
CREAT. MATH. INFORM.
Volume 31 (2022), No. 1,
Pages 101 - 108

Online version at https://semnul.com/creative-mathematics/

Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X

DOI: https://doi.org/10.37193/CMI.2022.01.10

Existence of positive solutions for 3nth order boundary
value problems involving p-Laplacian

R. R. SANKAR1, N. SREEDHAR2 and K. R. PRASAD3

ABSTRACT. This paper establishes the existence of positive solutions for 3nth order differential equations
with p-Laplacian operator

(−1)n[ϕp(v
(3n−3)(t))]′′′ = g(t, v(t)), t ∈ [0, 1],

satisfying the three-point boundary conditions

v(3i)(0) = 0, v(3i+1)(0) = 0, v(3i+1)(1) = αi+1v
(3i+1)(η), for 0 ≤ i ≤ n− 2,

[ϕp(v
(3n−3)(t))]at t=0 = 0, [ϕp(v

(3n−3)(t))]′at t=0 = 0,

[ϕp(v
(3n−3)(t))]′at t=1 = αn[ϕp(v

(3n−3)(t))]′at t=η ,


where n ≥ 2, η ∈ (0, 1), αj ∈ (0, 1

η
) is a constant for 1 ≤ j ≤ n, by an application of Guo–Krasnosel’skii fixed

point theorem.

1. INTRODUCTION

The theory of differential equations has been used in the modeling of physical, biolog-
ical and medical sciences aspects as well as economics to determine the optimal invest-
ment strategies. The boundary value problem involving p-Laplacian operator arises in
various real life applications such as biophysics, plasma physics, image processing, rhe-
ology, glaciology, turbulent filtration in porous media, radiation of heat etc. Due to the
wide applicability in most areas, the researchers have concentrated on establishing the
existence of positive solutions to p-Laplacian problems, see [1, 2, 6, 8, 11, 17, 12, 28]. For
applications and recent developments, we refer [4, 20, 22, 23, 24].

We establish the existence of positive solutions for 3nth order three-point boundary
value problems involving p-Laplacian

(−1)n[ϕp(v
(3n−3)(t))]′′′ = g(t, v(t)), t ∈ [0, 1], (1.1)

v(3i)(0) = 0, v(3i+1)(0) = 0, v(3i+1)(1) = αi+1v
(3i+1)(η), for 0 ≤ i ≤ n− 2,

[ϕp(v
(3n−3)(t))]at t=0 = 0, [ϕp(v

(3n−3)(t))]′at t=0 = 0,

[ϕp(v
(3n−3)(t))]′at t=1 = αn[ϕp(v

(3n−3)(t))]′at t=η,

 (1.2)

where n ≥ 2, η ∈ (0, 1), αj ∈ (0, 1
η ) is a constant for 1 ≤ j ≤ n, and the function g :

[0, 1]×R+ → R+ is continuous. The important and significant operator is one-dimensional
p-Laplacian operator and is defined by ϕp(τ) = |τ |p−2τ , where p > 1, ϕ−1

p = ϕq and
1
p + 1

q = 1. By taking n = 1 and p = 2 in (1.1) and (1.2), reduces to third order three-point
boundary value problem and studied the existence of positive solutions based on various
methods by many researchers, see [7, 13, 14, 15, 16, 18, 19, 27, 29, 31]. However, as per our
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knowledge, very few works have been found in the literature on the existence of positive
solutions of higher order boundary value problems with p-Laplacian, see [5, 21, 25, 26, 30].
Motivated by above papers, we extend the results to the problem (1.1)-(1.2).

For establishing the new results, throughout this paper we assume the following con-
ditions are fulfilled:

(C1) αj is a constant such that 0 < ηαj < 1 for 1 ≤ j ≤ n, where η ∈ (0, 1).
(C2) the function g(t, v) is a non-decreasing for the second variable v, and
(C3) 0 <

∫ 1

0
Gn(t, s)ds < ∞.

The remaining part of the paper is organized as follows. The solution of the problem
(1.1)-(1.2) is expressed into an equivalent integral equation in terms of Green functions
and then certain inequalities are established for the Green functions in Section 2. The
existence of positive solutions to the problem (1.1)-(1.2) is established in Section 3. At the
end, the established results are demonstrated with examples.

2. GREEN’S FUNCTION AND ITS BOUNDS

The present section contains some preparatory results that are necessary for establish-
ing the main results. For this, we first build a Green’s function Gi(t, s) (1 ≤ i ≤ n) for the
following third order three-point problem

−v′′′(t) = 0, t ∈ [0, 1], (2.3)

v(0) = 0, v′(0) = 0, v′(1) = αiv
′(η). (2.4)

Using Gi(t, s) (1 ≤ i ≤ n − 1), we obtain Green’s function Hn−1(t, s) recursively for the
following problem of (3n− 3)th order with three-point boundary conditions

(−1)n−1v(3n−3)(t) = 0, t ∈ [0, 1], (2.5)

v(3i)(0) = 0, v(3i+1)(0) = 0, v(3i+1)(1) = αi+1v
(3i+1)(η), (2.6)

for 0 ≤ i ≤ n− 2, where n ≥ 3.

Lemma 2.1. If the assumption (C1) is fulfilled, then the Green’s function Gi(t, s) (1 ≤ i ≤ n) of
the problem (2.3)-(2.4) is

Gi(t, s) =


Gi1(t, s), 0 ≤ t ≤ s ≤ η ≤ 1,
Gi2(t, s), 0 ≤ s ≤ min{t, η} ≤ 1,
Gi3(t, s), 0 ≤ max{t, η} ≤ s ≤ 1,
Gi4(t, s), 0 ≤ η ≤ s ≤ t ≤ 1,

(2.7)

where

Gi1(t, s) =
t2

2
(1− s) +

αit
2

2(1− ηαi)
s(1− η),

Gi2(t, s) =
1

2
[t2(1− s)− (t− s)2] +

αit
2

2(1− ηαi)
s(1− η),

Gi3(t, s) =
t2

2
(1− s) +

αit
2

2(1− ηαi)
η(1− s),

Gi4(t, s) =
1

2
[t2(1− s)− (t− s)2] +

αit
2

2(1− ηαi)
η(1− s).

Proof. The result can be proved as in [27]. □
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Lemma 2.2. Suppose the assumption (C1) is fulfilled. If we denote G1(t, s) = H1(t, s) and define

Hi(t, s) =

∫ 1

0

Hi−1(t, r)Gi(r, s)dr, for 2 ≤ i ≤ n, (2.8)

recursively, then the Green’s function for 3nth order problem

(−1)nv(3n)(t) = 0, t ∈ [0, 1],

v(3i)(0) = 0, v(3i+1)(0) = 0, v(3i+1)(1) = αi+1v
(3i+1)(η),

for 0 ≤ i ≤ n− 1 and n ≥ 2, is given by Hn(t, s).

Proof. One can establish the result in a recursive manner. □

By using the Lemmas 2.1 and 2.2, the solution of the problem (1.1)-(1.2) is

v(t) =

∫ 1

0

Hn−1(t, s)ϕq

[∫ 1

0

Gn(s, r)g(r, v(r))dr

]
ds. (2.9)

Lemma 2.3. If the assumption (C1) is fulfilled, then Gi(t, s) (1 ≤ i ≤ n) fulfills the following
conditions:

(i) Gi(t, s) ≥ 0, for all t, s ∈ [0, 1],
(ii) Gi(t, s) ≤ Gi(1, s), for all t, s ∈ [0, 1],

(iii) min
t∈I

Gi(t, s) ≥ η2Gi(1, s), for all s ∈ [0, 1], where I = [η, 1].

Proof. We can establish the result by simple algebraic computations. □

Lemma 2.4. If the assumption (C1) is fulfilled and if we define Kn =

n−1∏
i=1

Ki, Ln =

n−1∏
i=1

Li, then

Hn(t, s) fulfills the following conditions:
(i) 0 ≤ Hn(t, s) ≤ KnGn(1, s), for all t, s ∈ [0, 1],

(ii) Hn(t, s) ≥ η2nLnGn(1, s), for all t ∈ I and s ∈ [0, 1],

where Ki =

∫ 1

0

Gi(1, r)dr and Li =

∫
r∈I

Gi(1, r)dr, for 1 ≤ i ≤ n.

Proof. We can prove these inequalities by using induction on n. □

The fixed point theorem of Guo–Krasnosel’skii stated below is used as the fundamental
tool to establish the existence of positive solutions of the problem (1.1)-(1.2).

Theorem 2.1. [3, 9, 10] Let B be a Banach Space and the set κ ⊆ B be a cone. Assume the sets
Ω1 and Ω2 are any two open subsets of B such that 0 ∈ Ω1 and Ω1 ⊂ Ω2. Further, suppose that
the operator T : κ ∩ (Ω2\Ω1) → κ is a completely continuous such that, either

(i) ∥Tv∥ ≤ ∥v∥, v ∈ κ ∩ ∂Ω1 and ∥Tv∥ ≥ ∥v∥, v ∈ κ ∩ ∂Ω2, or
(ii) ∥Tv∥ ≥ ∥v∥, v ∈ κ ∩ ∂Ω1 and ∥Tv∥ ≤ ∥v∥, v ∈ κ ∩ ∂Ω2 holds.

Then the operator T has a fixed point in κ ∩ (Ω2\Ω1).

3. EXISTENCE OF POSITIVE SOLUTIONS

This section presents the existence of positive solutions to the problem (1.1)-(1.2). For
our construction, let B = {v : v ∈ C[0, 1]} be a Banach space with norm,
∥v∥ = maxt∈[0,1] |v(t)|. Let M = η2n−2Ln−1

Kn−1
. We now consider the set

κ = {v ∈ B : v(t) ≥ 0 on t ∈ [0, 1] and min
t∈I

v(t) ≥ M∥v∥}.
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Then the set κ is a cone in B. Define an operator T : κ → B as

Tv(t) =
∫ 1

0

Hn−1(t, s)ϕq

[∫ 1

0

Gn(s, r)g(r, v(r))dr

]
ds. (3.10)

The following non-negative extended real numbers g0, g0, g∞ and g∞ are defined as

g0 = lim
v→0+

min
t∈[0,1]

g(t, v)

ϕp(v)
, g0 = lim

v→0+
max
t∈[0,1]

g(t, v)

ϕp(v)
,

g∞ = lim
v→∞

min
t∈[0,1]

g(t, v)

ϕp(v)
and g∞ = lim

v→∞
max
t∈[0,1]

g(t, v)

ϕp(v)
,

and also assume that they will exist. The case g0 = 0 and g∞ = ∞ is called superlinear
and the case g0 = ∞ and g∞ = 0 is called the sublinear.

Lemma 3.5. If the operator T : κ → B is defined by (3.10), then T is a self map on the cone κ.

Proof. By (C3) and the non-negative of Gn(t, s), Hn−1(t, s) in Lemmas 2.3, 2.4 that Tv(t) ≥
0 for v ∈ κ and t ∈ [0, 1]. Then, by Lemma 2.4 and for v ∈ κ, we get

Tv(t) =
∫ 1

0

Hn−1(t, s)ϕq

(∫ 1

0

Gn(s, r)g
(
r, v(r)

)
dr

)
ds

≤ Kn−1

∫ 1

0

Gn−1(1, s)ϕq

(∫ 1

0

Gn(s, r)g
(
r, v(r)

)
dr

)
ds

so that

∥Tv∥ ≤ Kn−1

∫ 1

0

Gn−1(1, s)ϕq

(∫ 1

0

Gn(s, r)g
(
r, v(r)

)
dr

)
ds. (3.11)

Now, by Lemma 2.4, for v ∈ κ that

min
t∈I

Tv(t) = min
t∈I

{∫ 1

0

Hn−1(t, s)ϕq

(∫ 1

0

Gn(s, r)g
(
r, v(r)

)
dr

)
ds

}

≥ η2n−2Ln−1

∫ 1

0

Gn−1(1, s)ϕq

(∫ 1

0

Gn(s, r)g
(
r, v(r)

)
dr

)
ds

≥
(
η2n−2Ln−1

Kn−1

)
∥Tv∥ = M∥Tv∥.

Therefore, T : κ → κ and hence, it is proved. □

Moreover, the operator T is completely continuous by Arzela–Ascoli theorem. Now,
we prove the existence of positive solutions to the problem (1.1)-(1.2) by superlinear case
and sublinear case.

Theorem 3.2. Suppose the assumptions (C1), (C2) and (C3) are fulfilled. If g0 = 0 and g∞ = ∞
hold, then the problem (1.1)-(1.2) has at least one positive solution in the cone κ.

Proof. From the definition of g0 = 0, there exist ξ1 > 0 and J1 > 0 such that g(t, v) ≤
ξ1ϕp(v), for 0 < v ≤ J1, where ξ1 satisfies

(ξ1)
q−1Kn−1

∫ 1

0

Gn−1(1, s)ϕq

(∫ 1

0

Gn(1, r)dr

)
ds ≤ 1. (3.12)
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Choose v ∈ κ with ∥v∥ = J1. Then, for t ∈ [0, 1], and by Lemmas 2.3, 2.4, we get

Tv(t) =
∫ 1

0

Hn−1(t, s)ϕq

(∫ 1

0

Gn(s, r)g
(
r, v(r)

)
dr

)
ds

≤ Kn−1

∫ 1

0

Gn−1(1, s)ϕq

(∫ 1

0

Gn(1, r)ξ1ϕp(v)dr

)
ds

≤ (ξ1)
q−1Kn−1

∫ 1

0

Gn−1(1, s)ϕq

(∫ 1

0

Gn(1, r)dr

)
ds∥v∥ ≤ ∥v∥.

Hence, ∥Tv∥ ≤ ∥v∥. Now, if we are setting Ω1 = {v ∈ B : ∥v∥ < J1}, then

∥Tu∥ ≤ ∥v∥, for v ∈ κ ∩ ∂Ω1. (3.13)

Further, since g∞ = ∞, there exist ξ2 > 0 and J̄2 > 0 such that g(t, v(t)) ≥ ξ2ϕp(v), for v ≥
J̄2, where ξ2 satisfies

(ξ2)
q−1

(
η4n−2L2

n

KnLn−1

)∫
s∈I

Gn−1(1, s)ϕq

(
η2

∫
r∈I

Gn(1, r)dr

)
ds ≥ 1. (3.14)

Let J2 = max

{
2J1,

J̄2

M

}
. Choose v ∈ κ and ∥v∥ = J2. Then min

t∈I
v(t) ≥ M∥v∥ ≥ J̄2. Using

the Lemmas 2.3, 2.4, and for t ∈ [0, 1], we obtain

Tv(t) =
∫ 1

0

Hn−1(t, s)ϕq

(∫ 1

0

Gn(s, r)g(r, v(r))dr

)
ds

≥ min
t∈I

{∫ 1

0

Hn−1(t, s)ϕq

(∫ 1

0

Gn(s, r)g(r, v(r))dr

)
ds

}

≥ η2n−2Ln−1

∫
s∈I

Gn−1(1, s)ϕq

(∫ 1

0

Gn(s, r)g(r, v(r))dr

)
ds

≥ η2n−2Ln−1

∫
s∈I

Gn−1(1, s)ϕq

(
η2

∫
r∈I

Gn(1, r)ξ2ϕp(v)dr

)
ds

≥ η2n−2Ln−1(ξ2)
q−1

∫
s∈I

Gn−1(1, s)ϕq

(
η2

∫
r∈I

Gn(1, r)dr

)
M∥v∥ds

≥
(
η4n−2L2

n

KnLn−1

)
(ξ2)

q−1

∫
s∈I

Gn−1(1, s)ϕq

(
η2

∫
r∈I

Gn(1, r)dr

)
∥v∥ds ≥ ∥v∥.

Therefore, ∥Tv∥ ≥ ∥v∥. So, if we take Ω2 = {v ∈ B : ∥v∥ < J2}, then

∥Tv∥ ≥ ∥v∥ for v ∈ κ ∩ ∂Ω2. (3.15)

By an application of Theorem 2.1 to the equations (3.13) and (3.15), the operator T has a
fixed point v ∈ κ∩ (Ω2 \ Ω̄1) and that v is a positive solution to the problem (1.1)-(1.2). □

Theorem 3.3. Suppose the assumptions (C1), (C2) and (C3) are fulfilled. If g0 = ∞ and g∞ = 0
hold, then the problem (1.1)-(1.2) has at least one positive solution in the cone κ.

Proof. From the definition of g0 = ∞, there exist ξ3 > 0 and J3 > 0 such that g(t, v) ≥
ξ3ϕp(v), for 0 < v ≤ J3, where ξ3 ≥ ξ2 and ξ2 is given in (3.14). Let v ∈ κ and ∥v∥ = J3.
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Then, for t ∈ [0, 1] and by Lemmas 2.3, 2.4, we get

Tv(t) =
∫ 1

0

Hn−1(t, s)ϕq

(∫ 1

0

Gn(s, r)g(r, v(r))dr

)
ds

≥ min
t∈I

{∫ 1

0

Hn−1(t, s)ϕq

(∫ 1

0

Gn(s, r)g(r, v(r))dr

)
ds

}

≥ η2n−2Ln−1

∫
s∈I

Gn−1(1, s)ϕq

(∫ 1

0

Gn(s, r)g(r, v(r))dr

)
ds

≥ η2n−2Ln−1

∫
s∈I

Gn−1(1, s)ϕq

(
η2

∫
r∈I

Gn(1, r)ξ3ϕp(v)dr

)
ds

≥ η2n−2Ln−1(ξ3)
q−1

∫
s∈I

Gn−1(1, s)ϕq

(
η2

∫
r∈I

Gn(1, r)dr

)
M∥v∥ds

≥
(
η4n−2L2

n

KnLn−1

)
(ξ3)

q−1

∫
s∈I

Gn−1(1, s)ϕq

(
η2

∫
r∈I

Gn(1, r)dr

)
∥v∥ds ≥ ∥v∥.

Therefore, ∥Tv∥ ≥ ∥v∥. Now, if we are setting Ω3 = {v ∈ B : ∥v∥ < J3} , then

∥Tv∥ ≥ ∥v∥, for v ∈ κ ∩ ∂Ω3. (3.16)

Next, since g∞ = 0, there exist ξ4 > 0 and J̄4 > 0 such that g(t, v(t)) ≤ ξ4ϕp(v), for v ≥
J̄4, where ξ4 ≤ ξ1 and ξ1 is given in (3.12). Set g∗(t, v) = sup

0≤s≤v
g(t, s). Then, it is obvious

that g∗ is a non-decreasing real-valued function, g ≤ g∗ and

lim
v→∞

g∗(t, v)

v
= 0.

It follows that there exists J4 > max{2J3, J̄4} such that g∗(t, v) ≤ g∗(t, J4), for 0 < v ≤ J4.
Choose v ∈ κ with ∥v∥ = J4. Then

Tv(t) =
∫ 1

0

Hn−1(t, s)ϕq

(∫ 1

0

Gn(s, r)g(r, v(r))dr

)
ds

≤ Kn−1

∫ 1

0

Gn−1(1, s)ϕq

(∫ 1

0

Gn(s, r)g(r, J4)dr

)
ds

≤ Kn−1

∫ 1

0

Gn−1(1, s)ϕq

(∫ 1

0

Gn(s, r)ξ4ϕp(J4)dr

)
ds

≤ Kn−1(ξ4)
q−1

∫ 1

0

Gn−1(1, s)ϕq

(∫ 1

0

Gn(1, r)dr

)
dsJ4

≤ J4 = ∥v∥.

Hence, ∥Tv∥ ≤ ∥v∥. So, if we are setting Ω4 = {v ∈ B : ∥v∥ < J4}, then

∥Tv∥ ≤ ∥v∥, for v ∈ κ ∩ ∂Ω4. (3.17)

Using Theorem 2.1, the equations (3.16) and (3.17) yields that the operator T has a fixed
point v ∈ κ ∩ (Ω4 \ Ω̄3) and that v is a positive solution to the problem (1.1)-(1.2). □

Let us consider the examples to demonstrate our results.

Example 3.1. Let n = 1, p = 2, η = 1
2 , α1 = 1

3 . Consider the p-Laplacian problem

−v′′′(t) = g(t, v(t)), t ∈ [0, 1], (3.18)

v(0) = 0, v′(0) = 0, v′(1) =
1

3
v′
(
1

2

)
. (3.19)
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(a) If g(t, v(t)) = et(1−t)v3/2, then all the conditions of the Theorem 3.2 are satisfied.
Therefore, the problem (3.18)-(3.19) has at least one positive solution.

(b) If g(t, v(t)) = (1 + t2)e−v , then all the conditions of the Theorem 3.3 are satisfied.
Therefore, the problem (3.18)-(3.19) has at least one positive solution.

Example 3.2. Let n = 3, η = 1
3 , α1 = 1

2 , α2 = 3
2 , α3 = 2. Consider the p-Laplacian problem

(−1)3[ϕp

(
v(6)(t)

)
]′′′ = g(t, v(t)), t ∈ [0, 1], (3.20)

v(0) = 0, v′(0) = 0, v′(1) =
1

2
v′
(
1

3

)
, v′′′(0) = 0, v(4)(0) = 0,

v(4)(1) =
3

2
v(4)

(
1

3

)
, [ϕp(v

(6)(0))] = 0, [ϕp(v
(6)(t))]′at t=0 = 0,

[ϕp(v
(6)(t))]′at t=1 = 2

[
ϕp

(
v(6) (t)

)]′
at t=η= 1

3

.


(3.21)

By setting p = 2 and some algebraic calculations, we obtain K1 = 0.133333, K2 =
0.33333, L1 = 0.08395, L2 = 0.17284, K3 = 0.04444, L3 = 0.01451 and M = 0.00777.

(a) If g(t, v(t)) = (1 + et(1−2t))v2, then all the conditions of the Theorem 3.2 are satis-
fied. Therefore, the problem (3.20)-(3.21) has at least one positive solution.

(b) If g(t, v(t)) = (t3+1)2/3v3/4, then all the conditions of the Theorem 3.3 are satisfied.
Therefore, the problem (3.20)-(3.21) has at least one positive solution.

4. CONCLUSIONS

In this paper, we proved the existence of at least one positive solution to 3nth order
boundary value problem with p-Laplacian by an application of Guo–Krasnosel’skii fixed
point theorem. It will be interesting to obtain multiple positive solutions for the problem
involving more general nonlinear terms by applying various fixed point theorems.

Acknowledgements: The authors thank the referees for their suggestions and comments.
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