On extensions of pseudo-valuations on BCK algebras

Dumitru Busneag, Dana Piciu and Mihaela Istrata

Abstract

In this paper we define a pseudo-valuation on a BCK algebra $(A, \rightarrow, 1)$ as a real-valued function $v: A \rightarrow \mathbf{R}$ satisfying $v(1)=0$ and $v(x \rightarrow y) \geq v(y)-v(x)$, for every $x, y \in A ; v$ is called a valuation if $x=1$ whenever $v(x)=0$. We prove that every pseudo-valuation (valuation) v induces a pseudo-metric (metric) on A defined by $d_{v}(x, y)=v(x \rightarrow y)+v(y \rightarrow x)$ for every $x, y \in A$, where \rightarrow is uniformly continuous in both variables. The aim of this paper is to provide several theorems on extensions of pseudo-valuations (valuations) on BCK algebras.

1. Introduction and basic results

BCK algebras are an important class of logical algebras investigated by many researchers (see [2], [3], [6], [8], [9], [10], [13]). BCK algebras were originally introduced by Isèki in [9]. Further properties of them and their connections with other fuzzy structures were established by Iorgulescu in [8].

In [1], Busneag defined pseudo-valuations on Hilbert algebras and proved that every pseudo-valuation induced a pseudo-metric. Using this model, in [4], [5], [7], [11], [12], [14], [15], [16] is introduced the notion of pseudo-valuation on BCK, BCI, BCC algebras and several properties are discussed.

The main goal of this paper is to introduce the notions of pseudo-valuation and valuation on BCK algebras and to prove theorems on extensions of pseudo-valuations (valuations) on BCK algebras.

The paper is organized as follows: In Section 1 we review some relevant concepts relative to BCK algebras. In Section 2 we introduce the notions of pseudo-valuation and valuation on BCK algebras and we induce a pseudo-metric by using pseudo-valuations on BCK algebras (Theorem 2.1). Also, we show that the binary operation \rightarrow is uniformly continuous, see Corollary 2.1. Finally, we prove some theorems (2.2 and 2.3) on extensions of pseudo-valuations (valuations) on BCK algebras. Section 3 contains results about pseudo-valuations on the dual BCK algebra, see Theorem 3.4 and the final section contains conclusions, open problems and future work about the presented topics.

A BCK algebra is an algebra $(A, \rightarrow, 1)$ of type $(2,0)$ satisfying:
$\left(a_{1}\right) x \rightarrow x=1$;
(a_{2}) If $x \rightarrow y=y \rightarrow x=1$, then $x=y$;
(B) $x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$;
(C) $x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$;
(K) $x \leq y \rightarrow x$.

Example 1.1. ([8]) We give an example of a finite bounded BCK algebra. Let $A=\{0, a, b, c, 1\}$ with $0<a, b<c<1$, but a, b are incomparable. A becomes a BCK algebra relative to the

[^0]following operation:

\rightarrow	0	a	b	c	1
0	1	1	1	1	1
a	b	1	b	1	1
b	a	a	1	1	1
c	0	a	b	1	1
1	0	a	b	c	1

If A is a BCK algebra, then the relation \leq defined by $x \leq y$ iff $x \rightarrow y=1$ is a partial order on A (called the natural order); with respect to this order 1 is the largest element of A. A bounded BCK algebra is a BCK algebra with a smallest element 0 relative to the natural order. For a BCK algebra A, two elements $x, y \in A$ and a natural number $n \geq 1$ we denote $x \rightarrow_{n} y=x \rightarrow(x \rightarrow \ldots(x \rightarrow y) \ldots)$, where n indicates the number of occurrences of x.

In BCK algebras we have the following rules of calculus (see [2] and [10]):
$\left(c_{1}\right) x \rightarrow 1=1,1 \rightarrow x=x, x \leq(x \rightarrow y) \rightarrow y, x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y)$;
(c_{2}) If $x \leq y$, then for every $z \in A, z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z$.
For a BCK algebra A and $x_{1}, \ldots, x_{n}, x \in A(n \geq 1)$ we define $\left(x_{1}, \ldots, x_{n} ; x\right)=x_{1} \rightarrow$ $\left(x_{2} \rightarrow \ldots\left(x_{n} \rightarrow x\right) \ldots\right)$. If σ is a permutation of $\{1, \ldots, n-1\}, n \geq 2$, then:
($\left.c_{3}\right)\left(x_{\sigma(1)}, \ldots, x_{\sigma(n-1)} ; x_{n}\right)=\left(x_{1}, \ldots, x_{n-1} ; x_{n}\right)$;
$\left(c_{4}\right) x \rightarrow\left(x_{1}, \ldots, x_{n-1} ; x_{n}\right)=\left(x, x_{1}, \ldots, x_{n-1} ; x_{n}\right)$;
Let A be a BCK algebra. A subset D of A is called a deductive system of A if $1 \in D$ and $x, x \rightarrow y \in D$ implies $y \in D$.

Clearly, if D is a deductive system of A and $x \leq y$ with $x \in D$, then $y \in D$.
We denote by $D s(A)$ the set of all deductive systems of a BCK algebra A.
For a non-empty subset $X \subseteq A$, we denote by $\langle X>=\cap\{D \in D s(A): X \subseteq D\}$; $<X>$ is called the deductive system of A generated by X. If $X=\left\{x_{1}, \ldots, x_{n}\right\}$ we denote $<$ $\left\{x_{1}, \ldots, x_{n}\right\}>$ by $\left.<x_{1}, \ldots, x_{n}\right\rangle$; also, we denote by $\langle a\rangle$ the deductive system generated by $\{a\}$. It is easy to prove (see [2]) that $<a>=\left\{x \in A: a \rightarrow_{n} x=1\right.$, for some natural number $n \geq 1\}$ ($<a>$ is called principal).

Let A be a bounded BCK algebra. An element $x \in A$ is called boolean (see [6]) if $\langle x\rangle$ $\cap\left\langle x^{*}\right\rangle=\{1\}$. Let $B(A)$ the set of all boolean elements of A.

In [2] it is proved that if A is a BCK algebra and $X \subseteq A$ then
$\left(c_{5}\right)<X>=\left\{x \in A:\left(x_{1}, \ldots, x_{n} ; x\right)=1\right.$, for some $x_{1}, \ldots, x_{n} \in X$ and $\left.n \geq 1\right\}$;
(c_{6}) If $D_{1}, D_{2} \in D s(A)$ and we define $D_{1} \vee D_{2}=<D_{1} \cup D_{2}>$, then $D_{1} \vee D_{2}=\{x \in A$: $d_{1} \rightarrow\left(d_{2} \rightarrow x\right)=1$, for some $d_{1} \in D_{1}$ and $\left.d_{2} \in D_{2}\right\}$.

Remark 1.1. If $D \in D s(A)$, then D is a BCK subalgebra of A (since $1 \in D$ and if $x, y \in D$ from $y \leq x \rightarrow y$ we deduce that $x \rightarrow y \in D$).

2. Pseudo-valuations (valuations) on BCK algebras

Using the model of Hilbert algebras (see [1]), in this section we introduce the notions of pseudo-valuations and valuations on BCK algebras and we prove some theorems of extension for these.

Let A be a BCK algebra. A real-valued function $v: A \rightarrow \mathbf{R}$ is called a pseudo-valuation on A if $v(1)=0$ and $\left(^{*}\right): v(x \rightarrow y) \geq v(y)-v(x)$, for every $x, y \in A$. The pseudo-valuation v is called valuation if $v(x)=0$ implies $x=1$.

If we interpret A as an implicational calculus, $x \rightarrow y$ as the proposition $x \Rightarrow y$ and 1 as truth, a pseudo-valuation on A can be interpreted as a "falsity-valuation".

Example 2.2. $v: A \rightarrow \mathbf{R}, v(x)=0$ for every $x \in A$ is a pseudo-valuation on A.

Example 2.3. If $D \in D s(A)$ and $0 \leq r \in \mathbf{R}$, then $v_{D}: A \rightarrow \mathbf{R}, v_{D}(x)=0$, if $x \in D$ and r otherwise, is a pseudo-valuation on A. Indeed, $v_{D}(1)=0$ since $1 \in D$. Let $x, y \in A$. If $x, y \in D$, since $y \leq x \rightarrow y$ we obtain $x \rightarrow y \in D$. So, $v_{D}(x \rightarrow y)=v_{D}(x)=v_{D}(y)=0$ and $v_{D}(x \rightarrow y)=v_{D}(y)-v_{D}(x)$. If $x, y \notin D$, then $v_{D}(y)-v_{D}(x)=r-r=0 \leq v_{D}(x \rightarrow y)$. If $x \notin$ D and $y \in D$ we deduce that $x \rightarrow y \in D$, so $0=v_{D}(x \rightarrow y) \geq v_{D}(y)-v_{D}(x)=0-r=-r$. If $y \notin D$ and $x \in D$ then $x \rightarrow y \notin D$. We obtain $r=v_{D}(x \rightarrow y)=v_{D}(y)-v_{D}(x)=r-0=r$.

Remark 2.2. Let A be a non trivial BCK algebra, $D \in D s(A), r \geq 0$ and $v_{D}: A \rightarrow \mathbf{R}$ the function given by $v_{D}(x)=0$ if $x \in D$ and r otherwise. Then v_{D} is a valuation if and only if $D=\{1\}$ and $r>0$.

Example 2.4. Let M be a finite set with n elements and $A=P(M)$ be the power set of M (the set of all subsets of M). Then $\left(P(M), \cap, \cup, C_{M}, \varnothing, M\right)$ is a Boolean algebra (where for $\left.X \subseteq M, C_{M}(X)=M \backslash X\right)$. The function $v: P(M) \rightarrow \mathbf{R}$, defined by $v(X)=n-n(X)$ is a valuation on A, where $n(X)$ is the number of elements of X. Indeed, $v(M)=0$. Let $X, Y \subseteq M$. We have $v(X \rightarrow Y)=v\left(C_{M} X \cup Y\right)=n-n\left(C_{M} X \cup Y\right)=n-n\left(C_{M} X\right)-n(Y)+$ $n\left(C_{M} X \cap Y\right)=n(X)-n(Y)+n\left(C_{M} X \cap Y\right) \geq n(X)-n(Y)=v(Y)-v(X)$. Obviously, $v(X)=0$ iff $X=M$.

Lemma 2.1. If $: A \rightarrow \mathbf{R}$ is a pseudo-valuation on A and $x, x_{1}, \ldots, x_{n} \in A$ such that $\left(x_{1}, \ldots, x_{n} ; x\right)$ $=1$ then
$\left(c_{7}\right) \quad v(x) \leq \sum_{i=1}^{n} v\left(x_{i}\right)$.
Proof. $0=v(1)=v\left(\left(x_{1}, \ldots, x_{n} ; x\right)\right) \geq v(x)-\sum_{i=1}^{n} v\left(x_{i}\right)$, so $v(x) \leq \sum_{i=1}^{n} v\left(x_{i}\right)$.
A pseudo-valuation $v: A \rightarrow \mathbf{R}$ is called decreasing if $v(x) \geq v(y)$ for every $x, y \in A$ with $x \leq y$.

Lemma 2.2. A pseudo-valuation v is a positive decreasing function satisfying
$\left(c_{8}\right) v(x \rightarrow y)+v(y \rightarrow z) \geq v(x \rightarrow z)$, for any $x, y, z \in A$.
Proof. If in $\left(^{*}\right)$ we put $y=1$ we obtain $v(x \rightarrow 1) \geq v(1)-v(x)$, so $v(x) \geq 0$, for every $x \in A$. If $x \leq y$, then $x \rightarrow y=1$, so from $\left({ }^{*}\right)$ we deduce that $0=v(1)=v(x \rightarrow y) \geq v(y)-v(x)$. We conclude that $v(x) \geq v(y)$ for every $x \leq y$, so, v is a decreasing function. Let now $x, y, z \in A$. Since v is a decreasing function, from (B), we deduce that $v(x \rightarrow y) \geq v((y \rightarrow$ $z) \rightarrow(x \rightarrow z)) \geq v(x \rightarrow z)-v(y \rightarrow z)$. Thus, $v(x \rightarrow z) \leq v(x \rightarrow y)+v(y \rightarrow z)$.

We recall that by a pseudo-metric space we mean an ordered pair (M, d), where M is a non-empty set and $d: M \times M \rightarrow \mathbf{R}$ is a positive function satisfying the following properties: $d(x, x)=0, d(x, y)=d(y, x)$ and $d(x, z) \leq d(x, y)+d(y, z)$ for every $x, y, z \in M$. If in the pseudo-metric space $(M, d), d(x, y)=0$ implies $x=y$, then (M, d) is called a metric space.
Theorem 2.1. Let $v: A \rightarrow \mathbf{R}$ be a pseudo-valuation on A. If we define $d_{v}: A \times A \rightarrow \mathbf{R}$, $d_{v}(x, y)=v(x \rightarrow y)+v(y \rightarrow x)$, for every $(x, y) \in A \times A$, then
(i) $\left(A, d_{v}\right)$ is a pseudo-metric space satisfying:
$\left(c_{9}\right) \max \left\{d_{v}(x \rightarrow z, y \rightarrow z), d_{v}(z \rightarrow x, z \rightarrow y)\right\} \leq d_{v}(x, y)$, for every $x, y, z \in A$;
(ii) d_{v} is a metric on A iff v is a valuation on A.

Proof. (i). Let $x, y, z \in A$. Clearly, $d_{v}(x, y)=d_{v}(y, x) \geq 0$ and $d_{v}(x, x)=v(x \rightarrow x)+$ $v(x \rightarrow x)=v(1)+v(1)=0+0=0$. Also, $d_{v}(x, y)+d_{v}(y, z)=[v(x \rightarrow y)+v(y \rightarrow x)]+$ $[v(y \rightarrow z)+v(z \rightarrow y)]=[v(x \rightarrow y)+v(y \rightarrow z)]+[v(z \rightarrow y)+v(y \rightarrow x)] \stackrel{\left(c_{8}\right)}{\geq} v(x \rightarrow$
$z)+v(z \rightarrow x)=d_{v}(x, z)$, hence d_{v} is a pseudo-metric on A. Now, we prove $\left(c_{9}\right)$. We have $d_{v}(x \rightarrow z, y \rightarrow z)=v((x \rightarrow z) \rightarrow(y \rightarrow z))+v((y \rightarrow z) \rightarrow(x \rightarrow z))$. Since, from $(B), x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$ and $y \rightarrow x \leq(x \rightarrow z) \rightarrow(y \rightarrow z)$ we deduce that $v(x \rightarrow y) \geq v((y \rightarrow z) \rightarrow(x \rightarrow z))$ and $v(y \rightarrow x) \geq v((x \rightarrow z) \rightarrow(y \rightarrow z))$, hence, $d_{v}(x, y)=v(x \rightarrow y)+v(y \rightarrow x) \geq v((y \rightarrow z) \rightarrow(x \rightarrow z))+v((x \rightarrow z) \rightarrow(y \rightarrow z))=$ $d_{v}(x \rightarrow z, y \rightarrow z)$. Since, from $\left(c_{1}\right), x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y)$ and $y \rightarrow x \leq(z \rightarrow$ $y) \rightarrow(z \rightarrow x)$, analogously as above we deduce that $d_{v}(x, y) \geq d_{v}(z \rightarrow x, z \rightarrow y)$. So, $\max \left\{d_{v}(x \rightarrow z, y \rightarrow z), d_{v}(z \rightarrow x, z \rightarrow y)\right\} \leq d_{v}(x, y)$, for every $x, y, z \in A$.
(ii). First, we suppose that d_{v} is a metric on A and let $x \in A$ such that $v(x)=0$. Since $d_{v}(x, 1)=v(x \rightarrow 1)+v(1 \rightarrow x)=v(1)+v(x)=0+0=0$, then $x=1$, that is, v is a valuation on A. Conversely, if v is a valuation on A, let $x, y \in A$ such that $d_{v}(x, y)=0$. We obtain $v(x \rightarrow y)=v(y \rightarrow x)=0$. Hence $x \rightarrow y=y \rightarrow x=1$, so $x=y$, that is, d_{v} is a metric on A.

We shall call d_{v} the pseudo-metric (metric) induced by the pseudo-valuation (valuation) v. If we interpret a pseudo-valuation as a measure, then d_{v} is well known metric induced by a measure.

Corollary 2.1. Let $v: A \rightarrow \mathbf{R}$ be a valuation. Then the operation $\rightarrow: A \times A \rightarrow A$ is uniformly continuous.

Proof. Let $x, x^{\prime}, y, y^{\prime} \in A$ and $0<\varepsilon \in \mathbf{R}$. Then $\overline{d_{v}}: A \times A \rightarrow \mathbf{R}, \overline{d_{v}}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=$ $\max \left\{d_{v}\left(x, x^{\prime}\right), d_{v}\left(y, y^{\prime}\right)\right\}$, for every $(x, y),\left(x^{\prime}, y^{\prime}\right) \in A \times A$ is a metric on $A \times A$. Obviously, by definition, $\overline{d_{v}}$ is a positive function. Since v is a valuation on A, using Theorem 2.1, we deduce that d_{v} is a metric on A. Thus, $\overline{d_{v}}((x, y),(x, y))=\max \left\{d_{v}(x, x), d_{v}(y, y)\right\}=0$ and $\overline{d_{v}}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{d_{v}\left(x, x^{\prime}\right), d_{v}\left(y, y^{\prime}\right)\right\}=\max \left\{d_{v}\left(x^{\prime}, x\right), d_{v}\left(y^{\prime}, y\right)\right\}=\overline{d_{v}}\left(\left(x^{\prime}, y^{\prime}\right),(x, y)\right)$, for every $(x, y),\left(x^{\prime}, y^{\prime}\right) \in A \times A$. Also, for $(x, y),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in A \times A$ we have: $\overline{d_{v}}\left((x, y),\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)=\max \left\{d_{v}\left(x, x^{\prime \prime}\right), d_{v}\left(y, y^{\prime \prime}\right)\right\} \leq \max \left\{d_{v}\left(x, x^{\prime}\right)+d_{v}\left(x^{\prime}, x^{\prime \prime}\right), d_{v}\left(y, y^{\prime}\right)+\right.$ $\left.d_{v}\left(y^{\prime}, y^{\prime \prime}\right)\right\} \leq \max \left\{d_{v}\left(x, x^{\prime}\right), d_{v}\left(y, y^{\prime}\right)\right\}+\max \left\{d_{v}\left(x^{\prime}, x^{\prime \prime}\right), d_{v}\left(y^{\prime}, y^{\prime \prime}\right)\right\}=\overline{d_{v}}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)+$ $\overline{d_{v}}\left(\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)$ and $\overline{d_{v}}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=0$ implies $d_{v}\left(x, x^{\prime}\right)=d_{v}\left(y, y^{\prime}\right)=0$ so, $x=$ x^{\prime} and $y=y^{\prime}$. We conclude that $(x, y)=\left(x^{\prime}, y^{\prime}\right)$. Thus, $\overline{d_{v}}$ is a metric on $A \times A$. If $\overline{d_{v}}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)<\varepsilon / 2$ then $d_{v}\left(x, x^{\prime}\right), d_{v}\left(y, y^{\prime}\right)<\varepsilon / 2$. We have $d_{v}\left(x \rightarrow y, x^{\prime} \rightarrow y^{\prime}\right) \leq$ $d_{v}\left(x \rightarrow y, x^{\prime} \rightarrow y\right)+d_{v}\left(x^{\prime} \rightarrow y, x^{\prime} \rightarrow y^{\prime}\right) \leq d_{v}\left(x, x^{\prime}\right)+d_{v}\left(y, y^{\prime}\right) \leq \varepsilon / 2+\varepsilon / 2=\varepsilon$, that is, \rightarrow is uniformly continuous.

We have the following theorems of extension:
Theorem 2.2. Let A and B two $B C K$ algebras such that A is a subalgebra of B and $v: A \rightarrow \mathbf{R}$ is a pseudo-valuation on A. Then there exists a pseudo-valuation $v^{\prime}: B \rightarrow \mathbf{R}$ such that $v_{\mid A}^{\prime}=v$.

Proof. For $x \in B$ we define $v^{\prime}(x)=\inf \left\{\sum_{i=1}^{n} v\left(x_{i}\right): x_{1}, \ldots, x_{n} \in A\right.$ and $\left(x_{1}, \ldots, x_{n} ; x\right)=$ $1\}$. Since $1 \in A$ and $1 \rightarrow 1=1$ we deduce that $v^{\prime}(1)=v(1)=0$. For $x, y \in B$, let $x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{m} \in A$ such that $\left(x_{1}, \ldots, x_{n} ; x\right)=\left(z_{1}, \ldots, z_{m} ; x \rightarrow y\right)=1$. We deduce that $\left(x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{m} ; y\right)=1$, hence, by the definition of v^{\prime} we have $v^{\prime}(y) \leq \sum_{i=1}^{m} v\left(z_{i}\right)+$ $\sum_{i=1}^{n} v\left(x_{i}\right)$, so, $v^{\prime}(y) \leq \inf \left\{\sum_{i=1}^{m} v\left(z_{i}\right): z_{1}, \ldots, z_{m} \in A\right.$ and $\left.\left(z_{1}, \ldots, z_{m} ; x \rightarrow y\right)=1\right\}+\inf \left\{\sum_{i=1}^{n} v\left(x_{i}\right)\right.$ $: x_{1}, \ldots, x_{n} \in A$ and $\left.\left(x_{1}, \ldots, x_{n} ; x\right)=1\right\}$.

Thus, $v^{\prime}(y) \leq v^{\prime}(x \rightarrow y)+v^{\prime}(x)$, so, $v^{\prime}(y)-v^{\prime}(x) \leq v^{\prime}(x \rightarrow y)$, for every $x, y \in B$. We conclude that v^{\prime} is a pseudo-valuation on B.

If $x \in A$, since $x \rightarrow x=1$, we deduce that $v^{\prime}(x) \leq v(x)$. Let $x_{1}, \ldots, x_{n} \in A$ such that $\left(x_{1}, \ldots, x_{n} ; x\right)=1$. From Lemma 2.1, $v(x) \leq \sum_{i=1}^{n} v\left(x_{i}\right)$, hence $v(x) \leq \inf \left\{\sum_{i=1}^{n} v\left(x_{i}\right)\right.$: $x_{1}, \ldots, x_{n} \in A$ and $\left.\left(x_{1}, \ldots, x_{n} ; x\right)=1\right\}=v^{\prime}(x)$, that is, $v_{\mid A}^{\prime}=v$.

Remark 2.3. If A and B are two BCK algebras such that A is a subalgebra of $B, v: A \rightarrow \mathbf{R}$ is a pseudo-valuation on A and $v^{\prime}: B \rightarrow \mathbf{R}$ is a real-valued function such that $v_{\mid A}^{\prime}=v$, then v^{\prime} is not necessarily a pseudo-valuation on B. Indeed, let $B=\{0, a, b, c, 1\}$ be BCK algebra from Example 1.1. Obviously, $A=\{1\}$ is a sub-BCK-algebra of B and $v: A \rightarrow \mathbf{R}$, $v(1)=0$ is a pseudo-valuation on A, see Example 2.2. Let $v^{\prime}: B \rightarrow \mathbf{R}$ be a real-valued function on B defined by $v^{\prime}=\left(\begin{array}{ccccc}0 & a & b & c & 1 \\ 7 & 2 & 2 & 2 & 0\end{array}\right)$. Then $v_{\mid A}^{\prime}=v$, but v^{\prime} is not a pseudovaluation on B since $v^{\prime}(b \rightarrow 0)=v^{\prime}(a)=2<v^{\prime}(0)-v^{\prime}(b)=7-2=5$.

We consider $D \in D s(A)$ and the relation δ_{D} on A defined by $(x, y) \in \delta_{D}$ iff $x \rightarrow y \in D$ and $y \rightarrow x \in D$. Hence δ_{D} is a congruence on A, see [3] and [13]. For $x \in A$ we denote by x / D the congruence class of x modulo δ_{D} and by $A / D=\{x / D: x \in A\}$ the quotient algebra. Then A / D is a BCK algebra, where for $x, y \in A, x / D \rightarrow y / D=(x \rightarrow y) / D$. Also, we denote by $p_{D}: A \rightarrow A / D$ the canonical surjective morphism of BCK algebras, $p_{D}(x)=x / D$, for every $x \in A$. For $x \in D$, we have $x / D=1 / D=\mathbf{1}$.
Theorem 2.3. If $D \in D s(A)$ and $v: A \rightarrow \mathbf{R}$ is a pseudo-valuation (valuation) on A, then the following assertions are equivalent:
(i) There exists a pseudo-valuation (valuation) $v^{\prime}: A / D \rightarrow \mathbf{R}$ such that $v^{\prime} \circ p_{D}=v$;
(ii) $v(a)=0$, for every $a \in D$.

Proof. $(i) \Rightarrow(i i)$. Let $v^{\prime}: A / D \rightarrow \mathbf{R}$ be a pseudo-valuation on A / D such that $v^{\prime} \circ p_{D}=v$ and let $a \in D$. Then $v(a)=\left(v^{\prime} \circ p_{D}\right)(a)=v^{\prime}\left(p_{D}(a)\right)=v^{\prime}(\mathbf{1})=0$.
(ii) $\Rightarrow(i)$. For $x \in A$ we define $v^{\prime}(x / D)=v(x)$. Let $x, y \in A$ such that $x / D=y / D$. Then $x \rightarrow y \in D$ and $y \rightarrow x \in D$. We obtain $0=v(x \rightarrow y) \geq v(y)-v(x)$ and $0=$ $v(y \rightarrow x) \geq v(x)-v(y)$, so, $v(x)=v(y)$, hence v^{\prime} is correctly defined. Also, we have $v^{\prime}(1 / D)=v(1)=0$ and for $x, y \in A, v^{\prime}(x / D \rightarrow y / D)=v^{\prime}((x \rightarrow y) / D)=v(x \rightarrow y) \geq$ $v(y)-v(x)=v^{\prime}(y / D)-v^{\prime}(x / D)$, hence v^{\prime} is a pseudo-valuation on A. Clearly, $v^{\prime} \circ p_{D}=v$. If v is a valuation on A and $x \in A$ such that $v^{\prime}(x / D)=0$, then $v(x)=0$, hence $x=1$. Thus, $x / D=1 / D=1$. We conclude that v^{\prime} is a valuation on A / D such that $v^{\prime} \circ p_{D}=v$.

3. The dual BCK algebra

In this section we introduce the notion of dual BCK algebra and taking as guide line [1], we obtain results for BCK algebras.

Let $A \in D s(A), D_{1} \wedge D_{2}=D_{1} \cap D_{2}, D_{1} \vee D_{2}=<D_{1} \cup D_{2}>$ and $D_{1} \rightarrow D_{2}=\vee\{D \in$ $\left.D s(A): D_{1} \cap D \subseteq D_{2}\right\}=\left\{a \in A: D_{1} \cap<a>\subseteq D_{2}\right\}$.

Definition 3.1. The dual BCK algebra of A, denoted by A°, is the Heyting algebra $D s(A)$ with the order $D_{1} \leq D_{2}$ iff $D_{2} \subseteq D_{1}$.

In $\left(A^{\circ}, \leq\right), \mathbf{0}=A, \mathbf{1}=\{1\}$ and for $D_{1}, D_{2} \in A^{\circ}, D_{1} \sqcap D_{2}=<D_{1} \cup D_{2}>=D_{1} \vee D_{2}$, $D_{1} \sqcup D_{2}=D_{1} \cap D_{2}$ and $D_{1} \rightarrow D_{2}=\sqcup\left\{D \in A^{\circ}: D_{1} \sqcap D \leq D_{2}\right\}=\cap\left\{D \in A^{\circ}: D_{2} \subseteq\right.$ $\left.D_{1} \vee D\right\}$.
Example 3.5. Let A be the BCK algebra from Example 1.1. It is imediate to prove that

$$
D s(A)=\{\{1\},\{1, c\},\{1, a, c\},\{1, b, c\}, A\}
$$

and A° is the Heyting algebra $D s(A)$ with the order $D_{1} \leq D_{2}$ iff $D_{2} \subseteq D_{1}$, for $D_{1,} D_{2} \in$ $D s(A)$.

Also, we define $j_{A}: A \rightarrow A^{\circ}, j_{A}(a)=<a>$, for every $a \in A$. Hence $j_{A}(1)=1$ and $j_{A}(x \rightarrow y) \supseteq j_{A}(x) \rightarrow j_{A}(y)$, for every $x, y \in A$. Indeed, $j_{A}(1)=<1>=\{1\}=1$. Also, $j_{A}(x) \rightarrow j_{A}(y)=<x>\rightarrow<y>=\cap\{D \in D s(A):<y>\subseteq<x>\vee D\}$. Since from $\left(c_{1}\right)$, $x \rightarrow((x \rightarrow y) \rightarrow y)=1$, we deduce (using $\left.\left(c_{6}\right)\right)$ that $y \in<x>\vee<x \rightarrow y>$, so $<$ $y>\subseteq<x>\vee<x \rightarrow y>$. Thus, $j_{A}(x \rightarrow y)=<x \rightarrow y>\supseteq j_{A}(x) \rightarrow j_{A}(y)$, for every $x, y \in A$.

Lemma 3.3. For every $x, y \in A$, there is a natural number $m \geq 1$ such that

$$
j_{A}\left(x \rightarrow_{m} y\right) \subseteq j_{A}(x) \rightarrow j_{A}(y)
$$

Proof. We have that $j_{A}(x) \rightarrow j_{A}(y)=\cap\{D \in D s(A):<y>\subseteq<x>\vee D\}$. So let $D \in$ $D s(A)$ such that $<y>\subseteq<x>\vee D$. Since $<x>\vee D=\{z \in A: t \rightarrow(d \rightarrow z)=1$, for some $d \in D$ and $t \in\langle x\rangle\}$ and $y \in\langle y>\subseteq<x>\vee D$, we deduce that $t \rightarrow(d \rightarrow y)=1$, for some $d \in D$ and $t \in<x>$. But $t \rightarrow(d \rightarrow y)=d \rightarrow(t \rightarrow y)$, so, $d \rightarrow(t \rightarrow y)=1$ and $d \leq t \rightarrow y$. We deduce that $t \rightarrow y \in D$ for some $t \in<x>$ (i.e., $x \rightarrow_{n} t=1$, for some $n \geq 1$).

Finally, $x \rightarrow_{n} y \in D$, for some $n \geq 1$. Hence, there is a natural number $m \geq 1$ such that $x \rightarrow_{m} y \in D$, for every $D \in D s(A)$. We conclude that there is $m \geq 1$ such that $j_{A}\left(x \rightarrow_{m} y\right) \subseteq j_{A}(x) \rightarrow j_{A}(y)$, for every $x, y \in A$.

We recall that if A and B are two BCK algebras, a function $f: A \rightarrow B$ is a morphism of BCK algebras if $f(x \rightarrow y)=f(x) \rightarrow f(y)$ for every $x, y \in A$.

Lemma 3.4. $j_{B(A)}$ is an injective morphism of $B C K$ algebras.
Proof. We recall that (see [6]) if $a \in B(A)$ then $a \rightarrow(a \rightarrow x)=a \rightarrow x$ for every $x \in A$, so, $<a\rangle=\{x \in A: a \leq x\}$. Using Lemma 3.3, if we consider $x, y \in B(A)$ we deduce that $j_{A}(x) \rightarrow j_{A}(y)=j_{A}(x \rightarrow y)$. Also, if $j_{A}(x)=j_{A}(y)$, then $\langle x\rangle=<y>$ so, $x \leq y$ and $y \leq x$. Thus, $x=y$. We conclude that $j_{B(A)}$ is an injective morphism of BCK algebras.

Definition 3.2. We say that a BCK algebra A has property \mathcal{F} if for every $D \in A^{\circ}$ there exist $x_{1}, \ldots, x_{n} \in A$ such that $D \subseteq<x_{1}, \ldots, x_{n}>$.
Example 3.6. If we consider BCK algebra from Example 1.1, then A has property \mathcal{F} since $A^{\circ}=\operatorname{Ds}(A)=\{\{1\},\{1, c\},\{1, a, c\},\{1, b, c\}, A\}$ and $\{1\}=<1>,\{1, c\}=<1, c>$, $\{1, a, c\}=<1, a, c>,\{1, b, c\}=<1, b, c>$ and $A=<0>$.

Remark 3.4. Examples of BCK algebras with property \mathcal{F} are bounded BCK algebras (since $A=<0>$) and finite BCK algebras.
Theorem 3.4. Let A be a BCK algebra with property \mathcal{F} and $v: A \rightarrow \mathbf{R}$ a pseudo-valuation on A. Then there exists a pseudo-valuation on $A^{\circ}, v^{\prime}: A^{\circ} \rightarrow \mathbf{R}$ such that $v^{\prime} \circ j_{A}=v$.
Proof. For $D \in A^{\circ}$ we define $v^{\prime}(D)=\inf \left\{\sum_{i=1}^{n} v\left(x_{i}\right): x_{1}, \ldots, x_{n} \in A\right.$ and $\left.D \subseteq<x_{1}, \ldots, x_{n}>\right\}$. First, we prove that $v \prime$ is a pseudo-valuation on A°.

Clearly, $v^{\prime}(\mathbf{1})=\inf \left\{\sum_{i=1}^{n} v\left(x_{i}\right): x_{1}, \ldots, x_{n} \in A\right.$ and $\left.\{1\} \subseteq<x_{1}, \ldots, x_{n}>\right\}=v(1)=0$. To verify (${ }^{*}$), let $D_{1}, D_{2} \in A^{\circ}$ and $x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{m} \in A$ such that $D_{1} \subseteq<x_{1}, \ldots, x_{n}>$ and $D_{1} \rightarrow D_{2} \subseteq<z_{1}, \ldots, z_{m}>$. Then $D_{2} \subseteq D_{1} \vee\left(D_{1} \rightarrow D_{2}\right) \subseteq<x_{1}, \ldots, x_{n}>\vee<z_{1}, \ldots, z_{m}>$ $\subseteq<x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{m}>$. Thus $v^{\prime}\left(D_{2}\right) \leq \sum_{i=1}^{n} v\left(x_{i}\right)+\sum_{j=1}^{m} v\left(z_{j}\right)$, so, $v^{\prime}\left(D_{2}\right) \leq \inf \left\{\sum_{i=1}^{n} v\left(x_{i}\right)\right.$: $x_{1}, \ldots, x_{n} \in A$ and $\left.D_{1} \subseteq<x_{1}, \ldots, x_{n}>\right\}+\inf \left\{\sum_{j=1}^{m} v\left(z_{j}\right): z_{1}, \ldots, z_{m} \in A\right.$ and $D_{1} \rightarrow D_{2} \subseteq<$ $\left.z_{1}, \ldots, z_{m}>\right\}=$
$v^{\prime}\left(D_{1}\right)+v^{\prime}\left(D_{1} \rightarrow D_{2}\right)$. We obtain that $v^{\prime}\left(D_{1} \rightarrow D_{2}\right) \geq v^{\prime}\left(D_{2}\right)-v^{\prime}\left(D_{1}\right)$.
If $a, x_{1}, \ldots, x_{n} \in A$ such that $\left.\langle a\rangle \subseteq<x_{1}, \ldots, x_{n}\right\rangle$ then $\left(x_{i_{1}}, \ldots, x_{i_{k}} ; a\right)=1$, for some $x_{i_{1}}, \ldots, x_{i_{k}} \in\left\{x_{1}, \ldots, x_{n}\right\}$. From Lemma 2.1 we deduce that $v(a) \leq \sum_{i=1}^{n} v\left(x_{i}\right)$, so $v(a) \leq$ $\inf \left\{\sum_{i=1}^{n} v\left(x_{i}\right): x_{1}, \ldots, x_{n} \in A\right.$ and $\left.<a>\subseteq<x_{1}, \ldots, x_{n}>\right\}=v^{\prime}(<a>)$. Since $<a>\subseteq<$ $\{a\}>$ it follows that $\left.v^{\prime}(<a\rangle\right)=v(a)$. We conclude that $v^{\prime} \circ j_{A}=v$.

4. CONCLUSIONS AND FUTURE WORK

In [1], is defined a pseudo-valuation on a Hilbert algebra. In this paper, we generalize this concept for BCK algebras and we prove theorems on extensions of pseudo-valuations (valuations) on BCK algebras. Since the power set of a non-empty set is a BCK algebra, using of pseudo-valuations can be useful in the study of theory of sets. As another direction of research one could define and study the concept of free Hilbert algebra with infimum over a BCK algebra. Specifically, the questions are the following: Are there the free Hilbert algebras with infimum over BCK algebras? and if the answer is positive, Which is the relation of these algebras with pseudo-valuations? It is interesting to note that, if the BCK algebra is a Hilbert algebra, then an explicit construction of the free semilattice extension of a Hilbert algebra is not immediate. Also, [1] contains results about pseudo-valuations on free Hertz algebra over a Hilbert algebra.

References

[1] Busneag, D. On extensions of pseudo-valuations on Hilbert algebras. Discrete Mathematics 263 (2003), 11-24.
[2] Celani, S. Deductive systems of BCK-algebras. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 43 (2004), 27-32.
[3] Ciungu, L. Non-commutative Multiple-Valued Logic Algebras, Springer, 2013.
[4] Doh, M. I.; Kang, M. S. BCI / BCK-algebras with pseudo-valuations. Honam Math. J. 32 (2010), no. 2, 217-226.
[5] Doh, M. I.; Kang, M. S. Commutative pseudo-valuations on BCK-algebras. Int. J. Math. Sci. (2011), Art. Id. 754047, 6 pp.
[6] Gispert, J.; Torrens, A. Boolean representation of Bounded BCK-algebras. Soft Computing 12 (2008), no. 10, 941-954.
[7] Ghorbani, S. Quotient BCI-algebras induced by pseudo-valuations. Iran. J. Math. Sci. Inform. 5 (2010), no. 2, 13-24.
[8] Iorgulescu, A. Algebras of logic as BCK algebras. ASE Ed., Bucharest, 2008.
[9] Isèki, K. An algebra related with a propositional calculus. Proc. Jpn. Acad. 42 (1966), 26-29.
[10] Isèki, K.; Tanaka, S. An introduction to the theory of BCK - algebras. Math. Japonica 23 (1978), no. 1, 1-26.
[11] Jun, Y. B.; Lee, J. K. ; Ahn, S. S. Positive implicative pseudo-valuations on BCK-algebras. Appl. Math. Sci. (Ruse) 5 (2011), no. 13-16, 651-662.
[12] Kouhestani, N.; Mehrshad, S. (Semi) topological quotient BCK-algebras. Afr. Mat. 28 (2017), no. 7-8, 1235-1251.
[13] Kühr, J. Pseudo-BCK-algebras and related structures. Univ. Palackeho v Olomuci, 2007.
[14] Mehrshad, S.; Kouhestani, N. A quasi-uniformity on BCC-algebras. An. Univ. Craiova, Ser. Mat. Inform. 44 (2017), no. 1, 64-77.
[15] Mehrshad, S.; Kouhestani, N. On pseudo-valuations on BCK-algebras. Filomat 32 (2018), no. 12, 4319-4332.
[16] Senapati, T.; Shum, K. P. Cubic implicative ideals of BCK-algebras. Missouri J. Math. Sci. 29 (2017), no. 2, 125-138.

[^1]
[^0]: Received: 08.01.2021. In revised form: 18.11.2021. Accepted: 25.11.2021
 2010 Mathematics Subject Classification. 06F35, 03G25, 18A15, 18 C05.
 Key words and phrases. BCK algebra, pseudo-valuation, valuation.
 Corresponding author: Dana Piciu; piciudanamarina@yahoo.com

[^1]: Department of Mathematics
 University of Craiova
 Al. I. CuZa 13, 200585 Craiova, Romania
 Email address: busneag@central.ucv.ro
 Email address: piciudanamarina@yahoo.com
 Email address: istratamihaela@yahoo.com

