Radius of exponential convexity of certain subclass of analytic functions

S. Sunil Varma ${ }^{1}$, Thomas Rosy ${ }^{2}$ and U. Vadivelan ${ }^{3}$

ABSTRACT. Let \mathcal{S} be the class of analytic normalized univalent functions defined on the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ and f, g be two functions in \mathcal{S} satisfying $\operatorname{Re}\left(\frac{z f^{\prime}(z) e^{\alpha f(z)}}{g(z)}\right)>0$ and $\left|\frac{z f^{\prime}(z) e^{\alpha f(z)}}{g(z)}-1\right|<1$, $\alpha \in \mathbb{C} \backslash\{0\}$. We determine the radius of exponential convexity of $f \in \mathcal{S}$ whenever g satisfies (i) $\operatorname{Re} \frac{g(z)}{z}>0$ (ii) $R e \frac{g(z)}{z}>1 / 2$.

1. Introduction

Let Δ denote the open unit disk $\{z \in \mathbb{C}:|z|<1\}$ in \mathbb{C} and \mathcal{A} the class of normalized analytic functions on Δ. Let \mathcal{S} denote the subclass of \mathcal{A} consisting of functions univalent in Δ. The class of starlike functions and convex functions are two standard subclasses of \mathcal{S}.

For two functions $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$. and $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\ldots$, in \mathcal{A}, the sharp radius of convexity of functions satisfying

$$
\Re\left(\frac{f^{\prime}(z)}{g^{\prime}(z)}\right)>0
$$

whenever g satisfies various geometric conditions like univalence, starlikeness, convexity, starlikeness of order α and convexity of order $\alpha,(0 \leq \alpha<1)$ were obtained by Ratti [4]. In [5] he obtained similar results when $f, g \in \mathcal{A}$ satisfying

$$
\left|\frac{f^{\prime}(z)}{g^{\prime}(z)}-1\right|<1
$$

where again g satisfies the conditions above. Motivated by the above results, we obtain the radius of α - exponential convexity for functions $f \in \mathcal{S}$ whenever g satisfies certain conditions similar to above. We recall the definition of exponential convex functions.
Definition 1.1. Let $\alpha \in \mathbb{C} \backslash\{0\}$. A function $f \in \mathcal{S}$ is said to belong to the class $E(\alpha)$ of α - exponentially convex functions if $F(\Delta)$ is a convex set where $F(z)=e^{\alpha f(z)}$.

This class was introduced and studied by Arango etal. [1]
Remark 1.1. For $f \in E(\alpha)$ and $x \in \bar{\Delta} \backslash\{0\}$, the function $f(x z) / x$ is not necessarily in $E(\alpha)$.

The following theorem gives an analytic characterization of exponentially convex univalent functions.

[^0]Theorem 1.1. [1] Let $\alpha \in \mathbb{C} \backslash\{0\}$. A function f analytic in Δ with $f(0)=0, f^{\prime}(0)=1$ is in $E(\alpha)$ if and only if

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha z f^{\prime}(z)\right)>0, z \in \Delta
$$

We now state few lemmas which are useful to prove our main results.
Lemma 1.1. [3] If $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is analytic in $|z|<1$ and $\Re(h(z))>0$ for $|z|<1$, then
(i) $\left|\frac{h^{\prime}(z)}{h(z)}\right| \leq \frac{2}{1-|z|^{2}}$.
(ii) $\left.\Re\left\{\frac{z h^{\prime}(z)}{h(z}\right)\right\} \geq \frac{-2|z|}{1-|z|^{2}}$.

Lemma 1.2. [4] The function $g(z)$ is analytic for $|z|<1$ and satisfies $g(0)=1$ and $\Re(g(z))>\alpha(0 \leq \alpha<1)$ for $|z|<1$ if and only if $g(z)=\frac{1+(2 \alpha-1) z \phi(z)}{1+z \phi(z)}$, where $\phi(z)$ is analytic and satisfies $|\phi(z)| \leq 1$ for $|z|<1$.
Lemma 1.3. [4] If $\phi(z)$ is analytic for $|z|<1$ and $|\phi(z)| \leq 1$ for $|z|<1$, then
(i) $\left|\phi^{\prime}(z)\right| \leq \frac{1-|\phi(z)|^{2}}{1-|z|^{2}}$;
(ii) $\left|\frac{z \phi^{\prime}(z)+\phi(z)}{1+z \phi(z)}\right| \leq \frac{1}{1-|z|}$.

Lemma 1.4. [4] If $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots+\ldots$ is analytic in $|z|<1$ and $\Re(h(z))>\alpha$ $(0 \leq \alpha<1)$ for $|z|<1$, then $\Re(h(z)) \geq \frac{1-(2 \alpha-1)|z|}{1+|z|}$.

Lemma 1.5. [2] If $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots+\ldots$ is analytic in $|z|<1$ and $\operatorname{Reh}(z)>0$ for $|z|<1$, then $\Re(h(z)) \geq \frac{1-|z|}{1+|z|}$.
Remark 1.2. Functions of the form $h(z)=1+c_{1} z+\ldots$ defined on the unit disk satisfying $\Re(h(z))>0$ are called positive functions.

2. Main results

Theorem 2.2. Let $f(z)=z+a_{2} z^{2}+\ldots$ and $g(z)=z+b_{2} z^{2}+\ldots$ be two functions in \mathcal{S}, satisfying $\Re\left(\frac{z f^{\prime}(z) e^{\alpha f(z)}}{g(z)}\right)>0$. If g satisfies $\Re\left(\frac{g(z)}{z}\right)>0, z \in \Delta$, then the radius of α-exponential convexity of f is 0.36
Proof. If f satisfies $\Re\left(\frac{z f^{\prime}(z) e^{\alpha f(z)}}{g(z)}\right)>0$, then there is a positive function h such that

$$
z f^{\prime}(z) e^{\alpha f(z)}=g(z) h(z)
$$

Taking logarithmic derivatives on both-sides,

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha z f^{\prime}(z)=\frac{z g^{\prime}(z)}{g(z)}+\frac{z h^{\prime}(z)}{h(z)} \tag{2.1}
\end{equation*}
$$

which implies

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha z f^{\prime}(z)\right)=\Re\left(\frac{z g^{\prime}(z)}{g(z)}\right)+\operatorname{Re}\left(\frac{z h^{\prime}(z)}{h(z)}\right)
$$

$$
\geq \frac{1-2|z|-|z|^{2}}{1-|z|^{2}}-\frac{2|z|}{1-|z|^{2}}=\frac{1-4|z|-|z|^{2}}{1-|z|^{2}} .
$$

If $\frac{1-4|z|-|z|^{2}}{1-|z|^{2}}>0$, that is, if $|z|<\sqrt{5}-2=0.36$, then $\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha z f^{\prime}(z)\right)>0$. Thus, f is α - exponential convex in the disk $|z|<\sqrt{5}-2=0.36$ Theorem 2.3. Let $f(z)=z+a_{2} z^{2}+\ldots$ and $g(z)=z+b_{2} z^{2}+\ldots$ be in \mathcal{S}, and $\Re\left(\frac{z f^{\prime}(z) e^{\alpha f(z)}}{g(z)}\right)>0$. If g satisfy $\Re\left(\frac{g(z)}{z}\right)>\frac{1}{2}, z \in \Delta$, then the radius of α - exponential convexity of f is 0.28078 Proof. If f satisfies $\Re\left(\frac{z f^{\prime}(z) e^{\alpha f(z)}}{g(z)}\right)>0$, then there is a positive function h such that $z f^{\prime}(z) e^{\alpha f(z)}=g(z) h(z)$. Taking logarithmic derivatives on both sides

$$
\begin{gathered}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha z f^{\prime}(z)=\frac{z g^{\prime}(z)}{g(z)}+\frac{z h^{\prime}(z)}{h(z)} \\
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha z f^{\prime}(z)\right)=\Re\left(\frac{z g^{\prime}(z)}{g(z)}\right)+\operatorname{Re}\left(\frac{z h^{\prime}(z)}{h(z)}\right) .
\end{gathered}
$$

Since $\Re\left(\frac{g(z)}{z}\right)>\frac{1}{2}$ we have $\frac{g(z)}{z}=\frac{1}{1+z \phi(z)}$ for some analytic function ϕ such that $|\phi(z)| \leq 1$. Therefore,

$$
\frac{z g^{\prime}(z)}{g(z)}=1-\frac{z \phi(z)+z^{2} \phi^{\prime}(z)}{1+z \phi(z)}
$$

where $\left|\frac{z \phi(z)+z^{2} \phi^{\prime}(z)}{1+z \phi(z)}\right| \leq \frac{|z|}{1-|z|}$.

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha z f^{\prime}(z)\right) \geq 1-\frac{|z|}{1-|z|}-\frac{2|z|}{1-|z|^{2}}=\frac{1-3|z|-2|z|^{2}}{1-|z|^{2}}
$$

If $1-3|z|-2|z|^{2}>0$ that is if $|z|<0.2878$ then $\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha z f^{\prime}(z)\right)>0$.
Thus f is α - exponential convex in $|z| \leq 0.28078$
Theorem 2.4. Let $f(z)=z+a_{2} z^{2}+\ldots$ and $g(z)=z+b_{2} z^{2}+\ldots$ be in \mathcal{S}, and $\left|\frac{z f^{\prime}(z) e^{\alpha f(z)}}{g(z)}-1\right|<1$, where $\alpha \in \mathbb{C} \backslash\{0\}$ for $|z|<1$. If $\Re\left(\frac{g(z)}{z}\right)>0$ then f is of α - exponential convex in $|z|<\frac{1}{3}$. Proof. Let $h(z)=\frac{z f^{\prime}(z) e^{\alpha f(z)}}{g(z)}-1$. Then $h(z)$ is analytic in Δ with $h(0)=0,|h(z)|<1$ for $|z|<1$. By Schwarz's lemma, $h(z)=z \phi(z)$, with $|\phi(z)| \leq 1$. Therefore,

$$
\frac{z f^{\prime}(z) e^{\alpha f(z)}}{g(z)}-1=z \phi(z) i . e
$$

$z f^{\prime}(z) e^{\alpha f(z)}=g(z)(1+z \phi(z))$. Taking logarithmic derivative on both sides

$$
\frac{1}{z}+\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha f^{\prime}(z)=\frac{g^{\prime}(z)}{g(z)}+\frac{z \phi^{\prime}(z)+\phi(z)}{1+z \phi(z)}
$$

which gives

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z \alpha f^{\prime}(z)=\frac{z g^{\prime}(z)}{g(z)}+\frac{z\left(z \phi^{\prime}(z)+\phi(z)\right)}{1+z \phi(z)}
$$

Therefore,

$$
\begin{aligned}
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right. & \left.+z \alpha f^{\prime}(z)\right)=\Re\left(\frac{z g^{\prime}(z)}{g(z)}\right)+\Re\left(\frac{z\left(z \phi^{\prime}(z)+\phi(z)\right)}{1+z \phi(z)}\right) \\
& \geq \frac{1-2|z|-|z|^{2}}{1-|z|^{2}}-\frac{|z|}{1-|z|}=\frac{1-3|z|}{1-|z|^{2}} .
\end{aligned}
$$

If $1-3|z|>0$ then $\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z \alpha f^{\prime}(z)\right)>0$.
Hence f satisfying the given condition is $\alpha-$ exponential convex in the disk $|z|<\frac{1}{3}$.
Theorem 2.5. Let $f(z)=z+a_{2} z^{2}+\ldots$ and $g(z)=z+b_{2} z^{2}+\ldots$ be in \mathcal{S}, and $\left|\frac{z f^{\prime}(z) e^{\alpha f(z)}}{g(z)}-1\right|<1$ where $\alpha \in \mathbb{C} \backslash\{0\}$ for $|z|<1$. If $\Re\left(\frac{g(z)}{z}\right)>\frac{1}{2}$ then f is of α-exponential convex in $|z|<\frac{1}{3}$.
Proof. In lines similar to the proof of the previous Theorem

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z \alpha f^{\prime}(z)\right) \geq \Re\left(\frac{z g^{\prime}(z)}{g(z)}\right)-\frac{|z|}{1-|z|} \geq 1-\frac{|z|}{1-|z|}-\frac{|z|}{1-|z|}=\frac{1-3|z|}{1-|z|} .
$$

If $1-3|z|>0$, that is, $|z|<\frac{1}{3}$, it is true that $\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z \alpha f^{\prime}(z)\right)>0$.

References

[1] Arango, J. H., Mejia, D. and Ruscheweyh, S., Exponentially Convex Univalent Functions, Comp. Vari. Ellip. Eqns, 33 (1997), No. 1, 33-50
[2] Caratheodory, C., Conformal Representations, Cambridge University Press, Cambridge, 1952
[3] MacGregor, T. H., Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537
[4] Ratti, J. S., The Radius of Convexity of Certain Analytic Functions, J. Pure and Appl. Math., 1 (1970), 30-36
[5] Ratti, J. S., The Radius of Convexity of Certain Analytic Functions - II, Int. J. Math and Math Sci., 3 (1980), 483-489

[^1]
[^0]: Received: 19.02.2019. In revised form: 07.12.2019. Accepted: 10.12.2019
 2010 Mathematics Subject Classification. 30C45,30C50.
 Key words and phrases. univalent functions, radius of exponential convexity.
 Corresponding author: S. Sunil Varma; sunu_79@yahoo.com

[^1]: 1,2 Department of Mathematics
 Madras Christian College
 TAMBARAM, CHENNAI - 600059
 TAMIL NADU, INDIA
 E-mail address: sunu_79@yahoo.com
 E-mail address: thomas.rosy@gmail.com
 ${ }^{3}$ Department of Mathematics
 Vel Tech Rangarajan Dr Sagunthala R \& D Institute of Science and Technology
 AVADI, CHENNAI - 600062
 TAMIL NADU, INDIA
 E-mail address: vadivelanu@gmail.com
 E-mail address: sunu_79@yahoo.com
 E-mail address: thomas.rosy@gmail.com

