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On extensions of pseudo-valuations on BCK algebras

DUMITRU BUSNEAG, DANA PICIU and MIHAELA ISTRATA

ABSTRACT. In this paper we define a pseudo-valuation on a BCK algebra (A,→, 1) as a real-valued function
v : A → R satisfying v(1) = 0 and v(x → y) ≥ v(y)− v(x), for every x, y ∈ A ; v is called a valuation if x = 1
whenever v(x) = 0. We prove that every pseudo-valuation (valuation) v induces a pseudo-metric (metric) on
A defined by dv(x, y) = v(x → y) + v(y → x) for every x, y ∈ A, where → is uniformly continuous in both
variables. The aim of this paper is to provide several theorems on extensions of pseudo-valuations (valuations)
on BCK algebras.

1. INTRODUCTION AND BASIC RESULTS

BCK algebras are an important class of logical algebras investigated by many researchers
(see [2], [3], [6], [8], [9], [10], [13]). BCK algebras were originally introduced by Isèki in
[9]. Further properties of them and their connections with other fuzzy structures were
established by Iorgulescu in [8].

In [1], Busneag defined pseudo-valuations on Hilbert algebras and proved that every
pseudo-valuation induced a pseudo-metric. Using this model, in [4], [5], [7], [11], [12],
[14], [15], [16] is introduced the notion of pseudo-valuation on BCK, BCI, BCC algebras
and several properties are discussed.

The main goal of this paper is to introduce the notions of pseudo-valuation and valua-
tion on BCK algebras and to prove theorems on extensions of pseudo-valuations (valua-
tions) on BCK algebras.

The paper is organized as follows: In Section 1 we review some relevant concepts rel-
ative to BCK algebras. In Section 2 we introduce the notions of pseudo-valuation and
valuation on BCK algebras and we induce a pseudo-metric by using pseudo-valuations
on BCK algebras (Theorem 2.1). Also, we show that the binary operation → is uniformly
continuous, see Corollary 2.1. Finally, we prove some theorems (2.2 and 2.3) on exten-
sions of pseudo-valuations (valuations) on BCK algebras. Section 3 contains results about
pseudo-valuations on the dual BCK algebra, see Theorem 3.4 and the final section con-
tains conclusions, open problems and future work about the presented topics.

A BCK algebra is an algebra (A,→, 1) of type (2,0) satisfying:
(a1) x → x = 1;
(a2) If x → y = y → x = 1, then x = y;
(B) x → y ≤ (y → z) → (x → z);
(C) x → (y → z) = y → (x → z);
(K) x ≤ y → x.

Example 1.1. ([8]) We give an example of a finite bounded BCK algebra. Let A = {0, a, b, c, 1}
with 0 < a, b < c < 1, but a, b are incomparable. A becomes a BCK algebra relative to the
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following operation:
→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

.

If A is a BCK algebra, then the relation ≤ defined by x ≤ y iff x → y = 1 is a partial
order on A (called the natural order); with respect to this order 1 is the largest element of
A. A bounded BCK algebra is a BCK algebra with a smallest element 0 relative to the natural
order. For a BCK algebra A, two elements x, y ∈ A and a natural number n ≥ 1 we denote
x →n y = x → (x → ...(x → y)...), where n indicates the number of occurrences of x.

In BCK algebras we have the following rules of calculus (see [2] and [10]):
(c1) x → 1 = 1, 1 → x = x, x ≤ (x → y) → y, x → y ≤ (z → x) → (z → y);
(c2) If x ≤ y, then for every z ∈ A, z → x ≤ z → y and y → z ≤ x → z.

For a BCK algebra A and x1, ..., xn, x ∈ A (n ≥ 1) we define (x1, ..., xn;x) = x1 →
(x2 → ...(xn → x)...). If σ is a permutation of {1, ..., n− 1}, n ≥ 2, then:

(c3) (xσ(1), ..., xσ(n−1);xn) = (x1, ..., xn−1;xn);
(c4) x → (x1, ..., xn−1;xn) = (x, x1, ..., xn−1;xn);

Let A be a BCK algebra. A subset D of A is called a deductive system of A if 1 ∈ D and
x, x → y ∈ D implies y ∈ D.

Clearly, if D is a deductive system of A and x ≤ y with x ∈ D, then y ∈ D.
We denote by Ds(A) the set of all deductive systems of a BCK algebra A.
For a non-empty subset X ⊆ A, we denote by < X >= ∩{D ∈ Ds(A) : X ⊆ D};

< X > is called the deductive system of A generated by X. If X = {x1, ..., xn} we denote <
{x1, ..., xn} > by < x1, ..., xn >; also, we denote by < a > the deductive system generated
by {a}. It is easy to prove (see [2]) that < a >= {x ∈ A : a →n x = 1, for some natural
number n ≥ 1} (< a > is called principal).

Let A be a bounded BCK algebra. An element x ∈ A is called boolean (see [6]) if < x >
∩ < x∗ >= {1}. Let B(A) the set of all boolean elements of A.

In [2] it is proved that if A is a BCK algebra and X ⊆ A then
(c5) < X > = {x ∈ A : (x1, ..., xn;x) = 1, for some x1, ..., xn ∈ X and n ≥ 1};
(c6) If D1, D2 ∈ Ds(A) and we define D1∨D2 =< D1∪D2 >, then D1∨D2 = {x ∈ A :

d1 → (d2 → x) = 1, for some d1 ∈ D1 and d2 ∈ D2}.

Remark 1.1. If D ∈ Ds(A), then D is a BCK subalgebra of A (since 1 ∈ D and if x, y ∈ D
from y ≤ x → y we deduce that x → y ∈ D).

2. PSEUDO-VALUATIONS (VALUATIONS) ON BCK ALGEBRAS

Using the model of Hilbert algebras (see [1]), in this section we introduce the notions
of pseudo-valuations and valuations on BCK algebras and we prove some theorems of
extension for these.

Let A be a BCK algebra. A real-valued function v : A → R is called a pseudo-valuation on
A if v(1) = 0 and (∗) : v(x → y) ≥ v(y)− v(x), for every x, y ∈ A. The pseudo-valuation
v is called valuation if v(x) = 0 implies x = 1.

If we interpret A as an implicational calculus, x → y as the proposition x ⇒ y and 1 as
truth, a pseudo-valuation on A can be interpreted as a ”falsity-valuation”.

Example 2.2. v : A → R, v(x) = 0 for every x ∈ A is a pseudo-valuation on A.



On extensions of pseudo-valuations on BCK algebras 45

Example 2.3. If D ∈ Ds(A) and 0 ≤ r ∈ R, then vD : A → R, vD(x) = 0, if x ∈ D and
r otherwise, is a pseudo-valuation on A. Indeed, vD(1) = 0 since 1 ∈ D. Let x, y ∈ A. If
x, y ∈ D, since y ≤ x → y we obtain x → y ∈ D. So, vD(x → y) = vD(x) = vD(y) = 0 and
vD(x → y) = vD(y)−vD(x). If x, y /∈ D, then vD(y)−vD(x) = r−r = 0 ≤ vD(x → y). If x /∈
D and y ∈ D we deduce that x → y ∈ D, so 0 = vD(x → y) ≥ vD(y)−vD(x) = 0−r = −r.
If y /∈ D and x ∈ D then x → y /∈ D. We obtain r = vD(x → y) = vD(y)−vD(x) = r−0 = r.

Remark 2.2. Let A be a non trivial BCK algebra, D ∈ Ds(A), r ≥ 0 and vD : A → R the
function given by vD(x) = 0 if x ∈ D and r otherwise. Then vD is a valuation if and only
if D = {1} and r > 0.

Example 2.4. Let M be a finite set with n elements and A = P (M) be the power set of M
(the set of all subsets of M ). Then (P (M),∩,∪, CM ,∅,M) is a Boolean algebra (where for
X ⊆ M , CM (X) = M\X ). The function v : P (M) → R, defined by v(X) = n − n(X)
is a valuation on A, where n(X) is the number of elements of X. Indeed, v(M) = 0. Let
X,Y ⊆ M. We have v(X → Y ) = v(CMX∪Y ) = n−n(CMX∪Y ) = n−n(CMX)−n(Y )+
n(CMX ∩ Y ) = n(X) − n(Y ) + n(CMX ∩ Y ) ≥ n(X) − n(Y ) = v(Y ) − v(X). Obviously,
v(X) = 0 iff X = M.

Lemma 2.1. If v : A → R is a pseudo-valuation on A and x, x1, ..., xn ∈ A such that (x1, ..., xn;x)
= 1 then

(c7) v(x) ≤
n∑

i=1

v(xi).

Proof. 0 = v(1) = v((x1, ..., xn;x)) ≥ v(x)−
n∑

i=1

v(xi), so v(x) ≤
n∑

i=1

v(xi). □

A pseudo-valuation v : A → R is called decreasing if v(x) ≥ v(y) for every x, y ∈ A with
x ≤ y.

Lemma 2.2. A pseudo-valuation v is a positive decreasing function satisfying
(c8) v(x → y) + v(y → z) ≥ v(x → z), for any x, y, z ∈ A.

Proof. If in (∗) we put y = 1 we obtain v(x → 1) ≥ v(1)−v(x), so v(x) ≥ 0, for every x ∈ A.
If x ≤ y, then x → y = 1, so from (∗) we deduce that 0 = v(1) = v(x → y) ≥ v(y) − v(x).
We conclude that v(x) ≥ v(y) for every x ≤ y, so, v is a decreasing function. Let now
x, y, z ∈ A. Since v is a decreasing function, from (B), we deduce that v(x → y) ≥ v((y →
z) → (x → z)) ≥ v(x → z)− v(y → z). Thus, v(x → z) ≤ v(x → y) + v(y → z). □

We recall that by a pseudo-metric space we mean an ordered pair (M,d), where M is
a non-empty set and d : M × M → R is a positive function satisfying the following
properties: d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y)+d(y, z) for every x, y, z ∈ M.
If in the pseudo-metric space (M,d), d(x, y) = 0 implies x = y, then (M,d) is called a
metric space.

Theorem 2.1. Let v : A → R be a pseudo-valuation on A. If we define dv : A × A → R,
dv(x, y) = v(x → y) + v(y → x), for every (x, y) ∈ A×A, then

(i) (A, dv) is a pseudo-metric space satisfying:
(c9) max{dv(x → z, y → z), dv(z → x, z → y)} ≤ dv(x, y), for every x, y, z ∈ A;

(ii) dv is a metric on A iff v is a valuation on A.

Proof. (i). Let x, y, z ∈ A. Clearly, dv(x, y) = dv(y, x) ≥ 0 and dv(x, x) = v(x → x)+
v(x → x) = v(1) + v(1) = 0 + 0 = 0. Also, dv(x, y) + dv(y, z) = [v(x → y) + v(y → x)]+

[v(y → z) + v(z → y)] = [v(x → y) + v(y → z)]+ [v(z → y) + v(y → x)]
(c8)

≥ v(x →
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z) + v(z → x) = dv(x, z), hence dv is a pseudo-metric on A. Now, we prove (c9). We
have dv(x → z, y → z) = v((x → z) → (y → z))+ v((y → z) → (x → z)). Since, from
(B), x → y ≤ (y → z) → (x → z) and y → x ≤ (x → z) → (y → z) we deduce that
v(x → y) ≥ v((y → z) → (x → z)) and v(y → x) ≥ v((x → z) → (y → z)), hence,
dv(x, y) = v(x → y) + v(y → x) ≥ v((y → z) → (x → z)) +v((x → z) → (y → z)) =
dv(x → z, y → z). Since, from (c1), x → y ≤ (z → x) → (z → y) and y → x ≤ (z →
y) → (z → x), analogously as above we deduce that dv(x, y) ≥ dv(z → x, z → y). So,
max{dv(x → z, y → z), dv(z → x, z → y)} ≤ dv(x, y), for every x, y, z ∈ A.

(ii). First, we suppose that dv is a metric on A and let x ∈ A such that v(x) = 0. Since
dv(x, 1) = v(x → 1)+ v(1 → x) = v(1) + v(x) = 0 + 0 = 0, then x = 1, that is, v is a
valuation on A. Conversely, if v is a valuation on A, let x, y ∈ A such that dv(x, y) = 0. We
obtain v(x → y) = v(y → x) = 0. Hence x → y = y → x = 1, so x = y, that is, dv is a
metric on A. □

We shall call dv the pseudo-metric (metric) induced by the pseudo-valuation (valuation) v.
If we interpret a pseudo-valuation as a measure, then dv is well known metric induced by
a measure.

Corollary 2.1. Let v : A → R be a valuation. Then the operation →: A × A → A is uniformly
continuous.

Proof. Let x, x′, y, y′ ∈ A and 0 < ε ∈ R. Then dv : A × A → R, dv((x, y), (x
′, y′)) =

max{dv(x, x′), dv(y, y
′)}, for every (x, y), (x′, y′) ∈ A×A is a metric on A×A. Obviously,

by definition, dv is a positive function. Since v is a valuation on A, using Theorem 2.1, we
deduce that dv is a metric on A. Thus, dv((x, y), (x, y)) = max{dv(x, x), dv(y, y)} = 0 and
dv((x, y), (x

′, y′)) = max{dv(x, x′), dv(y, y
′)}=max{dv(x′, x), dv(y

′, y)} = dv((x
′, y′), (x, y)),

for every (x, y), (x′, y′) ∈ A × A. Also, for (x, y), (x′, y′), (x′′, y′′) ∈ A × A we have:
dv((x, y), (x

′′, y′′)) = max{dv(x, x′′), dv(y, y
′′)} ≤ max{dv(x, x′) + dv(x

′, x′′), dv(y, y
′) +

dv(y
′, y′′)} ≤ max{dv(x, x′), dv(y, y

′)} + max{dv(x′, x′′), dv(y
′, y′′)} = dv((x, y), (x

′, y′))+
dv((x

′, y′), (x′′, y′′)) and dv((x, y), (x
′, y′)) = 0 implies dv(x, x

′) = dv(y, y
′) = 0 so, x =

x′ and y = y′. We conclude that (x, y) = (x′, y′). Thus, dv is a metric on A × A. If
dv((x, y), (x

′, y′)) < ε/2 then dv(x, x
′), dv(y, y

′) < ε/2. We have dv(x → y, x′ → y′) ≤
dv(x → y, x′ → y) + dv(x

′ → y, x′ → y′) ≤ dv(x, x
′) + dv(y, y

′) ≤ ε/2 + ε/2 = ε, that is, →
is uniformly continuous. □

We have the following theorems of extension:

Theorem 2.2. Let A and B two BCK algebras such that A is a subalgebra of B and v : A → R
is a pseudo-valuation on A. Then there exists a pseudo-valuation v′ : B → R such that v′|A = v.

Proof. For x ∈ B we define v′(x) = inf{
n∑

i=1

v(xi) : x1, ..., xn ∈ A and (x1, ..., xn;x) =

1}. Since 1 ∈ A and 1 → 1 = 1 we deduce that v′(1) = v(1) = 0. For x, y ∈ B, let
x1, ..., xn, z1, ..., zm ∈ A such that (x1, ..., xn;x) = (z1, ..., zm;x → y) = 1. We deduce

that (x1, ..., xn, z1, ..., zm; y) = 1, hence, by the definition of v′ we have v′(y) ≤
m∑
i=1

v(zi) +

n∑
i=1

v(xi), so, v′(y) ≤ inf{
m∑
i=1

v(zi) : z1, ..., zm ∈ A and (z1, ..., zm;x → y) = 1}+ inf{
n∑

i=1

v(xi)

: x1, ..., xn ∈ A and (x1, ..., xn;x) = 1}.
Thus, v′(y) ≤ v′(x → y) + v′(x), so, v′(y) − v′(x) ≤ v′(x → y), for every x, y ∈ B. We

conclude that v′ is a pseudo-valuation on B.
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If x ∈ A, since x → x = 1, we deduce that v′(x) ≤ v(x). Let x1, ..., xn ∈ A such

that (x1, ..., xn;x) = 1. From Lemma 2.1, v(x) ≤
n∑

i=1

v(xi), hence v(x) ≤ inf{
n∑

i=1

v(xi) :

x1, ..., xn ∈ A and (x1, ..., xn;x) = 1} = v′(x), that is, v′|A = v. □

Remark 2.3. If A and B are two BCK algebras such that A is a subalgebra of B, v : A → R
is a pseudo-valuation on A and v′ : B → R is a real-valued function such that v′|A = v,

then v′ is not necessarily a pseudo-valuation on B. Indeed, let B = {0, a, b, c, 1} be BCK
algebra from Example 1.1. Obviously, A = {1} is a sub-BCK-algebra of B and v : A → R,
v(1) = 0 is a pseudo-valuation on A, see Example 2.2. Let v′ : B → R be a real-valued

function on B defined by v′ =

(
0 a b c 1
7 2 2 2 0

)
. Then v′|A = v, but v′ is not a pseudo-

valuation on B since v′(b → 0) = v′(a) = 2 < v′(0)− v′(b) = 7− 2 = 5.

We consider D ∈ Ds(A) and the relation δD on A defined by (x, y) ∈ δD iff x → y ∈ D
and y → x ∈ D. Hence δD is a congruence on A, see [3] and [13]. For x ∈ A we denote
by x/D the congruence class of x modulo δD and by A/D = {x/D : x ∈ A} the quotient
algebra. Then A/D is a BCK algebra, where for x, y ∈ A, x/D → y/D = (x → y)/D.
Also, we denote by pD : A → A/D the canonical surjective morphism of BCK algebras,
pD(x) = x/D, for every x ∈ A. For x ∈ D, we have x/D = 1/D = 1.

Theorem 2.3. If D ∈ Ds(A) and v : A → R is a pseudo-valuation (valuation) on A, then the
following assertions are equivalent:

(i) There exists a pseudo-valuation (valuation) v′ : A/D → R such that v′ ◦ pD = v;
(ii) v(a) = 0, for every a ∈ D.

Proof. (i) ⇒ (ii). Let v′ : A/D → R be a pseudo-valuation on A/D such that v′ ◦ pD = v
and let a ∈ D. Then v(a) = (v′ ◦ pD)(a) = v′(pD(a)) = v′(1) = 0.

(ii) ⇒ (i). For x ∈ A we define v′(x/D) = v(x). Let x, y ∈ A such that x/D = y/D.
Then x → y ∈ D and y → x ∈ D. We obtain 0 = v(x → y) ≥ v(y) − v(x) and 0 =
v(y → x) ≥ v(x) − v(y), so, v(x) = v(y), hence v′ is correctly defined. Also, we have
v′(1/D) = v(1) = 0 and for x, y ∈ A, v′(x/D → y/D) = v′((x → y)/D) = v(x → y) ≥
v(y)−v(x) = v′(y/D)−v′(x/D), hence v′ is a pseudo-valuation on A. Clearly, v′ ◦pD = v.
If v is a valuation on A and x ∈ A such that v′(x/D) = 0, then v(x) = 0, hence x = 1. Thus,
x/D = 1/D = 1. We conclude that v′ is a valuation on A/D such that v′ ◦ pD = v. □

3. THE DUAL BCK ALGEBRA

In this section we introduce the notion of dual BCK algebra and taking as guide line
[1], we obtain results for BCK algebras.

Let A ∈ Ds(A), D1 ∧D2 = D1 ∩D2, D1 ∨D2 =< D1 ∪D2 > and D1 → D2 = ∨{D ∈
Ds(A) : D1 ∩D ⊆ D2} = {a ∈ A : D1∩ < a >⊆ D2}.
Definition 3.1. The dual BCK algebra of A, denoted by A◦, is the Heyting algebra Ds(A)
with the order D1 ≤ D2 iff D2 ⊆ D1.

In (A◦,≤), 0 = A,1 = {1} and for D1,D2 ∈ A◦, D1 ⊓ D2 =< D1 ∪ D2 >= D1 ∨ D2,
D1 ⊔ D2 = D1 ∩ D2 and D1 → D2 = ⊔{D ∈ A◦ : D1 ⊓ D ≤ D2} = ∩{D ∈ A◦ : D2 ⊆
D1 ∨D}.
Example 3.5. Let A be the BCK algebra from Example 1.1. It is imediate to prove that

Ds(A) = {{1}, {1, c}, {1, a, c}, {1, b, c}, A}
and A◦ is the Heyting algebra Ds(A) with the order D1 ≤ D2 iff D2 ⊆ D1, for D1,D2 ∈
Ds(A).
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Also, we define jA : A → A◦, jA(a) =< a >, for every a ∈ A. Hence jA(1) = 1 and
jA(x → y) ⊇ jA(x) → jA(y), for every x, y ∈ A. Indeed, jA(1) =< 1 >= {1} = 1. Also,
jA(x) → jA(y) =< x >→< y > = ∩{D ∈ Ds(A) :< y >⊆< x > ∨D}. Since from (c1),
x → ((x → y) → y) = 1, we deduce (using (c6)) that y ∈< x > ∨ < x → y >, so <
y >⊆< x > ∨ < x → y > . Thus, jA(x → y) =< x → y >⊇ jA(x) → jA(y), for every
x, y ∈ A.

Lemma 3.3. For every x, y ∈ A, there is a natural number m ≥ 1 such that

jA(x →m y) ⊆ jA(x) → jA(y).

Proof. We have that jA(x) → jA(y) = ∩{D ∈ Ds(A) :< y >⊆< x > ∨D}. So let D ∈
Ds(A) such that < y >⊆< x > ∨D. Since < x > ∨D = {z ∈ A : t → (d → z) = 1, for
some d ∈ D and t ∈< x >} and y ∈< y > ⊆ < x > ∨D, we deduce that t → (d → y) = 1,
for some d ∈ D and t ∈< x > . But t → (d → y) = d → (t → y), so, d → (t → y) = 1
and d ≤ t → y. We deduce that t → y ∈ D for some t ∈< x > (i.e., x →n t = 1, for some
n ≥ 1).

Finally, x →n y ∈ D, for some n ≥ 1. Hence, there is a natural number m ≥ 1 such
that x →m y ∈ D, for every D ∈ Ds(A). We conclude that there is m ≥ 1 such that
jA(x →m y) ⊆ jA(x) → jA(y), for every x, y ∈ A. □

We recall that if A and B are two BCK algebras, a function f : A → B is a morphism of
BCK algebras if f(x → y) = f(x) → f(y) for every x, y ∈ A.

Lemma 3.4. jB(A) is an injective morphism of BCK algebras.

Proof. We recall that (see [6]) if a ∈ B(A) then a → (a → x) = a → x for every x ∈ A, so,
< a >= {x ∈ A : a ≤ x}. Using Lemma 3.3, if we consider x, y ∈ B(A) we deduce that
jA(x) → jA(y) = jA(x → y). Also, if jA(x) = jA(y), then < x >=< y > so, x ≤ y and
y ≤ x. Thus, x = y. We conclude that jB(A) is an injective morphism of BCK algebras. □

Definition 3.2. We say that a BCK algebra A has property F if for every D ∈ A◦ there
exist x1, ..., xn ∈ A such that D ⊆< x1, ..., xn > .

Example 3.6. If we consider BCK algebra from Example 1.1, then A has property F since
A◦ = Ds(A) = {{1}, {1, c}, {1, a, c}, {1, b, c}, A} and {1} =< 1 >, {1, c} =< 1, c >,
{1, a, c} =< 1, a, c >, {1, b, c} =< 1, b, c > and A =< 0 > .

Remark 3.4. Examples of BCK algebras with property F are bounded BCK algebras (since
A =< 0 >) and finite BCK algebras.

Theorem 3.4. Let A be a BCK algebra with property F and v : A → R a pseudo-valuation on A.
Then there exists a pseudo-valuation on A◦, v′ : A◦ → R such that v′ ◦ jA = v.

Proof. For D ∈ A◦ we define v′(D) = inf{
n∑

i=1

v(xi) : x1, ..., xn ∈ A and D ⊆< x1, ..., xn >}.

First, we prove that v′ is a pseudo-valuation on A◦.

Clearly, v′(1) = inf{
n∑

i=1

v(xi) : x1, ..., xn ∈ A and {1} ⊆< x1, ..., xn >} = v(1) = 0. To

verify (∗), let D1, D2 ∈ A◦ and x1, ..., xn, z1, ..., zm ∈ A such that D1 ⊆ < x1, ..., xn > and
D1 → D2 ⊆< z1, ..., zm > . Then D2 ⊆ D1∨ (D1 → D2) ⊆ < x1, ..., xn > ∨ < z1, ..., zm >

⊆ < x1, ..., xn, z1, ..., zm > . Thus v′(D2) ≤
n∑

i=1

v(xi) +
m∑
j=1

v(zj), so, v′(D2) ≤ inf{
n∑

i=1

v(xi) :

x1, ..., xn ∈ A and D1 ⊆ < x1, ..., xn >} + inf{
m∑
j=1

v(zj) : z1, ..., zm ∈ A and D1 → D2 ⊆<

z1, ..., zm >} =
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v′(D1) + v′(D1 → D2). We obtain that v′(D1 → D2) ≥ v′(D2)− v′(D1).
If a, x1, ..., xn ∈ A such that < a > ⊆ < x1, ..., xn > then (xi1 , ..., xik ; a) = 1, for some

xi1 , ..., xik ∈ {x1, ..., xn}. From Lemma 2.1 we deduce that v(a) ≤
n∑

i=1

v(xi), so v(a) ≤

inf{
n∑

i=1

v(xi) : x1, ..., xn ∈ A and < a >⊆ < x1, ..., xn >} = v′(< a >). Since < a >⊆<

{a} > it follows that v′(< a >) = v(a). We conclude that v′ ◦ jA = v. □

4. CONCLUSIONS AND FUTURE WORK

In [1], is defined a pseudo-valuation on a Hilbert algebra. In this paper, we generalize
this concept for BCK algebras and we prove theorems on extensions of pseudo-valuations
(valuations) on BCK algebras. Since the power set of a non-empty set is a BCK algebra,
using of pseudo-valuations can be useful in the study of theory of sets. As another di-
rection of research one could define and study the concept of free Hilbert algebra with
infimum over a BCK algebra. Specifically, the questions are the following: Are there the
free Hilbert algebras with infimum over BCK algebras? and if the answer is positive, Which is
the relation of these algebras with pseudo-valuations? It is interesting to note that, if the BCK
algebra is a Hilbert algebra, then an explicit construction of the free semilattice extension
of a Hilbert algebra is not immediate. Also, [1] contains results about pseudo-valuations
on free Hertz algebra over a Hilbert algebra.
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