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On the monotonicity of the sequence of bivariate Bernstein
polynomials

DAN BARBOSU

ABSTRACT. The paper has a methodical content and is addressed to young researchers. Its main goal is to
prove how the property of monotonicity can be transferred from the sequence of univariate Bernstein polyno-
mials to those of bivariate Bernstein polynomials.

Let N be the set of positive integers, m,n € N, I = [0,1], I = [0,1] x [0,1], RI" = {f|f : I? — R},
C(I?)={feR! : | f continuous on I2}. Denote by By,,n : C(I?) — C(I2) the Bernstein bivariate operator.
This operator associates to each function f € C(I?) the bivariate Bernstein polynomial By, » (f;x, ). It is well
known that the sequence { Bm,n (f; T, y) }m,nen converges to f, uniformly on I2 for each f € C(I2).

In the present paper one investigates the monotonicity of the sequence { By n (f; , ) }rm, nen-

One proves thatif f € C(I?)is convex of (1, 1)—order on I? the sequence { Bm,n (f; %, ¥) }m,nen is monotonous
decreasing and By (f;2,9) > f(2,9), (V) (z,y) € I%.

1. PRELIMINARIES

In this section one recalls some basic results regarding the convex sets in R? and the
bivariate convex real valued functions.

Definition 1.1. [15] The set D C R? is convex if and only if for any points A (z1,y1),
Ag(z2,y2) € D the segment [A; A,] is included in D, i.e. (V) A € [0, 1] it follows

(1= N1+ Azz, (1= A)y1 + Ay2) € D. (1.1)

Suppose m,n € Nand A;;(z;,y;) € D foreachi € {1,2,...,m}, j € {1,2,...,n}. By
complete induction with respect m and respectively n, can be proved the following

Lemma 1.1. The set D C R? is convex if and only if for any distinct points A;j(x;,y;) € D, any

a; €10,1], B; € [0,1] such that Y o; =1, >~ B; = 1 it follows
i=1 j=1

Zail’i,Zﬁjyj e D. (12)
i=1 j=1

Remark 1.1. The set D C R? is convex if and only if it is convex with respect each of the
coordinates z, y.

Definition 1.2. [15]Let D C R? be a convex set. The function f € R” is convex of (1, 1)-
order on D if and only if for each distinct points A;;(z;,y;) € D (i = 1,2;j = 1,2) and any
constants ai, a2 € [0,1], 1,82 € [0,1] such that aq + ag = 1, 51 + B2 = 1, the following
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inequality holds true

2 2 2 2
Zaixivzﬁjyi < ZZ ZB] xuy] (13)
i=1 j=1 =1 j=1

Remark 1.2. Considering only the distinct points A11(z1,y1), A22(22,y2) and choosing
ap=l-o,a=a 0 =1-q B2 =a(witha € [0, 1]) the inequality (1.3) leads to

f((1 =)z + axa, (1 — a)y1 + aye) < (1 — ) f(z1,y1) + af (22, y2) (1.4)

which is the classical definition of the convexity for bivariate real valued functions [15].
If one considers the distinct points A11(z1,y1) and A2 (x2,y1), then with oy = 1 — ¢,
az =, f1 =1, B = 0, the inequality (1.3) becomes

f(l—a)z1 + aze,y1) < (1 —a)f(z1,91) + 22, 91) (1.5)

which proves that f is convex of first order with respect x.
Considering the distinct points A11(x1,91), A12(z1,y2), witha; =1, 2 =0, 8, = 1—q,
B2 = « € [0, 1], the inequality (1.3) becomes

flx1, (1= a)yr +aye) < (1 — ) f(z1,91) + af (z2,92) (1.6)

which proves that f is convex of first order with respect y.
We can conclude that if f € RP is convex of (1,1)-order on D, then f is convex of first
order with respect each on the variables z, y on D.

Reciprocally, if f € RP is convex of first order on D with respect each of the variables
x,y, then f is convex of (1, 1)-order on D.

Taking the above into account, we can state

Lemma 1.2. Let D C R? be a convex set. The function f € R is convex of (1, 1)-order on D if
and only if it is convex of first order on D with respect each of the variables x,y.

In the following one presents the Jensen’s inequality for bivariate functions, convex of
(1,1)-order.

Lemma 1.3. Let D C R? be a convex set. The function f € R is convex of (1,1)-order on D
if and only if for each distinct points A;;(x;,y;) € D (1 = 1,m,j = 1,n) and each constants
€10,1], B; € [0,1] such that )" o; =1, Y B; = 1, the following inequality holds true

i=1 j=1

Zazquﬂ]y] < Zzazﬂj zuy] (17)

1=1 j=1
Proof. Letbe n = 1, m € N. Because f € R” is convex of (1, 1)-order on D, by virtue of
Lemma 1.1 f is convex of first order on D with respect . Then for each distinct points
Ai1(zs,51) € D (i = 1,m) and each constants «; € [0,1] such that ) «; = 1, using the

i=1

Jensen’s inequality for univariate convex functions one obtains

f (Zaixi,%) < Zaif(i%yl)- (1.8)
i=1 i=1

But f is also convex of first order with respect y. From (1.8) yields (1.7), applying again
the Jensen'’s inequality for univariate convex functions of first order. O
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2. MAIN RESULTS

Let I be the unity interval of real axis, i.e. I = [0,1]. The Bernstein operators B,
C10,1] — C[0,1], introduced in [9] are defined by

) = gpm,xx)f (2) 29)

where py, i (z) = (7)z'(1—2)™"%, m € N,i—0,m, z € [0,1] are the Bernstein fundamental
polynomials. The polynomial from the right side of (2.9) is the Bernstein polynomial.
Recall that the images of the test functions e;(z) = z* (i = 0,2) by the operator B,, are
expressed by

1—
B.(1;2) =1, By (t;x) = x, By (t%;2) = 22 + % (2.10)

Let 12 be the unity square and f € C(I?). The parametric extensions BZ,; BY : C(I?) —
C(I?) of the operator (2.9) are defined respectively by

1
BL(fi,y) = mez (%) ver 1)

BY(f;x,y) = pr <7-),x61. (2.12)

It is well known [4] that the operators B%,, BY commute on C(I?), their product being the
bivariate Bernstein operator B,,, , = B, By deﬁned forany m,n € N, f € C(I?) by

m=n’

Bl Fi.0) = 33 iy (1) 213)

=0 j=0

It is well known [4], [17], [21] that the sequence { By, »(f;Z,y)}m,»n converges to f, uni-
formly on I? for each f € C(I?).

We investigate some monotonicity properties of the sequence of bivariate Bernstein
polynomials.
For start, let us to recall two results related to the Bernstein univariate polynomials, which
can be found in Agratini’s monograph [1]. They were established by Arama [3].

Theorem 2.1. If f € C(I) is convex of first order on I = [0, 1], the following inequality holds
true

Bm(f;2) = f(z), (V)z el (2.14)

Theorem 2.2. If f € C(I) is convex of first order on I = [0, 1] the sequence { By, (f; x) }men of
Bernstein polynomials is monotonous decreasing, i.e.

Bmi1(f;z) < Bu(f;x), (V)z el (2.15)
Next, we shall prove

Theorem 2.3. Suppose f € C(I?) is convex of (1,1)—order on I?. The following inequality
holds true
Bun(fiz,y) = f(z,y) (2.16)

for each m,n € N and each (z,y) € I°.
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Proof. The function f € C(I?) being convex of (1,1)—order on I?, we can apply the Jen-
sen’s inequality for bivariate convex of (1, 1)—order functions (the inequality (1.7)), with

a; = Pmi() Z (Ma'(1—z)™ " ;= - (i = 0,m) and respectively
i=0 m
L~ e J
Bi=pnily) = X (1 —9)" 7, y; == (i =0,n)

=0

" .
= B, (t;z) =zand > pmj(y)l = B, (s;y) = y we can write

m
Because ) ppm.i(z)
= =

7
=0 E
P )= | S pmi) =S pus )

i=0 =0

n

<

S

-
Il
o

pm,i(x)pnyj (y)f <;1 s i) = Bmm(f? z, y)
k=0

O

In order to obtain the monotonicity of the sequence { B, .(f; , y) }, we need two results
related to Bernstein’s univariate polynomials.
The first one can be found in the monograph [1] (Theorem 2.17, p. 83) and it is contained
in the following

Theorem 2.4. The derivatives of the Bernstein univariate operator By, (f; x) are expressed as

B9 (fix)=m(m—1)...(m—j+ l)nfpm_j7i(x)A%f (;) ,j<m (2.17)
i=0 )
where
s (3) () (2
m m m m
and

()= (50) -1 ()

i 1
is the finite difference of f with starting point — and step h = —.
m m

Using the above results, we shall prove

Theorem 2.5. If f € C(I) is convex of first order on I, then By, (f;x) is also convex of first order
onl.

Proof. It is sufficient to prove that the second order derivative B¢ )( f;z) >0, (V)z € I
From (2.17) yields:

m—2 .
BR(f;x) =m(m —1) ; P (2) A% f (Tzn) . (2.18)
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where the brackets denotes divided differences. In the above calculus we used the defini-
tion of divided difference, the relationship between finite and divided differences and the
recurrence formula for divided differences.

Because f is convex of first order on I, it follows [13] that

[i i+17i+2;f} So.

m’ m m

Coming back in (2.17), we get Bg)(f; z) >0, (V) x € Int(I), which proves that B,,(f; x)
is a convex function of first order on I. O

Now we can prove

Theorem 2.6. If f € C(I?) is convex of first order on I? the sequence { By, ,,(f; %, y) }m,nen is
monotone decreasing on I 2 je.

Bm+1,n+1(f§'ray) S Bm,n(f;x7y) (219)
for each m,n € N and each (z,y) € I°.
Proof. Recall that B,, , = B% BY. The function f € C(I?) being convex of (1,1)—th order

on I?, it is convex of first order with respect y (by virtue of Lemma 1.2). Applying then
the Theorem 2.2 to the operator BY, we get

Bi, (fimy) < BU(fi,y). (2.20)

By virtue of Theorem 2.5, B} | (f;z,y) is convex of first order with respect z. From (2.19),
via Theorem 2.2, it follows

By Bra(fiw,y) < B Bi(f;2,9) (2.21)
which is in fact the desired inequality (2.19). O
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