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Some inequalities on the Mostar index

ÖZGE ÇOLAKOĞLU HAVARE

ABSTRACT. Topological indices are the numerical descriptors of a molecular structure obtained via molecular
graph G. They are used to predict physicochemical and bioactive properties of the molecules and molecular
compounds. In this paper, the Mostar index is studied. It is presented the relationships between the Mostar
index and other topological indices. Inequalities about some parameters and also Nordhaus-Gaddum-type
results for the Mostar index are also presented.

1. INTRODUCTION

It has been seen that it is important to discover new drugs and vaccines to slow, stop
epidemics, and also to treat many diseases in recent days. For this, it is necessary to ob-
tain information about the physicochemical and bioactivity properties of new molecules
and molecular compounds as soon as possible. Obtaining information about the proper-
ties of molecules or molecular compounds is a costly and time-consuming process. This
has led to applications involving drug-like, pharmacokinetic, 3D-QSAR, molecular dock-
ing, the prediction of electronics, etc. Chemical graph theory is also focused on these
applications. Topological indices, which are the subject of the chemical graph theory, are
the numerical values of the molecular structures obtained via molecular graph. The ver-
tices and edges of a molecular graph represent the atoms and the bonds between atoms,
respectively. These indices are used to predict the properties of molecules such as the
structure-property relationship, the structure-activity relationship, and the structural de-
sign in chemistry, nanotechnology, and pharmacology [6] .

The first applied topological index is the Wiener index and was introduced in order
to calculate the boiling points of paraffin [29]. With the increasing importance of appli-
cations, many topological indices have been introduced. These indices can be classified
with respect to the structural characteristics of the graph such as the degree of vertices,
the distances between vertices, the matching, and the spectrum, and so on.

T. Doslic et al. introduced the Mostar index, which is a bond-additive topological index,
in 2019. They gave explicit formulas for benzenoid graph, Cartesian product, extremal
and unicyclic graphs [15]. A. Tepeh gave results for the Mostar index of the bicyclic graph
[26]. F. Hayat and B. Zhou gave bounds on cacti with the Mostar index [22]. S. Akhter et
al. computed the Mostar index of some graph operations [1]. N. Dehgardiy and M. Azariz
obtained the lower bounds with the Mostar index of trees and the Mostar index of some
graph operations [8]. K. Deng and S. Li presented the extremal values for the Mostar index
of trees with given degree sequence [9]. K. Deng and S. Li studied the Mostar index for
Chemical trees [10]. Ö. Colakoglu Havare gave the value of the Mostar index and edge
Mostar index for some cycle-related graphs [6]. M. Ghorbani et al. studied on Mostar
index of graphs and trees with given parameters [19]. A. Ali and T. Doslic gave known
bounds and extremal results concerning the Mostar index [3].
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This paper focuses on relations between the Mostar index and other topological in-
dices. It is given inequalities with other graph-theoretic parameters, like diameter, clique
number for the Mostar index, and also Nordhaus-Gaddum type results for the Mostar
index is given.

2. PRELIMINARIES

Let G be a simple connected graph with a vertex set V and edge set E. The cardinality
of the vertex set of a graph is denoted by n and the cardinality of its edge set is denoted
by m. An edge of G connects the vertices u and v and it is written by e = uv. The degree
of a vertex u is defined by du. The distance between vertices u and v is defined by d(u, v).
The maximum distance between all pairs of vertices of G is defined the diameter of G,
diam(G) [5].

First Zagrab index of a graph G [21], degree-based topological index, is defined as

M1(G) =
∑
uv∈E

(du + dv) .

The Albertson of graph G, is known as irregularity index [2] and third Zagreb index [17]
and misbalance deg index [28], is defined as

irr(G) =
∑
uv∈E

|du − dv| .

The Wiener index of a graph G [29], distance-based index, is defined as

W (G) =
1

2

∑
v,u⊆V

d(u, v) =
1

2

∑
v∈V

d(v |G )

where d(v |G ), is distance of a vertex v of G, is defined as
∑
x∈V

d(v, x |G ).

The Mostar index is defined by

Mo(G) =
∑
uv∈E

|nu − nv| (2.1)

where nu is the number of vertices of G lying closer to vertex u than to vertex v of the
edge uv [15]. N(u) is the set of vertices of G lying closer to vertex u than vertex v of the
edge uv. Namely,

N(u) = {x ∈ V : d(x, u) < d(x, v)}.
The Padmakar-Ivan index of a graph G is defined as [23]

PI(G) =
∑
uv∈E

(nu + nv) .

The Szeged index of a graph G, first studied with the symbol W ∗, is defined as (see
[20]-[14])

Sz(G) =
∑
uv∈E

nunv.

A graph G is said to be distance-balanced if nu = nv for uv ∈ E. For standard termi-
nology and notations, we follow Buckley and Harary [5].

Lemma 2.1. [18] Let G be a connected graph. If diam(G) = 2 then Mo(G) = irr(G).

Theorem 2.1. [30] Let G and G be a connected graph with n ≥ 5 and its complement, respec-
tively. Then

3
(
n
2

)
≤ W (G) +W (G) ≤ n3 + 3n2 + 2n− 6

6
.
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Lemma 2.2. [12] If G is a conncected graph then

∑
uv∈E

nunv =
1

4

n2m−
∑
v∈V

d(v |G )2dv +
∑
v∈V

∑
u∈N(v)

d(u |G )d(v |G )


for uv ∈ E.

Lemma 2.3. [16] If G be a conncected graph then nu − nv = d(u |G )− d(v |G ) for uv ∈ E.

Lemma 2.4. [7] Let G be a connected graph with t(G) triangles. Then
∑

uv∈E

|Nu ∩Nv| = 3t(G)

.

Lemma 2.5. [27] If ai ∈ R for 1 ≤ i ≤ n, R = maxai and r = minai, then

n

n∑
i=1

a2i −

(
n∑

i=1

ai

)2

≥ n

2
(R− r)

2

Lemma 2.6. [4] Let ai and bi are nonnegative real numbers, then∣∣∣∣∣n
n∑

i=1

aibi −
n∑

i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ α(n)(A− a)(B − b)

where a, b, A and B are real constants such that a ≤ ai ≤ A and b ≤ bi ≤ B for 1 ≤ i ≤ n.
Further, α(n) = n

⌈
n
2

⌉ (
1− 1

n

⌈
n
2

⌉)
with ⌈x⌉ being the greatest integer function than or equal to

x.

Lemma 2.7. [11] Let ai, bi > 0 for 1 ≤ i ≤ n, satisfying the condition rai ≤ bi ≤ Rai for
1 ≤ i ≤ n. Then

rR

n∑
i=1

a2i +

n∑
i=1

b2i ≤ (r +R)

n∑
i=1

aibi

equality holds iff rai = bi or Rai = bi for 1 ≤ i ≤ n.

Lemma 2.8. [25] Let ai, bi > 0 for 1 ≤ i ≤ n, such that 0 < a ≤ ai ≤ A and 0 < b ≤ bi ≤ B
for 1 ≤ i ≤ n then(

n∑
i=1

a2i

)(
n∑

i=1

b2i

)
≤ 1

4

(√
AB

ab
+

√
ab

AB

)2( n∑
i=1

aibi

)2

.

The equality holds iff ρ =
A
a

A
a +B

b

n and q =
B
b

A
a +B

b

n are integers, where ai = a for i = 1, ..., p,

aj = A for j = p+ 1, ..., n, and bi = b for i = 1, ..., p, and bj = B for j = p+ 1, ..., n.

3. INEQUALITIES ON THE MOSTAR INDEX

In this section, various inequations between Mostar index and other topological indices
are obtained. Moreover, the relations between the Mostar index and some paremater are
presented.

Theorem 3.2. Let G be a connected graph with n vertices and m edges. Then

Mo(G) ≤ 2m (n− 1)−M1(G).

with equality holds if and only if G ≊ Sn.
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Proof. Let n(e) be the number of vertices equidistant from ends of the edge e = uv . There
is nu + nv = n − n(e) such that 0 ≤ n(e). It has nu + nv ≥ du + dv (see [24]). Then
n− n(e) ≥ du + dv. Then,∑

uv∈E

|nu − nv| =
∑
uv∈E

|nu − (n− n(e)− nu)| =
∑
uv∈E

|2nu − (n− n(e))|

≤
∑
uv∈E

|2nu − (du + dv)|

≤
∑
uv∈E

|2 (n− 1)− (du + dv)| , since nu ≤ n− 1

≤
∑
uv∈E

2 (n− 1)−
∑
uv∈E

(du + dv) , since du ≤ n− 1 for every u ∈ V.

The proof is completed from the definitions of the Mostar index and the first Zagreb index.
If G is a star graph, then du + dv = n for every uv ∈ E. Hence, Mo(Sn) = (n− 1)(n− 2) =∑
uv∈E

2(n− 1)−
∑

uv∈E

n. □

Theorem 3.3. Let G be a connected graph with n vertices and m edges. Then

PI(G)2

m
− 4Sz(G) ≤ (n− 2)Mo(G).

The equality holds if G is a star graph.

Proof. From (nu + nv)
2 − (nu − nv)

2
= 4nunv and Cauchy-Schwarz inequality, it is ob-

tained ( ∑
uv∈E

(nu + nv)

)2

m
−
∑
uv∈E

4nunv ≤
∑
uv∈E

|nu − nv|2 . (3.2)

Since |nu − nv| ≤ n−2, this proof is completed by using the definitions of PI , Sz, and Mo

indices. If G is a star graph, then |nu − nv| = n−2 and from Eq. (3.2), ((n−1)n)2

n−1 −4(n−1)2 =∑
uv∈E

(n− 2)2. □

Theorem 3.4. Let G be a connected graph on n vertices and m edges. If graph G is not distance-
balanced, then

PI(G)2 < 4mSz(G) +
n2 − 2n+ 1

4 (n− 2)
Mo(G)2.

Proof. If it is chosen ai = |nu − nv| and bi = 1 such that 0 < 1 ≤ ai ≤ n − 2 and 0 < 1 ≤
bi ≤ 1 in Lemma 2.8, then

m
∑
uv∈E

|nu − nv|2 ≤ 1

4

(√
n− 2 +

1√
n− 2

)2
(∑

uv∈E

|nu − nv|

)2

. (3.3)

From (3.2) and (3.3), the proof is completed. If ρ = n−2
n−1n and q = n

n−1 are integers, then
this equality holds. When n = 2, ρ and q are integers. □

Theorem 3.5. Let G be a connected graph on n vertices and m edges. If G is not a distance-
balanced graph, then

Mo(G) ≥
√

2m (n− 2). (3.4)
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Otherwise,
m(n− 2)Mo(G)−Mo(G)2 ≥ m

2
(n− 2)

2

Proof. Let G be not the distance-balanced graph. If it is chosen ai = |nu − nv| such that
r = 1 ≤ |nu − nv| ≤ n− 2 = R in Lemma 2.5, then the following inequality can be written

m
∑
uv∈E

|nu − nv|2 −

(∑
uv∈E

|nu − nv|

)2

≥ m

2
(n− 3)

2
. (3.5)

Eq. (3.4) is obtained from (3.3) and (3.5).
Assume that G be a connected graph on n vertices and m edges. If it is chosen ai =

|nu − nv| such that 0 ≤ |nu − nv| ≤ n− 2 in Lemma 2.5, it is obtained

m
∑
uv∈E

(n− 2) |nu − nv| −

(∑
uv∈E

|nu − nv|

)2

≥ m

2
(n− 2)

2
.

From the definition of the Mo(G) index, the proof is completed. □

Theorem 3.6. Let G be a connected bipartite graph with n vertices and m edges. Then

Mo(G)2

m
≤ mn2 − 4Sz(G) ≤ (n− 2)Mo(G)

with left equality if and ony if G = Sn and with right equality if and only if G = Sn.

Proof. If G be a connected bipartite graph, then nu + nv = n. It can be written 2nu =
n+ nu − nv and 2nv = n+ nv − nu. Then,∑

uv∈E

4nunv =
∑
uv∈E

(
2nunu − n2

u − n2
v + n2

)
∑
uv∈E

(nu − nv)
2

=
∑
uv∈E

n2 − 4
∑
uv∈E

nunv (3.6)

From Eq. (3.6) and Chauchy-Schwarz inequality, the lower bound is obtained. From Eq.
(3.6) and |nu − nv| ≤ n− 2, the upper bound is obtained. □

Theorem 3.7. Let G be a connceted graph with n vertices and m edges. Then∣∣∣∣∣
(
PI(G)2 + nMo(G)2

)
(n+ 1)

− PI(G)Mo(G)

∣∣∣∣∣ < γ (m) (n− 2)
2

where γ (m) = m
⌈
m
2

⌉ (
1− 1

m

⌈
m
2

⌉)
.

Proof. If it is choosen ai = |nu − nv| and bi = (nu + nv) such that 0 ≤ ai ≤ n − 2 and
2 ≤ bi ≤ n in Lemma 2.6, then the following inequality can be written∣∣∣∣∣m∑

uv∈E

∣∣n2
u − n2

v

∣∣− ∑
uv∈E

|nu − nv|
∑
uv∈E

(nu + nv)

∣∣∣∣∣ ≤ γ(m)(n− 2)(n− 2). (3.7)

If ai = |nu − nv| and bi = (nu + nv) such that |nu − nv| ≤ (nu + nv) ≤ n |nu − nv| in
Lemma 2.7 are chosen, then it is obtained

n
∑
uv∈E

|nu − nv|2 +
∑
uv∈E

|nu + nv|2 ≤ (n+ 1)
∑
uv∈E

∣∣n2
u − n2

v

∣∣ . (3.8)

From combining (3.7) with (3.8), it is obtained that∣∣∣∣∣ m

n+ 1

(
n
∑
uv∈E

|nu − nv|2 +
∑
uv∈E

|nu + nv|2
)

−
∑
uv∈E

|nu − nv|
∑
uv∈E

|nu + nv|

∣∣∣∣∣ ≤ γ(m)(n−2)2.
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When |nu − nv| = (nu + nv), there is equality. By using the definitions of Mo(G) and
PI(G) indices and Cauchy-Schwarz inequality, this proof is completed. □

Theorem 3.8. If G is connected graph with maximum vertex degree ∆, then

Mo(G) < 2∆W (G).

Proof. From Lemma 2.3, it can be written

Mo(G) =
∑
uv∈E

|d(u |G )− d(v |G )| = 1

2

∑
v∈V

∑
u∈N(v)

|d(u |G )− d(v |G )|

≤ 1

2

∑
v∈V

∑
u∈N(v)

|d(u |G )|+ 1

2

∑
v∈V

∑
u∈N(v)

|d(v |G )|

=
1

2

∑
v∈V

d(v |G )dv +
1

2

∑
v∈V

d(v |G )dv

< ∆
∑
v∈V

d(v |G ) = 2∆W (G)

which completes the proof. □

Theorem 3.9. If G is a connected graph with n vertices, m edges, maximum vertex degree ∆, and
diameter diam(G), then

Mo(G)2 < 4m∆(n− 1) diam(G)W (G) + 4mSz(G)− n2m2.

Proof. By using Lemma 2.3, it can be written∑
uv∈E

|nu − nv|2 =
∑
uv∈E

|d(u |G )− d(v |G )|2 =
1

2

∑
v∈V

∑
u∈N(v)

|d(u |G )− d(v |G )|2

=
∑
v∈V

d(v |G )2dv −
∑
v∈V

∑
u∈N(v)

d(u |G )d(v |G ) (3.9)

=
∑
v∈V

d(v |G )2dv + 4
∑
uv∈E

nunv − n2m+
∑
v∈V

d(v |G )2dv , since Lemma 2.2

By using Cauchy-Schwarz inequality and d(v |G ) < (n− 1) diam(G), it is obtained( ∑
uv∈E

|nu − nv|
)2

m
< 2∆ (n− 1) diam(G)

∑
v∈V

d(v |G ) + 4
∑
uv∈E

nunv − n2m

By using definitions, the proof is completed. □

Corollary 3.1. Let T be a tree graph with n vertices. Then

Mo(T )2 < (n− 1) (2n− 4)W (T ).

Proof. If G is a tree graph, then∑
u∈N(v)

d(u |G ) = d(v |G )dv + ndv − 2 (n− 1) . (3.10)
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From equations (3.9) and (3.10),∑
uv∈E

|nu − nv|2 =
∑
v∈V

d(v |G ) [d(v |G )dv − d(v |G )dv − ndv + 2 (n− 1)]

=
∑
v∈V

d(v |G ) [−ndv + 2 (n− 1)]

If G is a tree graph then minimum degree is 1. Then,∑
uv∈E

|nu − nv|2 < 2 (n− 2)W (T ).

From Cauchy-Schwarz inequality, this proof is completed. □

Theorem 3.10. Let G be a connected graph with n vertices, m edges and diameter diam(G). If
G is not a distance-balanced, then

Mo(G) ≥
⌊
diam(G)2

2

⌋
+m− diam(G)

with equality holds if and only if G ≊ Pn.

Proof. If G is not a distance-balanced, then |nu − nv| ≥ 1 for uv ∈ E. Since G has diameter
diam(G), the path Pdiam(G)+1 is a subgraph G. Then

Mo(G) ≥
∑

uv∈E(Pdiam(G)+1)

|nu − nv|+
∑

uv∈E\E(Pdiam(G)+1)

|nu − nv| (3.11)

≥ Mo(Pdiam(G)+1) + (m− diam(G)) 1.

If m = diam(G) then Mo(G) ≥ Mo(Pdiam(G)+1) and also the equality is hold when n =
diam(G) + 1 and thus G is isomorphic to the Pn. □

Theorem 3.11. Let G be a connected graph with n vertices, m edges and clique ω (G). If G is not
a distance-balanced graph, then

Mo(G) ≥ m− ω(G) (ω(G)− 1)

2

with equality if and only if G is isomorphic to the Kn − e.

Proof. Let G be not distance-balanced. Then, |nu − nv| ≥ 1 and also Mo(G) ≥ 1. Denote
the clique of graph G by graph Kω . Hence, graph G contains graph Kω . Then,

Mo(G) ≥
∑

uv∈E(Kω)

|nu − nv|+
∑

uv∈E\E(Kω)

|nu − nv| = (m− ω (G) (ω (G)− 1)

2
)1.

Since Mo(G) ≥ 1, m ≥ ω(G)(ω(G)−1)
2 +1. When m = ω(G)(ω(G)−1)

2 +1, the equality is holds.
Hence, G is isomorphic to the Kn − e. □

Theorem 3.12. If G is connected graph with n vertices, m vertices and t(G) triangles, then

Mo(G) ≤ mn− 2m+ 3t(G)

with equality if and only if G is isomorphic Sn.
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Proof. Since nu + nv ≤ n− t(G), it can be written

Mo(G) ≤
∑
uv∈E

|n− nv − t(G)− nv|

≤
∑
uv∈E

|n− 2nv|+
∑
uv∈E

|t(G)|

≤
∑
uv∈E

|n− 2n+ 2|+
∑
uv∈E

|t(G)| since nv ≤ n− 1

≤ m(n− 2) + 3t(G) since Lemma 2.4.

If G is a bipartite graph then, nu + nv = n and t(G) = 0 and hence Mo(G) ≤ m (n− 2) =∑
uv∈E

|n− 1− (1)|. Then, if G is a star graph with n vertices then the equality is hold. □

Theorem 3.13. Let G be a distance-balanced and connected graph with n ≥ 5. If G is connected
complement of G, then⌊
diam(G)2

2

⌋
+
(
n
2

)
+
1

2
(diam(G)− 3) diam(G) ≤ Mo(G)+Mo(G) ≤ n4 + 3n3 + 2n2 − 6n

3

with left equality if and ony if G = Pn.

Proof. From Theorem 3.8, it can be written

Mo(G) +Mo(G) ≤ 2∆W (G) + 2∆W (G)

≤ 2n
(
W (G) +W (G)

)
≤ 2n

n3 + 3n2 + 2n− 6

6
from Theorem 2.1 ,

which completes the lower bound of the proof.
Let Pn be the complement of the path graph. The vertices degree of the path graph are

1 or 2. So, vertices degrees of Pn are n − 2 or n − 3 and diam(Pn) = 2. From Lemma 2.1,
the following equation is obtained

Mo(Pn) = 2(n− 2) + (n− 2)(n− 3). (3.12)

From inequation (3.11) and Eq. (3.12),

Mo(G) ≥
∑

uv∈E(Pdiam(G)+1)

|nu − nv|+
∑

uv∈E\E(Pdiam(G)+1)

|nu − nv|

= Mo(P diam(G)+1) +m− 1

2
(diam(G)− 1) diam(G)

= (diam(G)− 1) diam(G) +
(
n
2

)
−m− 1

2
(diam(G)− 1) diam(G) (3.13)

From Theorem 3.10 and Eq.(3.13) the proof is completed. □

4. CONCLUSION

This paper gives new inequalities for the Mostar index. Relationships between the
Mostar index and the Padmakar-Ivan, the Szeged, the Wiener, and the first Zagreb indices
are found. Boundaries are obtained between the diameter, clique, and triangle parameters
of a G graph and the Mostar index of a G graph. In addition, Nordhaus-Gaddum-type
results are given for the Mostar index of a distance-balanced G graph. The results of this
paper will be a light for the applications of the Mostar index.
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