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A note on an integral by Grigorii Mikhailovich Fichtenholz

ROBERT REYNOLDS and ALLAN STAUFFER

ABSTRACT. In this manuscript, the authors derived a definite integral involving the logarithmic function,
function of powers and polynomials in terms of the Lerch function. A summary of the results is produced in the
form of a table of definite integrals for easy referencing by readers.

1. INTRODUCTION

In 1948 Grigorii Mikhailovich Fichtenholz produced volume II of his three volume col-
lection [5, 8]. In volume II the authors found an integral (3.244.4) in [1] which is of interest
because of its closed form solution over the real line. However, upon closer inspection
and evaluation of this integral and applying our simultaneous contour integral method
we found this integral is not symmetric over the real line when the logarithmic func-
tion is introduced into the integrand. This logarithmic term appears after applying our
contour integral method to this Fichtenholz integral. This consequence lead us to pro-
duce this manuscript which achieves two objectives. The first, is that of producing formal
derivations for some definite integrals in Table 3.244 in [1]. The second goal is to produce
more definite integrals as an expansion of the current Table 3.244 in [1]. These gaols are
achieved by using this integral by Fichtenholz along with our contour integral method
to form a closed solution in terms of the Lerch function. The Lerch function being a spe-
cial function has the fundamental property of analytic continuation, which enables us to
widen the range of evaluation for the parameters involved in our definite integral.

The definite integral the authors derived using the integral by Fichtenholz in this man-
uscript is given by

(1.1)
∫ ∞

0

(
x2n − x2m

)
logk

(
ax2
)

x2l − 1
dx

in terms of the Lerch function, where the parameters k, a, m, n and l are general com-
plex numbers where Re(l) > Re(m) and Re(l) > Re(n) in order for the integral to exist.
A summary of the results is given in a table of integrals for easy reading. This work is
important because the authors were unable to find similar results in current literature.
Tables of definite integrals provide a useful summary and reference for readers seeking
such integrals for potential use in their research. We use our simultaneous contour in-
tegration method to aid in our derivations of the closed forms solutions in terms of the
Lerch function, which provides analytic continuation of the results. The derivations fol-
low the method used by us in [2]. The generalized Cauchy’s integral formula is given
by

Received: 18.03.2021. In revised form: 07.09.2021. Accepted: 26.11.2021
2010 Mathematics Subject Classification. 30E20,33-01, 33-03, 33-04, 33-33B, 33E20, 33E33.
Key words and phrases. entries in Gradshteyn and Ryzhik, Lerch function, Logarithm function, Contour Integral,

Cauchy, Infinite Integral.
Corresponding author: Robert Reynolds; milver@my.yorku.ca

91



92 Robert Reynolds and Allan Stauffer

yk

k!
=

1

2πi

∫
C

ewy

wk+1
dw. (1.2)

where C is in general an open contour in the complex plane where the bilinear concomi-
tant [2] has the same value at the end points of the contour. This method involves using a
form of equation (1.2) then multiply both sides by a function, then take a definite integral
of both sides. This yields a definite integral in terms of a contour integral. A second con-
tour integral is derived by multiplying equation (1.2) by a function and performing some
substitutions so that the contour integrals are the same.

2. DEFINITE INTEGRAL OF THE CONTOUR INTEGRAL

We use the method in [2]. Here the contour is similar to Figure 2 in [2]. Using a gen-
eralization of Cauchy’s integral formula equation (1.2) replace y by log(ax2) followed by
multiplying both sides by x2m−x2n

1−x2l and taking the definite integral over x ∈ [0,∞) to get

(2.3)

1

k!

∫ ∞

0

(
x2n − x2m

)
logk

(
ax2
)

x2l − 1
dx

=
1

2πi

∫ ∞

0

∫
C

aww−k−1
(
x2(m+w) − x2(n+w)

)
1− x2l

dwdx

=
1

2πi

∫
C

∫ ∞

0

aww−k−1
(
x2(m+w) − x2(n+w)

)
1− x2l

dxdw

=
1

2πi

∫
C

πaww−k−1
(
cot
(

π(2(m+w)+1)
2l

)
− cot

(
π(2(n+w)+1)

2l

))
2l

dw

from equation (3.244.4) in [1] where the integral is valid for a, m, l, n, k complex and
−1 < Re(w +m) < 0 and −1 < Re(w + n) < 0. The contour C is defined where the cut
lies in the second quadrant going from the origin vertically to infinity and the contour C
lies on opposite sides of the cut going round the origin with zero radius. The logarithmic
function is defined in equation (4.1.2) in [4]

3. THE LERCH FUNCTION

The Lerch function has a series representation given by

Φ(z, s, v) =

∞∑
n=0

(v + n)−szn (3.4)

where |z|< 1, v ̸= 0,−1, .. and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t
dt =

1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (3.5)

where Re(v) > 0, and either |z|≤ 1, z ̸= 1, Re(s) > 0, or z = 1, Re(s) > 1.

4. INFINITE SUM OF THE CONTOUR INTEGRAL

4.1. Derivation of the first contour integral. In this section we will derive the contour
integral given by

(4.6)
1

2πi

∫
C

πaww−k−1 cot
(

π(2(m+w)+1)
2l

)
2l

dw



A note on an integral by Grigorii Mikhailovich Fichtenholz 93

Again, using the method in [2] and equation (1.2), we replace y by log(a) + 2iπ(y+1)
l

multiply both sides by − 2iπ
l e

iπ(2m+1)(y+1)
l and take the infinite sum of both sides over

y ∈ [0,∞) simplifying in terms the Lerch function to get

(4.7)

−
i(2π)k+1

(
i
l

)k
e

i(2πm+π)
l Φ

(
e

i(2m+1)π
l ,−k, 1− il log(a)

2π

)
lk!

= − 1

2πi

∞∑
y=0

∫
C

2iπaww−k−1e
iπ(y+1)(2m+2w+1)

l

l
dw

= − 1

2πi

∫
C

∞∑
y=0

2iπaww−k−1e
iπ(y+1)(2m+2w+1)

l

l
dw

=
1

2πi

∫
C

πaww−k−1 cot
(

π(2m+2w+1)
2l

)
l

+
iπaww−k−1

l

 dw

similar to equation (1.232.1) in [1] where

(4.8)cot(x) = −2i

∞∑
y=0

e2xi(y+1) − i

where Im(x) > 0.

4.2. Derivation of the second contour integral. In this section we will derive the contour
integral given by

(4.9)− 1

2πi

∫
C

πaww−k−1 cot
(

π(2n+2w+1)
2l

)
l

dw

Again, using the method in [2] and equation (1.2), we replace y by log(a) + 2iπ(y+1)
l

multiply both sides by − 2iπ
l e

iπ(2n+1)(y+1)
l and take the infinite sum of both sides over y ∈

[0,∞) simplifying in terms the Lerch function to get

(4.10)

i(2π)k+1
(
i
l

)k
e

i(2πn+π)
l Φ

(
e

i(2n+1)π
l ,−k, 1− il log(a)

2π

)
lk!

=
1

2πi

∞∑
y=0

∫
C

2iπaww−k−1e
iπ(y+1)(2n+2w+1)

l

l
dw

=
1

2πi

∫
C

∞∑
y=0

2iπaww−k−1e
iπ(y+1)(2n+2w+1)

l

l
dw

= − 1

2πi

∫
C

πaww−k−1 cot
(

π(2n+2w+1)
2l

)
l

− iπaww−k−1

l

 dw

similar to equation (1.232.1) in [1] where

(4.11)cot(x) = −2i

∞∑
y=0

e2xi(y+1) − i

where Im(x) > 0.
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5. MAIN RESULTS

5.1. Definite integral in terms of the Lerch function.

Theorem 5.1. For all a, k ∈ C, Re(m) < Re(l) and Re(n) < Re(l),

∫ ∞

0

(
x2n − x2m

)
logk

(
ax2
)

x2l − 1
dx =

i2kπk+1
(
i
l

)k
e

i(2πn+π)
l Φ

(
e

i(2n+1)π
l ,−k, 1− il log(a)

2π

)
l

−
i2kπk+1

(
i
l

)k
e

i(2πm+π)
l Φ

(
e

i(2m+1)π
l ,−k, 1− il log(a)

2π

)
l

(5.12)

Proof. Since the right-hand side of equation (2.3) is equal to the sum of equations (4.7) and
(4.10) we can equate the left-hand sides and simplify the factorials. □

5.2. Derivation of a logarithmic integral.

Theorem 5.2. For Re(m) < Re(l) and Re(n) < Re(l),

(5.13)
∫ ∞

0

log
(
x2
) (

x2n − x2m
)

x2l − 1
dx =

π2
(
csc2

(
2πn+π

2l

)
− csc2

(
2πm+π

2l

))
2l2

Proof. Use equation (5.12) and set k = a = 1 simplify using entry (2) in Table below
(64:12:7) in [3]. □

5.3. Derivation of an integral by Fichtenholz entry 3.244.4 in [1] and 640 in [8] volume
II.

Theorem 5.3. For Re(m) < Re(l) and Re(n) < Re(l),

(5.14)
∫ ∞

0

x2n − x2m

x2l − 1
dx =

π
(
cot
(
2πm+π

2l

)
− cot

(
2πn+π

2l

))
2l

Proof. Use equation (5.13) and set k = 0 simplify using entry (2) in Table below (64:12:7)
in [3]. □

5.4. Derivation of entry 4.235.1 in [1].

Lemma 5.1. For Re(n) > 1,

(5.15)
∫ ∞

0

(x− 1)xn−2 log(x)

x2n − 1
dx = −

π2 tan2
(

π
2n

)
4n2

Proof. Use equation (5.13) set a = k = 1 and simplify using entry (3) in Table below
(64:12:7) in [3]. Next replace n by n−2

2 , m by n−1
2 and l by n and simplify. □

5.5. Derivation of entry 4.235.2 in [1].

Theorem 5.4. For Re(n) > Re(m) > 0,

(5.16)
∫ ∞

0

(
x2 − 1

)
xm−1 log(x)

x2n − 1
dx = −

π2
(
csc2

(
πm
2n

)
− csc2

(
π(m+2)

2n

))
4n2

Proof. Use equations (5.13) set a = k = 1 and simplify using entry (3) in Table below
(64:12:7) in [3]. Next replace n by m−1

2 , m by m+1
2 and l by n simplify using equation

(64:10:2) in [3]. □
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5.6. Derivation of entry 4.235.3 in [1].

Theorem 5.5. For Re(n) > 2 and Im(n) > 2,

(5.17)
∫ ∞

0

(
x2 − 1

)
xn−3 log(x)

x2n − 1
dx = −

π2 tan2
(
π
n

)
4n2

Proof. Use equations (5.13) set a = k = 1 and simplify using entry (3) in Table below
(64:12:7) in [3]. Next replace n by n−3

2 , m by n−1
2 and l by n simplify using equation

(64:4:2) in [3]. □

5.7. Definite integral in terms of the Polylogarithm function. Using equation (5.12) and
setting a = 1 simplifying to get

(5.18)
∫ ∞

0

logk(x)
(
x2n − x2m

)
x2l − 1

dx =
πk+1

(
i
l

)k−1
(

Li−k

(
e

i(2m+1)π
l

)
− Li−k

(
e

i(2n+1)π
l

))
l2

from equation (64:12:2) in [3].

5.8. Definite integral in terms of the logarithm of trigonometric functions.

Theorem 5.6. For all m,n, p, q, l ∈ C

∫ ∞

0

x2m − x2n − x2p + x2q

(x2l − 1) log(x)
dx = log


(
cos
(

π(n−p)
l

)
− cos

(
π(n+p+1)

l

))
e−

iπ(m−n−p+q)
l

cos
(

π(m−q)
l

)
− cos

(
π(m+q+1)

l

)


(5.19)

Proof. Form a second equation by using equation (5.12) and replacing m by p and n by
q. Then we take the difference between these two equations and setting k = −1, a = 1
simplify using entry (1) in Table below (64:12:7) in [3]. □

5.9. Evaluation of a Definite integral of a nested logarithmic function.

Proposition 5.1.

(5.20)

∫ ∞

0

(
x− x2/3

)
log(log(x))

x4 − 1
dx

=
π

8
(√

3 + (2− i)
) (4((1 + 2i) + i

√
3
)

Li′0
(
(−1)5/6

)
+
(
−
√
3

+ (2 + i)
)
π +

(
4 + 4i

√
3
)
log
(π
2

))
Proof. Use equation (5.12) and set n = 1/2, l = 2,m = 1/3, a = 1 and simplify using entry
(2) in Table below (64:7), equations (64:12:1) and (64:12:2) in [3]. Then take the first partial
derivative with respect to k and then set k = 0 simplify. □

5.10. Definite integral in terms of the trigonometric functions.

Theorem 5.7. For all m,n, l ∈ C
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(5.21)

∫ ∞

0

log2(x)
(
x2n − x2m

)
x2l − 1

dx

= − 1

32l3

(
π3 csc3

(
2πm+ π

2l

)
csc3

(
2πn+ π

2l

)(
6 sin

(
π(m− n)

l

)
− sin

(
π(3m− n+ 1)

l

)
− sin

(
π(3m+ n+ 2)

l

)
+ sin

(
π(−m+ 3n+ 1)

l

)
+ sin

(
π(m+ 3n+ 2)

l

)))
Proof. Use equation (5.12) and set k = 2, a = 1 simplify using entry (4) in Table below
(64:12:7) in [3]. □

5.11. Definite integrals with logarithm in the denominator.

Theorem 5.8. For all m,n, l ∈ C

(5.22)

∫ ∞

0

(
log(x)

(
x2n − x2m

)
(x2l − 1)

(
a2 + log2(x)

) + ia
(
x2m − x2n

)
(x2l − 1)

(
a2 + log2(x)

)dx
= e

iπ
l

(
e

2iπn
l Φ

(
e

i(2n+1)π
l , 1,

al

π
+ 1

)
− e

2iπm
l Φ

(
e

i(2m+1)π
l , 1,

al

π
+ 1

)))
Proof. Use equation (5.12) and set k = −1, a = e2ai and simplify. □

Proposition 5.2.∫ ∞

0

(
x− x2/3

)
log(x)

(x3 − 1)
(
log2(x) + π2

)dx =
1

4

(
4 +

√
3π − 8 cos

(π
9

)
+ log

(
2
(
1 + sin

(
π
18

))
9
(
2− 2 sin

(
π
18

))))
(5.23)

and

(5.24)

∫ ∞

0

x2/3 − x

(x3 − 1)
(
log2(x) + π2

)dx
=

π + 8 sin
(
π
9

)
+ 2

√
3
(
tanh−1

(
sin
(

π
18

))
− 2
)

4π

Proof. Use equation (5.22) and set a = π, l = 3/2, n = 1/2,m = 1/3 and rationalize the
real and imaginary parts and simplify using equation (9.559) in [1] and entry (1) in Table
below (64:12:7) in [3]. □

Proposition 5.3.

(5.25)
∫ ∞

0

(
x− x2/3

)
log(x)

(x4 − 1)
(
4 log2(x) + π2

)dx =
1

96

(
−π + 24 log(2)− 6

√
3 log

(
2 +

√
3
))

and

(5.26)
∫ ∞

0

x2/3 − x

(x4 − 1)
(
4 log2(x) + π2

)dx =

√
3π − 6 cosh−1(2)

48π

Proof. Use equation (5.22) and set a = π/2, l = 2, n = 1/2,m = 1/3 and rationalize the
real and imaginary parts and simplify using entry (1) in Table below (64:12:7) in [3]. □
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Proposition 5.4.

(5.27)
∫ ∞

0

(
√
x− 1)x

(x4 − 1)
(
4 log2(x) + π2

)dx = −
π − 4 log

(
2 +

√
2
)

16
√
2π

and

(5.28)
∫ ∞

0

(
x− x3/2

)
log(x)

(x4 − 1)
(
log2(x) + π2

4

)dx = log(2)−
log
(
2 +

√
2
)

2
√
2

−
tan−1

(
1

1+
√
2

)
√
2

Proof. Use equation (5.22) and set a = π/2, l = 2, n = 1/2,m = 3/4 and rationalize the
real and imaginary parts and simplify. Use equation (9.559) in [1] and entry (1) in Table
below (64:12:7) in [3]. □

5.12. Definite integrals of product logarithmic functions in terms of fundamental con-
stants.

Theorem 5.9. For all k,m, n, l ∈ C

(5.29)

∫ ∞

0

log(x)
(
x2m + x2n

)
logk

(
ax2
)

x2l − 1
dx

= −
2k−1πk+1e

iπ
l

(
i
l

)k
l2

(
e

2iπm
l

(
2πΦ

(
e

i(2m+1)π
l ,−k − 1, 1− il log(a)

2π

)
+ il log(a)Φ

(
e

i(2m+1)π
l ,−k, 1− il log(a)

2π

))
+ e

2iπn
l

(
2πΦ

(
e

i(2n+1)π
l ,−k − 1, 1− il log(a)

2π

)
+ il log(a)Φ

(
e

i(2n+1)π
l ,−k, 1− il log(a)

2π

)))
Proof. Form two equations by first taking first partial derivative equation (5.12) with re-
spect to n, then again take the first partial derivative of equation (5.12) with respect to m.
Then add these two equations and simplify. □

Proposition 5.5. For all k, n, l ∈ C∫ ∞

0

x2n log(x) logk
(
ax2
)

x2l − 1
dx = −

2k−1πk+1
(
i
l

)k
e

i(2πn+π)
l

l2

(
2πΦ

(
e

i(2πn+π)
l ,−k − 1, 1

− il log(a)

2π

)
+ il log(a)Φ

(
e

i(2πn+π)
l ,−k, 1− il log(a)

2π

))
(5.30)

Proof. Use equation (5.29) set m = n and simplify. □

Proposition 5.6. For all k ∈ C∫ ∞

0

x log(x) logk
(
ax2
)

x4 − 1
dx = ik2k−2πk+1

(
2πζ

(
−k − 1,

π − i log(a)

2π

)
− 2πζ

(
−k − 1, 1− i log(a)

2π

)
+ i log(a)

(
ζ

(
−k,

π − i log(a)

2π

)
− ζ

(
−k, 1− i log(a)

2π

)))
(5.31)
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Proof. Use equation (5.30) set n = 1/2, l = 2 and simplify using entry (4) in Table below
(64:12:7) in [3]. □

Theorem 5.10. For all k ∈ C

∫ ∞

0

x log(x) log
(
log
(
x2
))

logk
(
x2
)

x4 − 1
dx = 2−k−4e

iπk
2

((
(4π)k+2 − (2π)k+2

)
ζ ′(−k − 1)

+ ζ(k + 2)
(
iπ
(
2k+2 − 1

)
+ 2k+3 log(2π)

− 2 log(π)
)
cos

(
πk

2

)
Γ(k + 2)

)
(5.32)

Proof. Use equation (5.31) and take the first partial derivative with respect to k and set
a = 1 and simplify using equation (64:12:1) and entry (2) in Table below (64:7) in [3]. □

Proposition 5.7.

(5.33)
∫ ∞

0

x log(x) log
(
x2
)
log
(
log
(
x2
))

x4 − 1
dx = − 7

16
iπζ(3)

Proof. Use equation (5.32) and set k = 1 and simplify in terms of Aprey’s constant section
(1.6) in [6]. □

Proposition 5.8.

(5.34)
∫ ∞

0

x log(x) log
(
log
(
x2
))

(x4 − 1) log (x2)
dx =

1

16
π(π − 2i log(2))

Proof. Use equation (5.32) and set k = −1 and simplify using equation (6.8) in [7]. □

Proposition 5.9.

(5.35)
∫ ∞

0

x log(x) log
(
log
(
x2
))

x4 − 1
dx =

1

32
π2

(
8 log

(
3
√
2 4
√
π

A3

)
+ 2 + iπ

)

Proof. Use (5.32) and set k = 0 and simplify using equation (2.15), pp. 135-145 in [6]. □
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6. TABLE OF INTEGRALS

f(x)
∫∞
0

f(x)dx

logk(x)(x2n−x2m)
x2l−1

πk+1( i
l )

k−1

l2

(
Li−k

(
e

i(2m+1)π
l

)
− Li−k

(
e

i(2n+1)π
l

))
x2n−x2m

x2l−1

π(cot( 2πm+π
2l )−cot( 2πn+π

2l ))
2l

log(x2)(x2n−x2m)
x2l−1

π2(csc2( 2πn+π
2l )−csc2( 2πm+π

2l ))
2l2

− (x−1)xn−2 log(x)
x2n−1

π2 tan2( π
2n )

4n2

− (x2−1)xm−1 log(x)

x2n−1

π2(csc2(πm
2n )−csc2(π(m+2)

2n ))
4n2

x2m−x2n−x2p+x2q

(x2l−1) log(x)
log

(
(cos(π(n−p)

l )−cos(π(n+p+1)
l ))e−

iπ(m−n−p+q)
l

cos(π(m−q)
l )−cos(π(m+q+1)

l )

)
(x−x2/3) log(log(x))

x4−1

π(4((1+2i)+i
√
3)Li′0((−1)5/6)+(−

√
3+(2+i))π+(4+4i

√
3) log(π

2 ))
8(

√
3+(2−i))

(x−x2/3) log(x)
(x3−1)(log2(x)+π2)

1
4

(
4 +

√
3π − 8 cos

(
π
9

)
+ log

(
2(1+sin( π

18 ))
9(2−2 sin( π

18 ))

))
x2/3−x

(x3−1)(log2(x)+π2)

π+8 sin(π
9 )+2

√
3(tanh−1(sin( π

18 ))−2)
4π

(x−x2/3) log(x)
(x4−1)(4 log2(x)+π2)

1
96

(
−π + 24 log(2)− 6

√
3 log

(
2 +

√
3
))

x2/3−x
(x4−1)(4 log2(x)+π2)

√
3π−6 cosh−1(2)

48π

(
√
x−1)x

(x4−1)(4 log2(x)+π2)
−π−4 log(2+

√
2)

16
√
2π

x log(x) log(x2) log(log(x2))
x4−1 − 7

16 iπζ(3)

x log(x) log(log(x2))
(x4−1) log(x2)

1
16π(π − 2i log(2))

x log(x) log(log(x2))
x4−1

1
32π

2

(
8 log

(
3
√
2 4
√
π

A3

)
+ 2 + iπ

)

7. DISCUSSION

In this work the authors looked at deriving definite integrals involving the logarithmic
function, function of powers and polynomials in terms of the Lerch function. One of the
goals was to supply a table for easy reading by researchers and to have these results added
to existing textbooks.

The results presented were numerically verified for both real and imaginary values of
the parameters in the integrals using Mathematica by Wolfram. The authors considered
various ranges of these parameters for real, integer, negative and positive values. The
authors compared the evaluation of the definite integral to the evaluated Special function
and ensured agreement.
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8. CONCLUSION

In this paper the authors used their contour integral method [2] to evaluate definite
integrals using the Lerch function. The contour we used was specific to solving integral
representations in terms of the Lerch function. We expect that other contours and integrals
can be derived using this method.
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