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The Bernstein operators on any finite interval revisited

DAN BĂRBOSU

ABSTRACT. One studies simultaneous approximation properties of fundamental Bernstein polynomials in-
volved in the construction of the mentioned operators.

1. INTRODUCTION

Let N be the set of positive integers and N0 = N ∪ {0}. The classical Bernstein operator
associated to a real valued function f : [0, 1]→ R is given by

Bmg(x) =

m∑
k=0

pmk(x)f

(
k

m

)
=

m∑
k=0

(
m

k

)
xk(1− x)m−kf

(
k

m

)
, (1.1)

for any x∈ [0, 1] and any m ∈ N. It was introduced by S. N. Bernstein [6].
Note that in (1.1) the polynomials pm,k(x) =

(
m
k

)
xk(1 − x)m−k, k ∈ {0, 1, ...,m} are called

Bernstein fundamental polynomials. During the years, the operator (1.1) was intensively
studied, many of its approximation properties being by now well known. In the same
time, many generalizations of operator (1.1) were also considered. It is important to see
which of these are real generalizations.

Suppose a and b are real numbers such that a < b. The Bernstein operator associated
with any function f : [a, b]→ R is defined by

B∗mf(x) =

m∑
k=0

p∗m,k(x)f

(
a+ k − b− a

m

)

=
1

(b− a)m

m∑
k=0

(
m

k

)
(x− a)k(b− x)m−kf

(
a+ k

b− a
m

)
(1.2)

for any x ∈ [0, 1] and any m ∈ N. In (1.2) the polynomials

p∗m,k =
1

(b− a)m

(
m

k

)
(x− a)k(b− x)m−k

are the Bernstein fundamental polynomials on [a, b]. The construction of operator (1.2)
was described in [3] and [10]. It can be find also in the papers [1], [4], [5], [9], [11].

In the recent paper [10] were investigated qualitative and quantitative aspects regar-
ding the operator (1.2). More exactly, were studied uniform convergence, order of ap-
proximation and asymptotic behavior It was proved that these properties are transfered
from the classical operator Bm to the operator B∗m.

The focus of the present paper is to study properties of simultaneous approximation
for B∗m.
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Section 2 proves that the simultaneous approximation properties of Bm remain valid
for the operator B∗m. Section 3 contains some applications of the results from Section 2.
Here we discuss also about a Bernstein operator associated with a function f : [0, 1[→ R,
which appears in [7], [8], [4], [13].

2. MAIN RESULTS

In order to study simultaneous approximation properties of polynomials B∗mf , we
need the following

Lemma 2.1. The fundamental Bernstein polynomials p∗m,k satisfy the recurrence(
p∗m,k(x)

)′
=

m

b− a
(
p∗m−1,k−1(x)− p∗m−1,k(x)

)
, (2.3)

for any x ∈]a, b[, where p0,0(x) := 1, ps,s−1(x) = 0, s ∈ N.

Proof. Recall that p∗m,k(x) =
1

(b− a)m

(
m

k

)
(x− a)k(b− x)m−k. Then

(p∗m,k(x))′=
1

(b−a)m

(
m

k

){
k(x−a)k−1(b−x)m−k−(m−k)(x−a)k(b−x)m−k−1

}
=

m

b− a

{
1

(b− a)m−1

(
m−1

k−1

)
(x− a)k−1(b− x)m−k

− 1

(b− a)m−1

(
m− 1

k

)
(x− a)k(b− x)m−k−1

}
=

m

b− a
(
p∗m−1,k−1(x)− p∗m,k−1(x)

)
.

�

We are now ready to compute the first order derivative of the polynomial B∗mf .

Lemma 2.2. The following identity

(B∗m,kf)′(x) =
m

b− a

m−1∑
k=0

p∗m−1,k(x) ∆1
b−a
m

f

(
a+ k

b− a
m

)
(2.4)

holds, where

∆1
b−a
m

f

(
a+ k

b− a
m

)
= f

(
a+ (k + 1)

b− a
m

)
− f

(
a+ k

b− a
m

)
denotes the first order finite difference of f with the starting point a+ k

b− a
m

and step
b− a
m

.

Proof. By applying Lemma 2.1 we get

(B∗mf)′(x) =

m∑
k=0

(
p∗m,k(x)

)′
f

(
a+ k

b− a
m

)

=
m

b−a

m∑
k=0

p∗m−1,k−1(x)f

(
a+k

b−a
m

)
− m

b−a

m∑
k=0

p∗m−1,k(x)f

(
a+k

b− a
m

)
.

If we denote

S1 =

m∑
k=0

p∗m−1,k−1(x)f

(
a+ k

b− a
m

)
;S2 =

m∑
k=0

p∗m−1,k(x)f

(
a+ k

b− a
m

)
,
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then, since p∗m−1,−1(x) = 0, the sum S1 can be written as

S1 = p∗m−1,−1(x)f(a)+

m∑
k=1

p∗m−1,k−1(x)f

(
a+ k

b− a
m

)
=

m∑
k=1

p∗m−1,k−1(x)f

(
a+ k

b− a
m

)
,

and by denoting k − 1 := k, it follows that

S1 =

m−1∑
k=0

p∗m−1,k(x)f

(
a+ (k + 1)

b− a
m

)
.

Since p∗m−1,m(x) = 0, for the sum S2 we have

S2 =

m−1∑
k=0

p∗m−1,k(x)f

(
a+ k

b− a
m

)
+ p∗m−1,m(x)f(b) =

m−1∑
k=0

p∗m−1,k(x)f

(
a+ k

b− a
m

)
,

and going back to the expression of (B∗mf)′(x), we get

(B∗mf)′(x)=
m

b− a
(S1 − S2)=

m

b−a

m−1∑
k=0

p∗m−1,k(x) ∆1
b−a
m

f

(
a+ k

b−a
m

)
.

�

Remark 2.1. Denoting the first order divided difference of f on the knots a + k
b− a
m

,

a+ (k + 1)
b− a
m

by

[
a+ k

b− a
m

, a+ (k + 1)
b− a
m

; f

]
(see [12]), one obtains that (2.4) can

be expressed in the form

(B∗mf)′(x) =

m∑
k=0

p∗m−1,k(x)

[
a+ k

b− a
m

, a+ (k + 1)
b− a
m

; f

]
. (2.5)

Applying Lemma 2.2 and Lemma 2.1 we can prove

Theorem 2.1. Let (B∗mf)(j) be the j-th order derivative of B∗mf , where j ∈ N and j ≤ m. For
any x ∈]a, b[, the following identity

(B∗mf)(j)(x)=
m(m−1) . . . (m−j + 1)

(b−a)j

m−j∑
k=0

p∗m−j,k(x) ∆j
b−a
m

f

(
a+ k

b−a
m

)
, (2.6)

holds, where ∆j
b−a
m

denotes the j-th order finite difference of f with the step
b− a
m

.

Proof. We proceed by mathematical induction with respect to j. For j = 1, (2.6) holds by
virtue of Lemma 2.2. Suppose

(B∗mf)(j−1)(x)=
m(m−1) . . . (m−j+2)

(b− a)j−1

m−j+1∑
k=0

p∗m−j+1,k(x)∆j−1
b−a
m

f

(
a+k

b−a
m

)
.

Then

(B∗mf)(j)(x)=
m(m−1) . . . (m−j+2)

(b− a)j−1

m−j+1∑
k=0

(
p∗m−j+1(x)

)′
∆j−1

b−a
m

f

(
a+k

b−a
m

)
.

Now, by applying Lemma 2.1 one obtains: (B∗mf)(j)(x) =

=
m(m− 1) . . . (m− j + 1)

(b− a)j
·
m−j∑
k=0

{
p∗m−j,k−1(x)− p∗m−j,k(x)

}
∆j−1

b−a
m

f

(
a+ k

b− a
m

)
.



4 Dan Bărbosu

By denoting

S1 =

m−j+1∑
k=0

p∗m−j,k−1(x)∆j−1
b−a
m

f

(
a+ k

b− a
m

)
, S2 =

m−j+1∑
k=0

p∗m−j,k(x)∆j−1
b−a
m

f

(
a+ k

b− a
m

)
,

it follows that

(B∗mf)(j)(x) =
m(m− 1) . . . (m− j + 1)

(b− a)j
(S1 − S2). (2.7)

Using the fact that p∗m−j+1,−1(x) = 0, the sum S1 we can written under the form

S1 = p∗m−j,−1(x)∆j−1
b−a
m

f(a) +

m−j+1∑
k=1

p∗m−j,k−1(x)∆j−1
b−a
m

f

(
a+ k

b− a
m

)

=

m−j+1∑
k=1

p∗m−j,k−1(x)∆j−1
b−a
m

f

(
a+ k

b− a
m

)
.

By making the change k − 1 := k, it follows that S1 can be expressed as

S1 =

m−j∑
k=0

p∗m−j,k(x) ∆j−1
b−a
m

f

(
a+ (k + 1)

b− a
m

)
.

Since p∗m−j,m−j+1(x) = 0, for the sum S2 we have

S2 =

m−j∑
k=1

p∗m−j,k(x)∆j−1
b−a
m

f

(
a+ k

b− a
m

)
+ p∗m−j,m−j+1(x)

=

m−j∑
k=1

p∗m−j,k(x) ∆j−1
b−a
m

f

(
a+ k

b− a
m

)
,

Going back to (2.7), we get:

(B∗mf)(j)(x) =
m(m−1) . . . (m−j+1)

(b− a)j

m−j∑
k=0

p∗m−j,k(x)

{
∆j−1

b−a
m

(
a+ (k+1)

b−a
m

)
−∆k−1

b−a
m

f

(
a+ k

b− a
m

)}
=
m(m−1) . . . (m−j+1)

(b− a)j

m−j∑
k=0

p∗m−j,k(x) ∆j
b−a
m

f

(
a+ k

b−a
m

)
.

�

Corollary 2.1. The polynomial B∗mf can be represented under the form

B∗mf(x) =

m∑
j=0

(
m

j

)(
x− a
b− a

)j

∆j
b−a
m

f(a). (2.8)

Proof. Applying the Taylor’s formula to the m-th degree polynomial B∗mf , we have

B∗mf(x) =

m∑
j=0

(B∗mf)(j)(a)

j!
(x− a)j .

By virtue of Theorem 2.1

(B∗mf)(j)(a) =
m(m−1) . . . (m−j+1)

(b− a)j

m−j∑
k=0

p∗m−j,k(a)∆j
b−a
m

f

(
a+ k

b− a
m

)
.
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But p∗m−j,0(a) = 1 and p∗m−j,k(a) = 0 for any k ∈ {1, 2, . . . ,m}which imply

(B∗mf)(j)(a) =
m(m− 1) . . . (m− j + 1)

(b− a)j
∆j

b−a
m

f(a),

and hence

B∗mf(x) =

m∑
j=0

(
m

j

)(
x− a
b− a

)j

∆j
b−a
m

f(a).

�

Remark 2.2. (i) In [10] it was proved that the sequence {B∗mf}m∈N converges to f uni-
formly on [a, b], for any f ∈ C[a, b].

(ii) We shall prove that the sequence {(Bk
mf)(j)}m∈N converges to f (j) uniformly on

[a, b], for any f ∈ Cj [a, b] where j ∈ N, j ≤ m.
(iii) We will use the Landau’s symbol o, which we recall here

f(x) = o(g(x))(x→ x0)⇔ lim
x→x0

f(x)

g(x)
= 0.

Using the symbol o, the equality lim
m→∞

u

(
1

m

)
= 0 can be written in the form u

(
1

m

)
=o(1).

Lemma 2.3. For any j ∈ N, k ∈ N0, j ≤ m, k ≤ m− j, the following equality

m(m−1) . . . (m−j + 1)

(b− a)j
∆j

b−a
m

f

(
a+ k

b−a
m

)
= (1 + o(1))f (j)(ξk) (2.9)

holds, where ξk ∈
]
a+ k b−a

m , a+ (k + 1)
b− a
m

[
, k ∈ {0, 1, . . . ,m− 1} and f ∈ Cj [a, b].

Proof. Using Landau’s symbol o, we can write

m(m− 1) . . . (m− j + 1)

(b− a)j
∆j

b−a
m

f

(
a+ k

b− a
m

)
=

1

(b−a)j
mj

(
1 +

1

m

)(
1− 2

m

)
. . .

(
1− j − 1

m

)
∆j

b−a
m

f

(
a+ k

b− a
m

)
=

1

(b− a)j
mj(1 + o(1))∆j

b−a
m

f

(
a+ k

b− a
m

)
. (2.10)

Using the relationship between finite and divided differences [2], we have

1

(b− a)j
mj∆j

b−a
m

f

(
a+ k

b− a
m

)
= j!

[
a+ k

b− a
m

, . . . , a+ (k + j)
b− a
m

; f

]
. (2.11)

Because f ∈ Cj [a, b], the mean value theorem for divided differences [12] leads to[
a+ k

b− a
m

, . . . , a+ (k + j)
b− a
m

; f

]
=
f (j)(ξk)

j!
, (2.12)

where ξk ∈
]
a+ k b−a

m , a+ (k + 1) b−a
m

[
, k ∈ {0, 1, . . . ,m− 1}.

From (2.10), (2.11) and (2.12) we get (2.9). �

Theorem 2.2. If j ∈ N0, j ≤ m and f ∈ Cj [a, b], the sequence {(B∗mf)(j)}m∈N, converges to f ,
uniformly on [a, b].
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Proof. For j = 0 the assertion was proved in [10]. Suppose j ∈ N. From Theorem 2.1 and
Lemma 2.3 it follows

(B∗mf)(j)(x) =

m−j∑
k=0

p∗m−j,k(x)(1 + o(1))f (j)(ξk) (2.13)

But

f (j)(ξk) =

(
f (j)(ξk)− f (j)

(
a+ k

b− a
m

))
+ f (j)

(
a+ k

b− a
m

)
and because

∣∣∣∣∣ξk −
(
a+ k

b− a
m

)∣∣∣∣∣ < b− a
m

and f ∈ C(j)[a, b], we get

f (j)(ξk)− f (j)
(
a+ k

b− a
m

)
= o(1).

It follows that we can write

f (j)(ξk) = o(1) + f (j)
(
a+ k

b− a
m

)
. (2.14)

Using (2.13) and (2.14), we obtain

(B∗mf)(j)(x) =

m−j∑
k=0

p∗m−j,k(x)(1 + (1))

(
(1) + f (j)

(
a+ k

b− a
m

))

=

m−j∑
k=0

p∗m−j,k(x)f

(
a+ k

b− a
m

)
+ o(1) = B∗m−jf

(j)(x) + o(1). (2.15)

The sequence {B∗m−jg}m∈N converges to g uniformly on [a, b] for any g ∈ C[a, b].
Choosing g = f (j) ∈ C[a, b] from (2.15) one obtains that

lim
m→∞

(B∗mf)(j)(x) = f (j)(x),

uniformly on [a, b]. �

3. APPLICATIONS

Below we present some particular cases of the Bernstein operator B∗m obtained from
(1.2) for specific values of a, b.

Case 1. For a := 0, b := 1 one obtains the Bernstein operator [11].
As consequences of the results from Section 2 one recover well known properties of Bern-
stein operator (1.1). The most important of them are the following corollaries.

Corollary 3.2. If j ∈ N, j ≤ m the j-th order derivative of the Bernstein polynomial is given by

(Bmf)(j)(x) = m(m− 1) . . . (m− j + 1)

m−j∑
k=0

pm−j,k(x)∆j
1
m

f

(
k

m

)
. (3.16)

Corollary 3.3. The Bernstein polynomial (3.16) can be represented under the form

Bmf(x) =

m∑
j=0

(
m

j

)
∆j

1
m

f(0), for any x ∈ [0, 1]. (3.17)

Corollary 3.4. If j ∈ N0), j ≤ m and f ∈ Cj [0, 1], the sequence {(Bmf)(j)}m∈N converges to
f (j) uniformly on [0, 1], for any f ∈ Cj [0, 1].
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Case 2. For a := 0, b :=
m

m+ 1
one obtains the Bernstein operator associated to any

function f :
[
0,

m

m+ 1

]
→ R given by

B∗mf(x) =

(
m+ 1

m

)m m∑
k=0

(
m

k

)
xk
(

m

m+ 1
− x
)m−k

f

(
k

m+ 1

)
(3.18)

for any x ∈
[
0,

m

m+ 1

]
and any m ∈ N. Relation (3.18) appears in the papers [7], [8] with

a small modification, namely the knots
k

m+ 1
are replaced with the knots

k

m
. The aut-

hors of the cited papers call modified relation (3.18) ”new Bernstein operator”. Bărbosu
and Deo in [4] remarked that the definition of ”new Bernstein operator” is wrong and
clarified that relation (3.18) represents definition of the Bernstein operator. Recently Sid-
diqui, Agrawal and Gupta [13] used and modified the definition of ”new Bernstein type
operator”, in the sense of (3.18) and claimed that they have obtained ”modified new Bern-
stein operator”. In fact, they recovered the Bernstein operator B∗m. Coming back to the
operators (3.18) introduced in [4], as a consequence of results from Section 2, we can state

Corollary 3.5. If j ∈ N, j ≤ m the j-th order derivative of operator (3.18) is expressed by

(B∗mf)(j)(x) =

(
m+1

m

)j

m(m− 1) . . . (m−j+ 1)

m−j∑
k=0

p∗m−j,k(x)∆j
1

m+1

f

(
k

m+1

)
, (3.19)

where the fundamental Bernstein polynomials are given by

p∗m,k(x) =

(
m+ 1

m

)m(
m

k

)
xk
(

m

m+ 1
− x
)m−k

. (3.20)

Corollary 3.6. The polynomial (3.18) can be expressed under the form

B∗mf(x) =

m∑
j=0

(
m

j

)(
m+ 1

m

)j

∆j
1

m+1

f(0). (3.21)

Regarding the approximation properties of the operator (3.18), first we prove

Lemma 3.4. The sequence of polynomials (3.18) converges to f , uniformly on any compact
[0, a] ⊂ [0, 1[.

Proof. Applying the results from [10] (or by direct computation), we get

B∗m((t− x)2;x) =
x(m− (m+ 1)x)

m(m+ 1)
, ∀x ∈

[
0,

m

m+ 1

]
.

For each a > 0, it follows lim
m→∞

B∗m((t− x)2;x) = 0, uniformly on [0, a].

Consequently, applying the Bohman-Korovkin theorem [2], we get that {B∗mf}m∈N
converges to f , uniformly on [0, a], for any f ∈ C[0, 1[. �

The properties of simultaneous approximation are described in the following

Theorem 3.3. Let j be a non-negative integer and denote by (B∗mf)(j) the j-th order derivative
of the polynomial (3.18). The sequence {(B∗mf)(j)}m∈N)

converges to f (j), uniformly on [0, a] ⊂

[0, 1[, for any Cj
[
0,

n

n+ 1

]
.
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Proof. For j = 0 the assertion was proved in Lemma 3.1. Suppose j ∈ N. Proceeding as in
Lemma 2.3, we can write

m(m− 1) . . . (m− j + 1)∆j
1

m+1

f

(
k

m+ 1

)
= (1 + o(1))f (j)(ξk) (3.22)

where ξk ∈
] k

m+ 1
,
k + 1

m+ 1

[
, k ∈ {0, 1, . . . ,m− 1}.

Using (3.22) and Corollary 3.4, it follows

(B∗mf)(j)(x) =

(
m+ 1

m

)m m−j∑
k=0

p∗m−j,k(x)(1 + o(1))f (j)(ξk). (3.23)

From (3.23), as in the proof of Theorem 2.2, one arrives to

(B∗mf)(j)(x) =

(
m+ 1

m

)j

B∗m−jf
(j)(x) + o(1) (3.24)

The sequence {B∗m−jg}m∈N converges to g, uniformly on [0, a] ⊂ [0, 1[, for any g ∈ C
[
0,

m

m+ 1

]
.

Choosing g = f (j) ∈ C
[
0,

m

m+ 1

]
, from (3.24) one obtains that {(B∗mf)(j)}m∈N converges

to f (j), for any f ∈ Cj
[
0,

m

m+ 1

]
. �
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