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Inequalities for the finite Hilbert transform of functions
with bounded divided differences

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we establish some inequalities for the finite Hilbert transform of complex valued
functions for which the divided differences in any two points of the interval are bounded. Applications for some
particular functions of interest are provided as well.

1. INTRODUCTION

Allover this paper, we consider the finite Hilbert transform on the open interval (a,b)
defined by

@)= Lo [ 10 —E&Lfg [|+

for ¢ € (a,b) and for various classes of functions f for which the above Cauchy Principal
Value integral exists, see [13, Section 3.2] or [17, Lemma I1.1.1].

For several recent papers devoted to inequalities for the finite Hilbert transform (7'f),
see [2]-[10], [14]-[16] and [18]-[19].

The following result holds.

T—t

Theorem 1.1 (Dragomir et al., 2001 [1]). Let f : [a,b] — R be a monotonic nondecreasing
(nonincreasing) function on [a,b]. If the finite Hilbert transform (T'f) (a,b,-) exists in every
€ (a,b), then

1 b—t
) > (L) — .
TH@sn > (1 om (=) (1.1)
forallt € (a,b).
The following result can be useful in practice.

Corollary 1.1. Let f : [a,b] — Rand e : [a,b] — R, e(t) = ¢ such that f — me, Me — f are
monotonic nondecreasing, where m < M are given real numbers. If (T f) (a, b, -) exists in every
point t € (a,b), then we have the inequality

W < (Tf) (a,b;t) %f(t)ln <f:2) - (b—:)M (1.2)

forallt € (a,b).
Remark 1.1. If the function f is differentiable on (a, b) the condition that f — me, Me — f
are monotonic nondecreasing is equivalent with the following more practical condition
m < f'(t) <M forallt € (a,b). (1.3)
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From (1.2) we may deduce the following approximation result
1 b—t M+m M—m
(T (atst) — 2 (0 (1) -

_ <
5 (b—a)| <
forallt € (a,b).

(b—a)  (14)

t—a

Motivated by the above results, in this paper we establish some inequalities for the
finite Hilbert transform of complex valued functions for which the divided differences in
any two points of the interval are bounded. Applications for some particular functions of
interest are provided as well.

2. MAIN RESULTS
For a function f : (a,b) — C we define the divided difference

o S = F(s)
[f7 t7 S] T t—g

Now, for v,T' € C and (a,b) an interval of real numbers, define the sets of complex-
valued functions

Utaaa (1) = { £ : (a,8) > C [Re [0 = [£3t,s]) ([Fitoo] - 7)] 2 0,

forallt, s € (a,b), t # s } (2.5)

fort, s € (a,b), t #s.

and

Bana (D)= { @) > € |iFits] = T35 < Jir =)

forallt, s € (a,b), t # s } (2.6)
The following representation result may be stated.

Proposition 2.1. Forany v, ' € C, v # I, we have that U, )4 (7, 1) and A 4.4 (7, 1) are
nonempty, convex and closed sets and

Uapy,a (1) = Dapy,a (1.1 (2.7)
Proof. We observe that for any z € C we have the equivalence

r
Lot

1
<-r—
5 _2\ ol

if and only if
Re[(I' = 2) (= 7)] 2 0.
This follows by the equality

1 v+T 2 _
§Ir =l = | = L5 = Rel(r -9 - 7).
that holds for any z € C.
The equality (2.7) is thus a simple consequence of this fact. O

On making use of the complex numbers field properties we can also state that:
Corollary 2.2. Forany ~, ' € C, v # I',we have that

Utap),a (7:T) = {f : (a,0) = C| (Rel’ — Re[f:t,s]) (Re[f3t, 5] — Re)
+(ImI —Im(f;t,s]) Im][f;t,s] — Imy) > 0forallt, s € (a,b), t #s}. (2.8)
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Now, if we assume that Re (I') > Re () and Im (I') > Im (), then we can define the
following set of functions as well:

S(a,b),d (771—‘) = {f : (avb) —C ‘ Re (F) > Re [f;t,S] > Re (’Y)
and Im (') > Im|[f;t,s] > Im (y) forallt, s € (a,b), t #s}. (29)
One can easily observe that S(a,b) (7,T) is closed, convex and
0# Siap)a(v:T) CUapya(1,T). (2.10)
The following result holds:

Theorem 2.2. Let f : (a,b) — C be such that for some v, I' € C, v # T, we have that
f € Awapy,a (7, 1) . Then we have the inequality

f(t)

b—t 1y4+T

T i) — —=1 - - 2.11

@y -T0n (320 - 10 < Loy @)

forany t € (a,b).
In particular, for t = “E we obtain

a+b 1y+T 1

T - = < —1T'—=7. .

) (0t 0) - 28 < Lir - 1)

Proof. Since f € Ay p),.a (7, T) it follows that

PO - 10 -5 a9 <y -all-

forany ¢, s € (a,b).
By the continuity of the modulus property, we have

_"7+F 7+T

7 2

for any t, s € (a,b) , which implies that

If @) = f(s)] <

for any ¢, s € (a,b) , showing that f is also Lipschitzian on (a, b) . Therefore, we conclude
that the finite Hilbert transform 7' (f) (a, b; t) exists for all ¢ € (a, b), see [13, Section 3.2] or
[17, Lemma II.1.1].

For the mapping , 1 (t) =1, ¢ € (a,b), we have

b
1
/ dr
o T—1
t—e 1 b 1
lim / dT+/ dr
e—=0+ | /), T—1 tre T— 1

lim {ln |7 — t||Z_E + In (1 — t)|$+6}

e—0+

le=sl < |7 )= 1) - 15T =) < I =alle =l

(I + T+ [T =) [t - s

N}M—\

T
<

(T1) (a,bt) =

2=

lim lne—In(t—a)+In(b—1t) —Ine¢]

e—0+

b—t
ln<t—a>’ t € (a,b).

S
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Then, obviously, for f : (a,b) — R we have

1 fr)—f@®+£Q@)
(Tf) (a,b;t) 7TPV/ p— dr
_1 F@O =@,  fOp, [ 1
*;Pv/a p— dr + - PV/a T_th

from where we get the equality

_ b ) —
@bt~ 2m (“) _ lpv/ fO -1,

t—a s T—1

forany t € (a,b).
Since f € A(ap),q (7,1, hence

‘(Tf) @bty — L1 (bt> 1y+T

s t—a T 2
_ PV/ — SO £,

T—t 2

—f() ~y+T 1 1 /b
<= dr < =T —~| =PV [ d
= T—t | =g ID=nl 2PV | dr
:71—‘—
27TI vl

and the inequality (2.11) is thus obtained.

(2.13)

O

Remark 2.2. We observe that if f — me, Me — f are monotonic nondecreasing, where
m < M are given real numbers, then we have that f € A, ;) 4 (m, M) and from (2.11) we

recapture (1.2).

We need the following technical lemma:

Lemma 2.1. Let f : (a,b) — Candt € (a,b). Provided that all integrals below exists, we have

forany ¢ € C that

[LOtO, FGE G

T—1 the T—1

1 b
2 <t+5—a/ f= —t+5 f(T)dT>

+2(b—t—5_t—5—a)f(t)

b—t+e t4+e—a

-t [ (M) (et

e (A ()

where € > 0 and such that min {t — a,b — t} > .

(2.14)
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Proof. We have for any ¢ € C that
t—e _
[0

T—1

_ /a”f(T)—f(t)dT 1 /a“(Tt) "

T—1 t—e—a

:/at—a (W_(;) (T_t_tela/:_e(S—t)ds>dr
[ (HEO ) (-

fort —a >¢e > 0.

Since
/ 7f(TT):{(t)(T—t)dT:/ fr)dr—(t—e—a)f(t)
and
1 foe t+e—a
t—a—a/a (T—t)d’l':—72 ,
then by (2.15) we get

T

tre—a [ F) - )
/a f(ndr—(t—e—a)f(t)+ 5 /a p— d

(=) )

from where we obtain

2 /at_sf(T)dT—Q(t_E_a)f(t)—i—/at_Ef(T)_f(t)dT

t+e—a t+e—a T—1

et (0 ()

/ataf(TT):i%)dHH:_a/atEf(ﬂdTQC::Z)M

o (R ()

fort —a>e>0.
We have for any § € C that

RGP NOROIY Lo kb KO PRI /*’ (r—t)dr
t+e

P —— pe Tt b—e—t

() (e f o)
[ ) )

forb—t>e>0.

namely

21

(2.15)

(2.16)

(2.17)
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Since
b B b
/t+ w@_ﬂ(h: . f(r)ydr—(b—t—e)f(t)
and
1 b b—t+e
b_g_t/t+€(7'—t)d7'=2a
then by (2.17) we get
b
) dr— (bt —e) ()~ BotHE NGRS IOFS
t+e 2 te Tt
b - b
o O
/b ( (1) — f (¢t 5)( b+t+€)d
o tre T—t "
namely

ot b ) —
2 f() <b t e)f(t) Fr) = 1@,

b—t+¢ e T—t

it [ () -2

OO, 2 [ e () r

e T—1 b—t+e b—t+e

it [ (e

forb—t >e > 0.
If we add (2.16) with (2.18) we deduce the desired equality (2.14).

which gives

(2.18)

O

Theorem 2.3. Let f : (a,b) — C be such that for some v, I' € C, v # T, we have that

fe A(%b),d (v,T) . Then we have the inequality

1) (abit) — LD, <bt)

s t—a

—j(bit/tbﬂ yar- = [ 1) )

< —r- -
_47T| vl (b

In particular, we have

(Tf)( “"2”))—;‘;(b1a/;f<7)d7_b1@/(1“;')“7)&)

1
<—T—=7v[(b—-a).
< I0=1l(b-0)

a). (2.19)

(2.20)
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Proof. By using the equality (2.14) for § = % and the fact that f € A(mb),d (,T), we
have for min {t — a,b — t} > ¢ > 0 that

/“fU)f(f)dT+ QAR LGP @21)

T—1 tre T—1

1 t—e 1 b
+2<t+5_a/a f(T)dT_b—t—ks/Hsf(T)dT)

b—t—e t—e—a
2 - t
* (b—t+5 t—i—a—a)f()‘

<t Ltﬁ(f(rjj(t) _7;F> <_+;_>d‘
il (B3 )

==
“t+e—alj,
b
b—t—l—s/

) —f@{) y+T T_LH ir
(50 )
e A e

1
<-r-
<5 0=l
2 t-e a+t—e 2 b b+t+e
X T——|drT+ — - \dr
t+e—a ), 2 b—t+4+e Jiye 2
71|F7| 2 (tf&:fa)2+ 2 (b—t—eg)
2 K t+e—a 4 b—t+¢ 4
_1| |(tfsfa)2 (b—t—e)?
4 t+e—a b—t+e

By taking the limit over ¢ — 0+ in (2.21) we get

fir Lo
PV/ ¢ d+2<f—a/af( dT—i/f )‘
_ )2 N2
<qIr- vl[(t Cf+(”b_ﬂ—flrv<ba>

for ¢t € (a,b) and by (2.13) we deduce the desired result (2.19). O

Corollary 2.3. Let f : (a,b) — Rand e : (a,b) = R, e(t) = t such that f —me, Me — f are
monotonic nondecreasing on (a,b), where m < M are given real numbers. Then

N =

t—a

Aot o)

< i (M—m)(b—a) (222)
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forallt € (a,b).
In particular, we have

(Tf) <a,b; “;b) - % (bia/;f(f)m bia/aa;bf(7>d7>| (2.23)

S%ﬂM—mﬂ%w)

Remark 2.3. If the function f is differentiable on (a, b) and satisfies condition m < f/ (t) <
M forallt € (a,b), then the inequalities (2.22) and (2.23) are valid.

3. CONCLUSIONS AND SOME EXAMPLES

In this paper we established some general inequalities for the finite Hilbert transform
of complex valued functions for which the divided differences in any two points of the
interval are bounded. Further on, we give some simple examples for the exponential
function on a finite interval.

If we consider the function f (t) = €', t € (a, b) a real interval, then

(T'f) (a,b;t) =

eXI:T(t) [Ez (b — t) - FE; (a - t)] ) (324)

where E; is defined by
B (z) = PV/ @ds, z€R.

Indeed, we have

b—t b _
Ei(b—t)—Ei(a—t):PV/ Mdszpv/ exp(r—1) .
a—t

s o T—1

=exp (—t) 7w (T exp) (a, b; t)

and the equality (3.24) is proved.

We have that f’ (t) = €', t € (a,b), which shows that m < exp (a) < f' (t) < exp (b) =
M.

By utilising (1.4) we have

(b—a) (3.25)

RN (SR

t—a 2
< exp(b—1t) —exp(a—1)

- 2 (b_a)a
while from (2.22) we get
b—1t
‘Ei(b—t)—Ei(a—t)—ln(t_a>
5 <exp(b—t)—1 B 1—exp(a—t)>’
b—t t—a
1

< 1 (exp(b—t) —exp(a—t))(b—a) (3.26)

fort € (a,b).
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If we take in (3.25) and (3.26) t = “7“’, then we get

(552) - (50) Lot

2

E

<L

which, by taking = = 5% > 0, gives

B, () — B (—2) — [exp (—2) +exp ()] 2] < [exp () — exp (-2)]z  (327)
and
Ei (2) - By (—2) — 2 <eXp )+ exp ”))\ <L) —ep()r (629
forx > 0.

For the function f (t) = 1, with ¢ € (a,b) C (0, 00) we have

(TF) (@ bi1) = —In (f_t) ~Lu().

Since f/ (t) = — &, thenm = —25 < f'(t) < — = M, then by (1.4) we have
b b? + a? b+a 9
Z) —t———(b—a)| <t - )
In (a) t BYSTE (b a)’ BYeIE) (b—a) (3.29)
while from (2.22) we get
b Int—Ina Inb—Int b+a 9
R - < - )
hl(a) 2t< P - >‘_t4a2b2 (b—a) (3.30)

fort € (a,b) C (0,00).
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