Radius of exponential convexity of certain subclass of analytic functions

S. SUNIL VARMA¹, THOMAS ROSY² and U. VADIVELAN³

ABSTRACT. Let S be the class of analytic normalized univalent functions defined on the unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and f, g be two functions in S satisfying $Re\left(\frac{zf'(z)e^{\alpha f(z)}}{g(z)}\right) > 0$ and $\left|\frac{zf'(z)e^{\alpha f(z)}}{g(z)} - 1\right| < 1$, $\alpha \in \mathbb{C} \setminus \{0\}$. We determine the radius of exponential convexity of $f \in S$ whenever g satisfies (i) $Re\frac{g(z)}{z} > 0$ (ii) $Re\frac{g(z)}{z} > 1/2$.

1. INTRODUCTION

Let Δ denote the open unit disk { $z \in \mathbb{C} : |z| < 1$ } in \mathbb{C} and \mathcal{A} the class of normalized analytic functions on Δ . Let \mathcal{S} denote the subclass of \mathcal{A} consisting of functions univalent in Δ . The class of starlike functions and convex functions are two standard subclasses of \mathcal{S} .

For two functions $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$ and $g(z) = z + b_2 z^2 + b_3 z^3 + \dots$, in A, the sharp radius of convexity of functions satisfying

$$\Re\!\left(\frac{f'(z)}{g'(z)}\right)>0$$

whenever *g* satisfies various geometric conditions like univalence, starlikeness, convexity, starlikeness of order α and convexity of order α , $(0 \le \alpha < 1)$ were obtained by Ratti [4]. In [5] he obtained similar results when $f, g \in A$ satisfying

$$\left|\frac{f'(z)}{g'(z)} - 1\right| < 1$$

where again g satisfies the conditions above. Motivated by the above results, we obtain the radius of α - exponential convexity for functions $f \in S$ whenever g satisfies certain conditions similar to above. We recall the definition of exponential convex functions.

Definition 1.1. Let $\alpha \in \mathbb{C} \setminus \{0\}$. A function $f \in S$ is said to belong to the class $E(\alpha)$ of α - exponentially convex functions if $F(\Delta)$ is a convex set where $F(z) = e^{\alpha f(z)}$.

This class was introduced and studied by Arango etal. [1]

Remark 1.1. For $f \in E(\alpha)$ and $x \in \overline{\Delta} \setminus \{0\}$, the function f(xz)/x is not necessarily in $E(\alpha)$.

The following theorem gives an analytic characterization of exponentially convex univalent functions.

Corresponding author: S. Sunil Varma; sunu_79@yahoo.com

Received: 19.02.2019. In revised form: 07.12.2019. Accepted: 10.12.2019

²⁰¹⁰ Mathematics Subject Classification. 30C45,30C50.

Key words and phrases. *univalent functions, radius of exponential convexity.*

Theorem 1.1. [1] Let $\alpha \in \mathbb{C} \setminus \{0\}$. A function f analytic in Δ with f(0) = 0, f'(0) = 1 is in $E(\alpha)$ if and only if

$$\Re\biggl(1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}+\alpha zf^{\prime}(z)\biggr)>0, z\in\Delta.$$

We now state few lemmas which are useful to prove our main results.

Lemma 1.1. [3] If $h(z) = 1 + c_1 z + c_2 z^2 + ...$ is analytic in |z| < 1 and $\Re(h(z)) > 0$ for |z| < 1, then

(i) $\left|\frac{h'(z)}{h(z)}\right| \le \frac{2}{1-|z|^2}$. (ii) $\Re\left\{\frac{zh'(z)}{h(z)}\right\} \ge \frac{-2|z|}{1-|z|^2}$.

Lemma 1.2. [4] The function g(z) is analytic for |z| < 1 and satisfies g(0) = 1 and $\Re(g(z)) > \alpha$ $(0 \le \alpha < 1)$ for |z| < 1 if and only if $g(z) = \frac{1 + (2\alpha - 1)z\phi(z)}{1 + z\phi(z)}$, where $\phi(z)$ is analytic and satisfies $|\phi(z)| \le 1$ for |z| < 1.

Lemma 1.3. [4] If $\phi(z)$ is analytic for |z| < 1 and $|\phi(z)| \le 1$ for |z| < 1, then (i) $|\phi'(z)| \le \frac{1 - |\phi(z)|^2}{1 - |z|^2}$; (ii) $\left|\frac{z\phi'(z) + \phi(z)}{1 + z\phi(z)}\right| \le \frac{1}{1 - |z|}$.

Lemma 1.4. [4] If $h(z) = 1 + c_1 z + c_2 z^2 + ... + ...$ is analytic in |z| < 1 and $\Re(h(z)) > \alpha$ $(0 \le \alpha < 1)$ for |z| < 1, then $\Re(h(z)) \ge \frac{1 - (2\alpha - 1)|z|}{1 + |z|}$.

Lemma 1.5. [2] If $h(z) = 1 + c_1 z + c_2 z^2 + ... + ...$ is analytic in |z| < 1 and Reh(z) > 0 for |z| < 1, then $\Re(h(z)) \ge \frac{1 - |z|}{1 + |z|}$.

Remark 1.2. Functions of the form $h(z) = 1 + c_1 z + ...$ defined on the unit disk satisfying $\Re(h(z)) > 0$ are called positive functions.

2. MAIN RESULTS

Theorem 2.2. Let $f(z) = z + a_2 z^2 + ...$ and $g(z) = z + b_2 z^2 + ...$ be two functions in S, satisfying $\Re\left(\frac{zf'(z)e^{\alpha f(z)}}{g(z)}\right) > 0$. If g satisfies $\Re\left(\frac{g(z)}{z}\right) > 0, z \in \Delta$, then the radius of α -exponential convexity of f is 0.36

Proof. If *f* satisfies
$$\Re\left(\frac{zf'(z)e^{\alpha f(z)}}{g(z)}\right) > 0$$
, then there is a positive function *h* such that $zf'(z)e^{\alpha f(z)} = g(z)h(z).$

Taking logarithmic derivatives on both-sides,

$$1 + \frac{zf''(z)}{f'(z)} + \alpha zf'(z) = \frac{zg'(z)}{g(z)} + \frac{zh'(z)}{h(z)}$$
(2.1)

which implies

$$\Re\left(1 + \frac{zf^{''}(z)}{f'(z)} + \alpha zf^{'}(z)\right) = \Re\left(\frac{zg^{'}(z)}{g(z)}\right) + Re\left(\frac{zh^{'}(z)}{h(z)}\right)$$

110

Radius of exponential convexity...

$$\geq \frac{1-2|z|-|z|^2}{1-|z|^2} - \frac{2|z|}{1-|z|^2} = \frac{1-4|z|-|z|^2}{1-|z|^2}.$$

If $\frac{1-4|z|-|z|^2}{1-|z|^2} > 0$, that is, if $|z| < \sqrt{5} - 2 = 0.36$, then $\Re\left(1 + \frac{zf^{''}(z)}{f'(z)} + \alpha zf'(z)\right) > 0.$
Thus, f is α - exponential convex in the disk $|z| < \sqrt{5} - 2 = 0.36$ \Box

Theorem 2.3. Let $f(z) = z + a_2 z^2 + ...$ and $g(z) = z + b_2 z^2 + ...$ be in *S*, and $\Re\left(\frac{zf'(z)e^{\alpha f(z)}}{g(z)}\right) > 0.$

If g satisfy $\Re\left(\frac{g(z)}{z}\right) > \frac{1}{2}, z \in \Delta$, then the radius of α – exponential convexity of f is 0.28078

Proof. If *f* satisfies $\Re\left(\frac{zf'(z)e^{\alpha f(z)}}{g(z)}\right) > 0$, then there is a positive function *h* such that $zf'(z)e^{\alpha f(z)} = g(z)h(z)$. Taking logarithmic derivatives on both sides

$$1 + \frac{zf''(z)}{f'(z)} + \alpha zf'(z) = \frac{zg'(z)}{g(z)} + \frac{zh'(z)}{h(z)}$$
$$\Re\left(1 + \frac{zf''(z)}{f'(z)} + \alpha zf'(z)\right) = \Re\left(\frac{zg'(z)}{g(z)}\right) + Re\left(\frac{zh'(z)}{h(z)}\right)$$

Since $\Re\left(\frac{g(z)}{z}\right) > \frac{1}{2}$ we have $\frac{g(z)}{z} = \frac{1}{1+z\phi(z)}$ for some analytic function ϕ such that $|\phi(z)| \leq 1$. Therefore,

$$\frac{zg^{'}(z)}{g(z)} = 1 - \frac{z\phi(z) + z^{2}\phi^{'}(z)}{1 + z\phi(z)}$$

where
$$\left|\frac{z\phi(z) + z^{2}\phi'(z)}{1 + z\phi(z)}\right| \le \frac{|z|}{1 - |z|}$$
.

$$\Re\left(1 + \frac{zf''(z)}{f'(z)} + \alpha zf'(z)\right) \ge 1 - \frac{|z|}{1 - |z|} - \frac{2|z|}{1 - |z|^{2}} = \frac{1 - 3|z| - 2|z|^{2}}{1 - |z|^{2}}.$$

If $1 - 3|z| - 2|z|^2 > 0$ that is if |z| < 0.2878 then $\Re\left(1 + \frac{zf'(z)}{f'(z)} + \alpha zf'(z)\right) > 0$. Thus f is α - exponential convex in $|z| \le 0.28078$

Theorem 2.4. Let $f(z) = z + a_2 z^2 + ...$ and $g(z) = z + b_2 z^2 + ...$ be in S, and $\left| \frac{z f'(z) e^{\alpha f(z)}}{g(z)} - 1 \right| < 1$, where $\alpha \in \mathbb{C} \setminus \{0\}$ for |z| < 1. If $\Re\left(\frac{g(z)}{z}\right) > 0$ then f is of α - exponential convex in $|z| < \frac{1}{3}$.

Proof. Let $h(z) = \frac{zf'(z)e^{\alpha f(z)}}{g(z)} - 1$. Then h(z) is analytic in Δ with h(0) = 0, |h(z)| < 1 for |z| < 1. By Schwarz's lemma, $h(z) = z\phi(z)$, with $|\phi(z)| \le 1$. Therefore,

$$\frac{zf'(z)e^{\alpha f(z)}}{g(z)} - 1 = z\phi(z)i.e$$

 $zf^{'}(z)e^{\alpha f(z)}=g(z)(1+z\phi(z)).$ Taking logarithmic derivative on both sides

$$\frac{1}{z} + \frac{f^{''}(z)}{f^{'}(z)} + \alpha f^{'}(z) = \frac{g^{'}(z)}{g(z)} + \frac{z\phi^{'}(z) + \phi(z)}{1 + z\phi(z)}$$

S. Sunil Varma, Thomas Rosy and U. Vadivelan

which gives

$$1 + \frac{zf''(z)}{f'(z)} + z\alpha f'(z) = \frac{zg'(z)}{g(z)} + \frac{z(z\phi'(z) + \phi(z))}{1 + z\phi(z)}.$$

Therefore,

$$\begin{split} \Re\bigg(1 + \frac{zf^{''}(z)}{f'(z)} + z\alpha f^{'}(z)\bigg) &= \Re\bigg(\frac{zg^{'}(z)}{g(z)}\bigg) + \Re\bigg(\frac{z(z\phi^{'}(z) + \phi(z))}{1 + z\phi(z)}\bigg) \\ &\geq \frac{1 - 2|z| - |z|^2}{1 - |z|^2} - \frac{|z|}{1 - |z|} = \frac{1 - 3|z|}{1 - |z|^2}. \end{split}$$
 If $1 - 3|z| > 0$ then $\Re\bigg(1 + \frac{zf^{''}(z)}{f'(z)} + z\alpha f^{'}(z)\bigg) > 0.$

Hence *f* satisfying the given condition is α – exponential convex in the disk $|z| < \frac{1}{3}$. \Box

Theorem 2.5. Let $f(z) = z + a_2 z^2 + \dots$ and $g(z) = z + b_2 z^2 + \dots$ be in S, and $\left| \frac{z f'(z) e^{\alpha f(z)}}{g(z)} - 1 \right| < 1$ where $\alpha \in \mathbb{C} \setminus \{0\}$ for |z| < 1. If $\Re\left(\frac{g(z)}{z}\right) > \frac{1}{2}$ then f is of α - exponential convex in $|z| < \frac{1}{3}$.

Proof. In lines similar to the proof of the previous Theorem

$$\Re\left(1 + \frac{zf^{''}(z)}{f'(z)} + z\alpha f'(z)\right) \ge \Re\left(\frac{zg^{'}(z)}{g(z)}\right) - \frac{|z|}{1 - |z|} \ge 1 - \frac{|z|}{1 - |z|} - \frac{|z|}{1 - |z|} = \frac{1 - 3|z|}{1 - |z|}.$$

If $1 - 3|z| > 0$, that is, $|z| < \frac{1}{3}$, it is true that $\Re\left(1 + \frac{zf^{''}(z)}{f'(z)} + z\alpha f'(z)\right) > 0.$

REFERENCES

- Arango, J. H., Mejia, D. and Ruscheweyh, S., *Exponentially Convex Univalent Functions*, Comp. Vari. Ellip. Eqns, 33 (1997), No. 1, 33–50
- [2] Caratheodory, C., Conformal Representations, Cambridge University Press, Cambridge, 1952
- [3] MacGregor, T. H., Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532–537
- [4] Ratti, J. S., The Radius of Convexity of Certain Analytic Functions, J. Pure and Appl. Math., 1 (1970), 30-36
- [5] Ratti, J. S., The Radius of Convexity of Certain Analytic Functions II, Int. J. Math and Math Sci., 3 (1980), 483–489

1.2DEPARTMENT OF MATHEMATICS MADRAS CHRISTIAN COLLEGE TAMBARAM, CHENNAI - 600059 TAMIL NADU, INDIA *E-mail address*: sunu_79@yahoo.com *E-mail address*: thomas.rosy@gmail.com

³DEPARTMENT OF MATHEMATICS VEL TECH RANGARAJAN DR SAGUNTHALA R & D INSTITUTE OF SCIENCE AND TECHNOLOGY AVADI, CHENNAI - 600062 TAMIL NADU, INDIA *E-mail address*: vadivelanu@gmail.com *E-mail address*: sunu_79@yahoo.com *E-mail address*: thomas.rosy@gmail.com

112