]
$$

for odd $n \geq 3$, and the $n^{\text {th }}$ power of $N^{b c}$ is

$$
\left(N^{b c}\right)^{n}=(-1)^{n}\left[\begin{array}{cc}
\sum_{i=1}^{n+1}(-1)^{i+1} B_{2 i-1} & \sum_{i=1}^{n}(-1)^{i+1} B_{2 i-1} \\
-\sum_{i=1}^{n}(-1)^{i+1} B_{2 i-1} & -\sum_{i=1}^{n-1}(-1)^{i+1} B_{2 i-1}
\end{array}\right]
$$

for every $n \geq 1$.
Proof. It can be proved by induction on n.
We can rewrite the $n^{\text {th }}$ power of $M^{b c}$ and $N^{b c}$ in terms of balancing and Lucas-balancing numbers instead of sums of balancing numbers. For this purpose, we set two integer sequences k_{n} and l_{n} to be

$$
k_{n}=\frac{-8 B_{2 n}+3 C_{2 n}-3}{96} \text { and } l_{n}=\frac{-288 B_{2 n}-102 C_{2 n}+102}{96}
$$

for $n \geq 0$. Then we can give the following theorem.
Theorem 3.9. The $n^{\text {th }}$ power of $M^{b c}$ is

$$
\left(M^{b c}\right)^{n}=\left[\begin{array}{ccc}
k_{n+2} & l_{n} & k_{n+1} \\
k_{n+1} & l_{n-1} & k_{n} \\
k_{n} & l_{n-2} & k_{n-1}
\end{array}\right]
$$

for every $n \geq 2$, and the $n^{\text {th }}$ power of $N^{b c}$ is

$$
\left(N^{b c}\right)^{n}=(-1)^{n} \begin{cases}{\left[\begin{array}{cc}
k_{n+2}-k_{n+1} & k_{n}-k_{n+1} \\
-k_{n}+k_{n+1} & -k_{n}+k_{n-1}
\end{array}\right] \quad \text { for even } n \geq 2} \\
{\left[\begin{array}{cc}
k_{n+1}-k_{n+2} & k_{n+1}-k_{n} \\
-k_{n+1}+k_{n} & -k_{n-1}+k_{n}
\end{array}\right] \quad \text { for odd } n \geq 1 .}\end{cases}
$$

Proof. It can be proved by induction on n.

4. Relationship with Pell and Pell-Lucas Numbers.

Recall that general terms of all balancing numbers can be given in terms of Pell numbers

$$
B_{n}=\frac{P_{2 n}}{2}, b_{n}=\frac{P_{2 n-1}-1}{2}, C_{n}=P_{2 n}+P_{2 n-1} \text { and } c_{n}=P_{2 n-1}+P_{2 n-2}
$$

and also in terms of Pell-Lucas numbers

$$
B_{n}=\frac{Q_{2 n}+Q_{2 n-1}}{8}, b_{n}=\frac{Q_{2 n}-Q_{2 n-1}-4}{8}, C_{n}=\frac{Q_{2 n}}{2} \text { and } c_{n}=\frac{Q_{2 n-1}}{2} .
$$

Similarly we can give the following theorem.
Theorem 4.10. The general terms of balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers are

$$
B_{n}^{b c}=P_{2 n+1} P_{2 n}, C_{n}^{b c}=P_{2 n+1}^{2}+P_{2 n}^{2}, R_{n}^{b c}=P_{2 n}^{2}
$$

or

$$
B_{n}^{b c}=\frac{Q_{2 n+1} Q_{2 n}-4}{8}, C_{n}^{b c}=\frac{Q_{2 n+1}^{2}+Q_{2 n}^{2}}{8}, R_{n}^{b c}=\left(\frac{Q_{2 n+1}-Q_{2 n}}{4}\right)^{2}
$$

for $n \geq 1$.
Proof. We deduce from Theorem 2.3 that

$$
\begin{aligned}
B_{n}^{b c} & =\frac{B_{2 n}+b_{2 n+1}}{2} \\
& =\frac{\frac{\alpha^{4 n}-\beta^{4 n}}{4 \sqrt{2}}+\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{4 \sqrt{2}}-\frac{1}{2}}{2} \\
& =\frac{\alpha^{4 n+1}\left(\alpha^{-1}+1\right)+\beta^{4 n+1}\left(-1-\beta^{-1}\right)}{8 \sqrt{2}}-\frac{1}{4} \\
& =\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4} \\
& =\frac{\alpha^{4 n+1}+\beta^{4 n+1}-(\alpha \beta)^{2 n}(\alpha+\beta)}{8} \\
& =\frac{\alpha^{4 n+1}-\alpha^{2 n+1} \beta^{2 n}-\beta^{2 n+1} \alpha^{2 n}+\beta^{4 n+1}}{8} \\
& =\left(\frac{\alpha^{2 n+1}-\beta^{2 n+1}}{2 \sqrt{2}}\right)\left(\frac{\alpha^{2 n}-\beta^{2 n}}{2 \sqrt{2}}\right) \\
& =P_{2 n+1} P_{2 n} .
\end{aligned}
$$

The others can be proved similarly.
Conversely, we can give the general terms of Pell and Pell-Lucas numbers in terms of balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers as follows.

Theorem 4.11. The general terms of Pell and Pell-Lucas numbers are

$$
P_{n}=\left\{\begin{array}{cl}
2\left(B_{\frac{n}{4}}^{b c}-R_{\frac{n}{4}}^{b c}\right) & n \equiv 0(\bmod 4) \\
C_{\frac{n-1}{4}}^{b c} & n \equiv 1(\bmod 4) \\
4 B_{\frac{n-2}{4}}^{b c}+C_{\frac{n-2}{b c}}^{b c}+1 & n \equiv 2(\bmod 4) \\
8 B_{\frac{n-3}{4}}^{b c}+3 C_{\frac{n-3}{4}}^{b c}+2 & n \equiv 3(\bmod 4)
\end{array}\right.
$$

and

$$
Q_{n}=\left\{\begin{array}{cl}
8 R_{n}^{b c}+2 & n \equiv 0(\bmod 4) \\
8 B_{n-1}^{b c}+2 & n \equiv 1(\bmod 4) \\
8 B_{n-2}^{b c}+4 C_{n-2}^{b c}+2 & n \equiv 2(\bmod 4) \\
\left(C_{\frac{n+1}{4}}^{b c}-C_{\frac{n-3}{4}}^{b c}\right) / 2 & n \equiv 3(\bmod 4) .
\end{array}\right.
$$

Proof. It can be proved as in the same way that Theorem 2.3 was proved.
Thus we construct one-to-one correspondence between all balcobalancing numbers and Pell and Pell-Lucas numbers.

5. Relationship with Triangular and Square Triangular Numbers.

Recall that triangular numbers denoted by T_{n} are the numbers of the form

$$
T_{n}=\frac{n(n+1)}{2} .
$$

It is known that there is a correspondence between balancing (and also cobalancing) numbers and triangular numbers. Indeed from (1.1), we note that n is a balancing number if and only if n^{2} is a triangular number since

$$
\frac{(n+r)(n+r+1)}{2}=n^{2} .
$$

So

$$
\begin{equation*}
T_{B_{n}+R_{n}}=B_{n}^{2} \tag{5.12}
\end{equation*}
$$

Similarly from (1.3), n is a cobalancing number if and only if $n^{2}+n$ is a triangular number since

$$
\frac{(n+r)(n+r+1)}{2}=n^{2}+n .
$$

So

$$
T_{b_{n}+r_{n}}=b_{n}^{2}+b_{n}
$$

As in (5.12), we can give the following theorem.
Theorem 5.12. $B_{n}^{b c}$ is a balcobalancing number if and only if $\left(B_{n}^{b c}\right)^{2}+\frac{B_{n}^{b c}}{2}$ is a triangular number, that is,

$$
T_{B_{n}^{b c}+R_{n}^{b c}}=\left(B_{n}^{b c}\right)^{2}+\frac{B_{n}^{b c}}{2} .
$$

Proof. From (2.7), we get $n^{2}=2 n r+r^{2}+r$ and hence

$$
\frac{(n+r)(n+r+1)}{2}=n^{2}+\frac{n}{2}
$$

So the result is obvious.

There are infinitely many triangular numbers that are also square numbers which are called square triangular numbers and is denoted by S_{n}. Notice that

$$
S_{n}=s_{n}^{2}=\frac{t_{n}\left(t_{n}+1\right)}{2}
$$

where s_{n} and t_{n} are the sides of the corresponding square and triangle. We can give the general terms of S_{n}, s_{n} and t_{n} in terms of balancing and cobalancing numbers, namely, $S_{n}=B_{n}^{2}, s_{n}=B_{n}$ and $t_{n}=B_{n}+b_{n}$. Their Binet formulas are

$$
\begin{equation*}
S_{n}=\frac{\alpha^{4 n}+\beta^{4 n}-2}{32}, s_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}} \text { and } t_{n}=\frac{\alpha^{2 n}+\beta^{2 n}-2}{4} \tag{5.13}
\end{equation*}
$$

for $n \geq 1$. We can give the general terms of balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers in terms of s_{n} and t_{n} as follows.

Theorem 5.13. The general terms of balcobalancing numbers, Lucas-balcobalancing numbers and balcobalancers are

$$
\begin{aligned}
& B_{n}^{b c}=\frac{2 s_{2 n+1}-t_{2 n+1}-1}{2} \\
& C_{n}^{b c}=-2 s_{2 n+1}+2 t_{2 n+1}+1 \\
& R_{n}^{b c}=\frac{-4 s_{2 n+1}+3 t_{2 n+1}+1}{2}
\end{aligned}
$$

for $n \geq 1$.
Proof. From Theorem 2.3, we get

$$
\begin{aligned}
B_{n}^{b c} & =\frac{B_{2 n}+b_{2 n+1}}{2} \\
& =\frac{\frac{\alpha^{4 n}-\beta^{4 n}}{4 \sqrt{2}}+\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{4 \sqrt{2}}-\frac{1}{2}}{2} \\
& =\frac{\alpha^{4 n+2}\left(\frac{1}{2 \sqrt{2}}-\frac{1}{4}\right)+\beta^{4 n+2}\left(-\frac{1}{2 \sqrt{2}}-\frac{1}{4}\right)-\frac{1}{2}}{2} \\
& =\frac{2\left(\frac{\alpha^{4 n+2}-\beta^{4 n+2}}{4 \sqrt{2}}\right)-\left(\frac{\alpha^{4 n+2}+\beta^{4 n+2}-2}{4}\right)-1}{2} \\
& =\frac{2 s_{2 n+1}-t_{2 n+1}-1}{2}
\end{aligned}
$$

by (5.13). The others can be proved similarly.
Conversely, we can give the following theorem.
Theorem 5.14. The general terms of S_{n}, s_{n} and t_{n} are

$$
\begin{aligned}
& S_{n}=\frac{R_{n}^{b c}}{4} \\
& s_{n}=\left\{\begin{array}{cc}
B_{\frac{n}{2}}^{b c}-R_{\frac{n}{2}}^{b c} & n \geq 2 \text { even } \\
\left(4 B_{\frac{n-1}{2}}^{b c}+C_{\frac{n-1}{2}}^{b c}+1\right) / 2 & n \geq 1 \text { odd }
\end{array}\right. \\
& t_{n}=\left\{\begin{array}{cl}
2 R_{\frac{n}{2}}^{b c} & n \geq 2 \text { even } \\
2 B_{\frac{n-1}{2}}^{b c}+C_{\frac{n-1}{2}}^{b c} & n \geq 1 \text { odd } .
\end{array}\right.
\end{aligned}
$$

Proof. From Theorem 2.3, we get

$$
\begin{aligned}
R_{n}^{b c} & =\frac{-B_{2 n}+b_{2 n+1}}{2} \\
& =\frac{-\frac{\alpha^{4 n}-\beta^{4 n}}{4 \sqrt{2}}+\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{4 \sqrt{2}}-\frac{1}{2}}{2} \\
& =\frac{\alpha^{4 n}(-1+\alpha)+\beta^{4 n}(1-\beta)}{8 \sqrt{2}}-\frac{1}{4} \\
& =\frac{\alpha^{4 n}+\beta^{4 n}}{8}-\frac{1}{4} .
\end{aligned}
$$

So from (5.13), we observe that

$$
S_{n}=\frac{\alpha^{4 n}+\beta^{4 n}-2}{32}=\frac{\frac{\alpha^{4 n}+\beta^{4 n}}{8}-\frac{1}{4}}{4}=\frac{R_{n}^{b c}}{4}
$$

as we wanted. The others can be proved similarly.

Thus we construct one-to-one correspondence between all balcobalancing numbers and square triangular numbers.

Finally, we want to construct a correspondence between triangular and square triangular numbers via balcobalancing numbers, that is, we want to find out that for which balcobalancing numbers m, the equation $T_{m}=S_{n}$ holds. The answer is given below.

Theorem 5.15. For triangular numbers T_{n} and square triangular numbers S_{n}, we have
(1) if $n \geq 1$ is odd, then

$$
T_{2 B_{\frac{n-1}{2}}^{b c}+C_{\frac{n-1}{2}}^{b c}}=S_{n} .
$$

(2) if $n \geq 2$ is even, then

$$
T_{-2 B_{\frac{n}{2}}^{b c}+C_{\frac{c}{2}}^{b c}-1}=S_{n}
$$

Proof. (1) Let $n \geq 1$ be odd. Then

$$
\left.\left.\begin{array}{rl}
T_{2 B_{\frac{n-1}{2}}^{b c}+C_{\frac{n-1}{2}}^{b c}} & =\frac{\left(2 B_{\frac{n-1}{2}}^{b c}+C_{\frac{n-1}{2}}^{b c}\right)\left(2 B_{\frac{n-1}{2}}^{b c}+C_{\frac{n-1}{2}}^{b c}+1\right)}{2} \\
& =\left\{\left[2\left(\frac{\alpha^{2 n-1}+\beta^{2 n-1}}{8}-\frac{1}{4}\right)+\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{2 \sqrt{2}}\right] \times\right. \\
{\left[2\left(\frac{\alpha^{2 n-1}+\beta^{2 n-1}}{8}-\frac{1}{4}\right)+\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{2 \sqrt{2}}+1\right]}
\end{array}\right\} / 2\right\}
$$

by (5.13). The other case can be proved similarly.

6. Sums of Balcobalancing Numbers.

Theorem 6.16. The sum of first n-terms of $B_{n}^{b c}, C_{n}^{b c}$ and $R_{n}^{b c}$ is

$$
\begin{aligned}
& \sum_{i=1}^{n} B_{i}^{b c}=\frac{b_{2 n+2}-2 n-2}{8} \\
& \sum_{i=1}^{n} C_{i}^{b c}=\frac{c_{2 n+2}-7}{8} \\
& \sum_{i=1}^{n} R_{i}^{b c}=\frac{B_{2 n+1}-2 n-1}{8}
\end{aligned}
$$

for $n \geq 1$.
Proof. Recall that $B_{n}^{b c}=\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4}$ by Theorem 3.6. Since

$$
\sum_{i=1}^{n} \alpha^{4 i+1}=\frac{-\alpha^{3}\left(1-\alpha^{4 n}\right)}{4 \sqrt{2}} \text { and } \sum_{i=1}^{n} \beta^{4 i+1}=\frac{\beta^{3}\left(1-\beta^{4 n}\right)}{4 \sqrt{2}},
$$

we get

$$
\begin{aligned}
\sum_{i=1}^{n} B_{i}^{b c} & =\sum_{i=1}^{n}\left(\frac{\alpha^{4 i+1}+\beta^{4 i+1}}{8}-\frac{1}{4}\right) \\
& =\frac{\frac{-\alpha^{3}\left(1-\alpha^{4 n}\right)}{4 \sqrt{2}}+\frac{\beta^{3}\left(1-\beta^{4 n}\right)}{4 \sqrt{2}}}{8}-\frac{n}{4} \\
& =\frac{\alpha^{4 n+3}-\beta^{4 n+3}-\alpha^{3}+\beta^{3}}{32 \sqrt{2}}-\frac{n}{4} \\
& =\frac{\alpha^{4 n+3}-\beta^{4 n+3}-10 \sqrt{2}}{32 \sqrt{2}}-\frac{n}{4} \\
& =\frac{\alpha^{4 n+3}-\beta^{4 n+3}}{32 \sqrt{2}}-\frac{5}{16}-\frac{n}{4} \\
& =\frac{\frac{\alpha^{4 n+3}-\beta^{4 n+3}}{4 \sqrt{2}}-\frac{1}{2}+\frac{1}{2}}{8}-\frac{5}{16}-\frac{n}{4} \\
& =\frac{\frac{\alpha^{4 n+3}-\beta^{4 n+3}}{4 \sqrt{2}}-\frac{1}{2}}{8}-\frac{n+1}{4} \\
& =\frac{b_{2 n+2}-2 n-2}{8} .
\end{aligned}
$$

The others can be proved similarly.

We can give the sums of first n-terms of balcobalancing numbers in terms of balancing numbers, sums of first n-terms of Lucas-balcobalancing numbers in terms of Lucasbalancing numbers and sums of first n-terms of balcobalancers in terms of balancers as follows.

Theorem 6.17. The sum of first n-terms of $B_{n}^{b c}, C_{n}^{b c}$ and $R_{n}^{b c}$ is

$$
\begin{aligned}
\sum_{i=1}^{n} B_{i}^{b c} & =\frac{B_{2 n+2}-B_{2 n+1}-4 n-5}{16} \\
\sum_{i=1}^{n} C_{i}^{b c} & =\frac{5 C_{2 n+1}-C_{2 n}-14}{16} \\
\sum_{i=1}^{n} R_{i}^{b c} & =\frac{R_{2 n+2}-R_{2 n+1}-4 n-2}{16}
\end{aligned}
$$

for $n \geq 1$.
Proof. It can be easily seen that $B_{2 n+2}-B_{2 n+1}=2 b_{2 n+2}+1$. So from Theorem 6.16, we get

$$
\sum_{i=1}^{n} B_{i}^{b c}=\frac{b_{2 n+2}-2 n-2}{8}=\frac{\frac{B_{2 n+2}-B_{2 n+1}-1}{2}-2 n-2}{8}=\frac{B_{2 n+2}-B_{2 n+1}-4 n-5}{16} .
$$

The others can be proved similarly.

Recall that the sum of first n-terms of all balancing numbers can be given in terms of same balancing numbers, that is,

$$
\begin{aligned}
& \sum_{i=1}^{n} B_{i}=\frac{5 B_{n}-B_{n-1}-1}{4}, \quad \sum_{i=1}^{n} b_{i}=\frac{5 b_{n}-b_{n-1}+2-2 n}{4} \\
& \sum_{i=1}^{n} C_{i}=\frac{5 C_{n}-C_{n-1}-2}{4}, \quad \sum_{i=1}^{n} c_{i}=\frac{5 c_{n}-c_{n-1}-2}{4}
\end{aligned}
$$

Similarly we can give the sums of first n-terms of balcobalancing numbers in terms of balcobalancing numbers, sums of first n-terms of Lucas-balcobalancing numbers in terms of Lucas-balcobalancing numbers and sums of first n-terms of balcobalancers in terms of balcobalancers as follows.

Theorem 6.18. The sum of first n-terms of $B_{n}^{b c}, C_{n}^{b c}$ and $R_{n}^{b c}$ is

$$
\begin{aligned}
& \sum_{i=1}^{n} B_{i}^{b c}=\frac{33 B_{n}^{b c}-B_{n-1}^{b c}-8 n-2}{32} \\
& \sum_{i=1}^{n} C_{i}^{b c}=\frac{33 C_{n}^{b c}-C_{n-1}^{b c}-28}{32} \\
& \sum_{i=1}^{n} R_{i}^{b c}=\frac{33 R_{n}^{b c}-R_{n-1}^{b c}-8 n+4}{32}
\end{aligned}
$$

for $n \geq 1$.
Proof. It can be proved similarly.

We also note that

$$
\begin{aligned}
& \sum_{i=1}^{n}(-1)^{i} B_{i}=\left\{\begin{array}{cc}
2 B_{\frac{n}{2}}^{2}+B_{\frac{n}{2}} C_{\frac{n}{2}} & n \geq 2 \text { even } \\
-2 B_{\frac{n+1}{2}}\left(b_{\frac{n+1}{2}}+\frac{1}{2}\right) & n \geq 1 \text { odd }
\end{array}\right. \\
& \sum_{i=1}^{n}(-1)^{i} b_{i}=\left\{\begin{array}{cc}
2 B_{\frac{n}{2}}^{2} & n \geq 2 \text { even } \\
-2 b_{\frac{n+1}{2}}^{2}-2 b_{\frac{n+1}{2}} & n \geq 1 \text { odd }
\end{array}\right. \\
& \sum_{i=1}^{n}(-1)^{i} C_{i}=\left\{\begin{array}{cc}
B_{n}+8 B_{\frac{n}{2}}^{2} & n \geq 2 \text { even } \\
-B_{n}-8\left(b_{\frac{n+1}{2}}+\frac{1}{2}\right)^{2} & n \geq 1 \text { odd }
\end{array}\right. \\
& \sum_{i=1}^{n}(-1)^{i} c_{i}=\left\{\begin{array}{cc}
B_{n} & n \geq 2 \text { even } \\
-B_{n} & n \geq 1 \text { odd. }
\end{array}\right.
\end{aligned}
$$

Similarly we can give the following theorem.
Theorem 6.19. For $B_{n}^{b c}, C_{n}^{b c}$ and $R_{n}^{b c}$, we get

$$
\begin{aligned}
& \sum_{i=1}^{n}(-1)^{i} B_{i}^{b c}=\left\{\begin{array}{cc}
\left(35 B_{n}^{b c}-B_{n-1}^{b c}-2\right) / 36 & n \geq 2 \text { even } \\
\left(-35 B_{n}^{b c}+B_{n-1}^{b c}-10\right) / 36 & n \geq 1 \text { odd }
\end{array}\right. \\
& \sum_{i=1}^{n}(-1)^{i} C_{i}^{b c}=\left\{\begin{array}{cc}
\left(35 C_{n}^{b c}-C_{n-1}^{b c}-30\right) / 36 & n \geq 2 \text { even } \\
\left(-35 C_{n}^{b c}+C_{n-1}^{b c}-30\right) / 36 & n \geq 1 \text { odd }
\end{array}\right. \\
& \sum_{i=1}^{n}(-1)^{i} R_{i}^{b c}=\left\{\begin{array}{cc}
\left(35 R_{n}^{b c}-R_{n-1}^{b c}+4\right) / 36 & n \geq 2 \text { even } \\
\left(-35 R_{n}^{b c}+R_{n-1}^{b c}-4\right) / 36 & n \geq 1 \text { odd. }
\end{array}\right.
\end{aligned}
$$

Proof. It can be proved similarly.
In [20], Tekcan and Tayat set two integer sequences

$$
X_{n}=\frac{\alpha^{n+1}+\beta^{n+1}}{2} \text { and } Y_{n}=\frac{\alpha^{n+1}-\beta^{n+1}}{\sqrt{2}}
$$

for $n \geq 0$ and proved that

$$
\sum_{i=1}^{n} B_{i} C_{i}=\frac{X_{n} X_{n-1} Y_{n} Y_{n-1}}{8}
$$

It can be easily seen that

$$
\begin{equation*}
\sum_{i=1}^{n} B_{i} C_{i}=\frac{C_{2 n+1}-3}{32} \tag{6.14}
\end{equation*}
$$

As in (6.14), we can give the following theorem.
Theorem 6.20. For $B_{n}^{b c}$ and $C_{n}^{b c}$, we get

$$
\sum_{i=1}^{n} B_{i}^{b c} C_{i}^{b c}=\frac{\left(3 B_{n}^{b c}+C_{n}^{b c}\right)^{2}-1}{12}
$$

Proof. From Theorem 3.6, we find that

$$
\sum_{i=1}^{n} B_{i}^{b c} C_{i}^{b c}=B_{1}^{b c} C_{1}^{b c}+B_{2}^{b c} C_{2}^{b c}+\cdots+B_{n}^{b c} C_{n}^{b c}
$$

$$
\begin{aligned}
= & \left(\frac{\alpha^{5}+\beta^{5}}{8}-\frac{1}{4}\right)\left(\frac{\alpha^{5}-\beta^{5}}{2 \sqrt{2}}\right)+\left(\frac{\alpha^{9}+\beta^{9}}{8}-\frac{1}{4}\right)\left(\frac{\alpha^{9}-\beta^{9}}{2 \sqrt{2}}\right) \\
& +\cdots+\left(\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4}\right)\left(\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{2 \sqrt{2}}\right) \\
= & \frac{\left(\alpha^{10}+\alpha^{18}+\cdots+\alpha^{8 n+2}\right)-\left(\beta^{10}+\beta^{18}+\cdots+\beta^{8 n+2}\right)}{16 \sqrt{2}} \\
& -\frac{\left(\alpha^{5}+\alpha^{9}+\cdots+\alpha^{4 n+1}\right)-\left(\beta^{5}+\beta^{9}+\cdots+\beta^{4 n+1}\right)}{8 \sqrt{2}} \\
= & \frac{1}{16 \sqrt{2}}\left[\frac{\alpha^{10}\left(\alpha^{8 n}-1\right)}{\alpha^{8}-1}-\frac{\beta^{10}\left(\beta^{8 n}-1\right)}{\beta^{8}-1}\right]-\frac{1}{8 \sqrt{2}}\left[\frac{\alpha^{5}\left(\alpha^{4 n}-1\right)}{\alpha^{4}-1}-\frac{\beta^{5}\left(\beta^{4 n}-1\right)}{\beta^{4}-1}\right] \\
= & \frac{1}{32}\left[\frac{\alpha^{8 n+6}+\beta^{8 n+6}-198}{24}\right]-\frac{1}{16}\left[\frac{\alpha^{4 n+3}+\beta^{4 n+3}-14}{4}\right] \\
= & \frac{1}{32.24}\left[\left(\alpha^{4 n+3}+\beta^{4 n+3}-6\right)^{2}-64\right] \\
= & \frac{1}{12}\left[3\left(\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4}\right)+\left(\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{2 \sqrt{2}}\right)\right]^{2}-\frac{1}{12} \\
= & \frac{\left(3 B_{n}^{b c}+C_{n}^{b c}\right)^{2}-1}{12} .
\end{aligned}
$$

This completes the proof.
In [18], Santana and Diaz-Barrero proved that

$$
P_{2 n+1} \mid \sum_{i=0}^{2 n} P_{2 i+1} \quad \text { and } \quad P_{2 n} \mid \sum_{i=1}^{2 n} P_{2 i-1}
$$

Similarly we can give the following theorem.
Theorem 6.21. $C_{n}^{b c} \mid \sum_{i=0}^{4 n} P_{2 i+1}$.
Proof. As in Theorem 6.16, we find that

$$
\sum_{i=0}^{4 n} P_{2 i+1}=C_{n}^{b c}\left(4 B_{n}^{b c}+1\right)
$$

So the result is obvious.

7. Sums of Pell and Balancing Numbers.

Panda and Ray proved in [11] that the sum of first $2 n-1$ Pell numbers is equal to the sum of $n^{\text {th }}$ balancing number and its balancer, that is,

$$
\begin{equation*}
\sum_{i=1}^{2 n-1} P_{i}=B_{n}+b_{n} . \tag{7.15}
\end{equation*}
$$

Later Gözeri, Özkoç and Tekcan proved in [4] that the sum of Pell-Lucas numbers from 0 to $2 n-1$ is equal to the the sum of $n^{\text {th }}$ Lucas-balancing and Lucas-cobalancing number, that is,

$$
\sum_{i=0}^{2 n-1} Q_{i}=C_{n}+c_{n} .
$$

Since $R_{n}=b_{n}$, (7.15) becomes

$$
\begin{equation*}
\sum_{i=1}^{2 n-1} P_{i}=B_{n}+R_{n} \tag{7.16}
\end{equation*}
$$

As in (7.16), we can give the following result.
Theorem 7.22. The sum of even ordered Pell numbers from 1 to $2 n$ is equal to the sum of the $n^{\text {th }}$ balcobalancing number and its balcobalancer, that is,

$$
\sum_{i=1}^{2 n} P_{2 i}=B_{n}^{b c}+R_{n}^{b c}
$$

Proof. Since $\sum_{i=1}^{2 n} \alpha^{2 i}=\frac{-\alpha\left(1-\alpha^{4 n}\right)}{2}$ and $\sum_{i=1}^{2 n} \beta^{2 i}=\frac{-\beta\left(1-\beta^{4 n}\right)}{2}$, we deduce that

$$
\begin{aligned}
\sum_{i=1}^{2 n} P_{2 i} & =\sum_{i=1}^{2 n}\left(\frac{\alpha^{2 i}-\beta^{2 i}}{2 \sqrt{2}}\right) \\
& =\frac{\frac{-\alpha\left(1-\alpha^{4 n}\right)}{2}-\frac{-\beta\left(1-\beta^{4 n}\right)}{2}}{2 \sqrt{2}} \\
& =\frac{\alpha^{4 n+1}-\beta^{4 n+1}}{4 \sqrt{2}}-\frac{1}{2} \\
& =\frac{\alpha^{4 n+1}\left(1+\alpha^{-1}\right)+\beta^{4 n+1}\left(1+\beta^{-1}\right)}{8}-\frac{1}{2} \\
& =\left(\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4}\right)+\left(\frac{\alpha^{4 n}+\beta^{4 n}}{8}-\frac{1}{4}\right) \\
& =B_{n}^{b c}+R_{n}^{b c}
\end{aligned}
$$

by Theorem 3.6.
Similarly we can give the following theorem which can be proved similarly.
Theorem 7.23. For the sums of Pell, Pell-Lucas and balancing numbers, we have
(1) the sum of odd ordered Pell numbers from 1 to $2 n$ is equal to the difference of the $n^{\text {th }}$ balcobalancing number and its balcobalancer, that is,

$$
\sum_{i=1}^{2 n} P_{2 i-1}=B_{n}^{b c}-R_{n}^{b c}
$$

(2) the half of the sum of Pell numbers from 1 to $4 n$ is equal to the $n^{\text {th }}$ balcobalancing number, that is,

$$
\frac{\sum_{i=1}^{4 n} P_{i}}{2}=B_{n}^{b c}
$$

(3) the sum of Pell-Lucas numbers from 0 to $4 n+1$ is equal to the sum of the twelve times of the $n^{\text {th }}$ balcobalancing number, four times of the its balcobalancer plus 4 , that is,

$$
\sum_{i=0}^{4 n+1} Q_{i}=12 B_{n}^{b c}+4 R_{n}^{b c}+4
$$

(4) the sum of Pell-Lucas numbers from 1 to $4 n$ is equal to the two times of the $n^{\text {th }}$ Lucasbalcobalancing number minus 1 , that is,

$$
\sum_{i=1}^{4 n} Q_{i}=2\left(C_{n}^{b c}-1\right)
$$

(5) the sum of balancing numbers from 1 to $4 n+1$ is equal to the product of the sum of three times of the $n^{\text {th }}$ balcobalancing number, its balcobalancer plus 1 and the four times of the $n^{\text {th }}$ balcobalancing number plus 1 , that is,

$$
\sum_{i=1}^{4 n+1} B_{i}=\left(3 B_{n}^{b c}+R_{n}^{b c}+1\right)\left(4 B_{n}^{b c}+1\right)
$$

In [18], Santana and Diaz-Barrero proved that the sum of first nonzero $4 n+1$ terms of Pell numbers is a perfect square, that is,

$$
\sum_{i=1}^{4 n+1} P_{i}=\left[\sum_{i=0}^{n}\binom{2 n+1}{2 i} 2^{i}\right]^{2}
$$

In fact this sum is equals to c_{n+1}^{2}, that is,

$$
\sum_{i=1}^{4 n+1} P_{i}=c_{n+1}^{2}
$$

Similarly we can give the following result.
Theorem 7.24. The sum of Pell numbers from 1 to $8 n+1$ is a perfect square and is

$$
\sum_{i=1}^{8 n+1} P_{i}=\left(4 B_{n}^{b c}+1\right)^{2}
$$

Proof. Since $\sum_{i=1}^{n} P_{i}=\frac{P_{n+1}+P_{n}-1}{2}$, we get

$$
\begin{aligned}
\sum_{i=1}^{8 n+1} P_{i} & =\frac{P_{8 n+2}+P_{8 n+1}-1}{2} \\
& =\frac{\frac{\alpha^{8 n+2}-\beta^{8 n+2}}{2 \sqrt{2}}+\frac{\alpha^{8 n+1}-\beta^{8 n+1}}{2 \sqrt{2}}-1}{2} \\
& =\frac{\frac{\alpha^{8 n+2}\left(1+\alpha^{-1}\right)+\beta^{8 n+2}\left(-1-\beta^{-1}\right)}{2 \sqrt{2}}}{2}-\frac{1}{2} \\
& =\frac{\alpha^{8 n+2}+\beta^{8 n+2}}{4}-\frac{1}{2} \\
& =\frac{\alpha^{8 n+2}+2 \alpha^{4 n+1} \beta^{4 n+1}+\beta^{8 n+2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
&= 16\left[\left(\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}\right)^{2}-2\left(\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}\right)\left(\frac{1}{4}\right)+\frac{1}{16}\right] \\
&+8\left(\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}\right)-2+1 \\
&=16\left[\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4}\right]^{2}+8\left[\frac{\alpha^{4 n+1}+\beta^{4 n+1}}{8}-\frac{1}{4}\right]+1 \\
&=16\left(B_{n}^{b c}\right)^{2}+8 B_{n}^{b c}+1 \\
&=\left(4 B_{n}^{b c}+1\right)^{2}
\end{aligned}
$$

by Theorem 3.6.

Apart from Theorem 7.24, we can give the following theorem which can be proved similarly.

Theorem 7.25. For the sums of Pell, Pell-Lucas, balancing and Lucas-cobalancing numbers, we have
(1) the sum of Pell numbers from 1 to $8 n+3$ plus 1 is a perfect square and is

$$
1+\sum_{i=1}^{8 n+3} P_{i}=\left(4 B_{n}^{b c}+2 C_{n}^{b c}+1\right)^{2}
$$

(2) the sum of odd ordered Pell-Lucas numbers from 1 to $4 n+2$ is a perfect square and is

$$
\sum_{i=1}^{4 n+2} Q_{2 i-1}=\left(8 B_{n}^{b c}+2 C_{n}^{b c}+2\right)^{2} .
$$

(3) the half of the sum of odd ordered Pell-Lucas numbers from 0 to $4 n$ is a perfect square and is

$$
\frac{\sum_{i=0}^{4 n} Q_{2 i+1}}{2}=\left(4 B_{n}^{b c}+1\right)^{2} .
$$

(4) the sum of odd ordered balancing numbers from 1 to $2 n+1$ is a perfect square and is

$$
\sum_{i=1}^{2 n+1} B_{2 i-1}=\left(3 B_{n}^{b c}+R_{n}^{b c}+1\right)^{2}
$$

(5) the sum of Lucas-cobalancing numbers from 1 to $4 n+2$ plus 1 is a perfect square and is

$$
1+\sum_{i=1}^{4 n+2} c_{i}=\left(8 B_{n}^{b c}+4 R_{n}^{b c}+3\right)^{2}
$$

References

[1] Barbeau, E. J. Pell's Equation. Springer-Verlag New York, 2003.
[2] Behera, A.; Panda, G. K. On the Square Roots of Triangular Numbers. The Fibonacci Quart. 37 (1999), no. 2, 98-105.
[3] Flath, D. E. Introduction to number theory. With errata. Reprint of the 1989 AMS Chelsea Publishing, Providence, RI, 2018.
[4] Gözeri, G. K.; Özkoç, A.; Tekcan, A. Some Algebraic Relations on Balancing Numbers. Utilitas Mathematica 103 (2017), 217-236.
[5] Kovacs, T; Liptai, K.; Olajos, P. On (a, b)-Balancing Numbers. Publ. Math. Deb. 77 (2010), no. (3-4) 485-498.
[6] Liptai, K.; Luca, F.; Pinter, A.; Szalay, L. Generalized Balancing Numbers. Indag. Mathem. N. S. 20 (2009), no. 1, 87-100.
[7] Liptai, K. Fibonacci Balancing Numbers. The Fibonacci Quarterly 42 (2004), no. 4, 330-340.
[8] Liptai, K. Lucas Balancing Numbers. Acta Math. Univ. Ostrav. 14 (2006), 43-47.
[9] Mollin, R. A. Quadratics. CRS Press, Boca Raton, New York, London, Tokyo, 1996.
[10] Olajos, P., Properties of Balancing, Cobalancing and Generalized Balancing Numbers. Annales Mathematicae et Informaticae 37 (2010), 125-138.
[11] Panda, G. K.; Ray, P. K. Some Links of Balancing and Cobalancing Numbers with Pell and Associated Pell Numbers. Bul. of Inst. of Math. Acad. Sinica 6 (2011), no. 1, 41-72.
[12] Panda, G. K.; Ray, P. K. Cobalancing Numbers and Cobalancers. Int. J. Math. Math. Sci. 8 (2005), 1189-1200.
[13] Panda, G. K.; Panda, A. K. Almost Balancing Numbers. Jour. of the Indian Math. Soc. 82 (2015), no. (3-4), 147-156.
[14] Panda, G. K.; Komatsu, T.; Davala, R. K. Reciprocal Sums of Sequences Involving Balancing and Lucasbalancing Numbers. Math. Reports 20 (70) (2018), no. 2, 201-214.
[15] Panda, A. K. Some Variants of the Balancing Sequences. Ph.D. dissertation, National Institute of Technology Rourkela, India, 2017.
[16] Ray, P. K. Balancing and Cobalancing Numbers. Ph.D. dissertation, Department of Mathematics, National Institute of Technology, Rourkela, India, 2009.
[17] Ray, P. K. Balancing and Lucas-balancing Sums by Matrix Methods. Math. Reports 17 (67)(2015), no. 2, 225-233.
[18] Santana, S. F.; Diaz-Barrero, J. L. Some Properties of Sums Involving Pell Numbers. Missouri Journal of Mathematical Science 18 (2006), no. 1, 33-40.
[19] Szalay, L. On the Resolution of Simultaneous Pell Equations. Ann. Math. Inform. 34 (2007), 77-87.
[20] Tekcan, A.; Tayat, M. Generalized Pell numbers, balancing numbers and binary quadratic forms. Creat. Math. Inform. 23 (2014), no. 1, 115-122.
[21] Tekcan, A. Almost Balancing, Triangular and Square Triangular Numbers. Notes on Number Theory and Discrete Math. 25 (2019), no. 1, 108-121.
[22] Tekcan, A. Sums and Spectral Norms of all Almost Balancing Numbers. Creat. Math. Inform. 28 (2019), no. 2, 203-214.
[23] Tengely, S. Balancing Numbers which are Products of Consecutive Integers. Publ. Math. Deb. 83 (2013), no. (1-2), 197-205.

Bursa Uludag University
Faculty of Science
Department of Mathematics
Bursa, Turkiye
Email address: tekcan@uludag.edu.tr, 502011002@ogr.uludag.edu.tr

[^0]: Received: 03.05.2021. In revised form: 25.07.2021. Accepted: 02.08.2021
 2010 Mathematics Subject Classification. 11B37, 11B39, 11D09, 11D79.
 Key words and phrases. Balancing numbers, cobalancing numbers, square triangular numbers, Pell equations.
 Corresponding author: Ahmet Tekcan; tekcan@uludag.edu.tr

