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On the monotonicity of the sequence of bivariate Bernstein
polynomials

DAN BĂRBOSU

ABSTRACT. The paper has a methodical content and is addressed to young researchers. Its main goal is to
prove how the property of monotonicity can be transferred from the sequence of univariate Bernstein polyno-
mials to those of bivariate Bernstein polynomials.

Let N be the set of positive integers, m,n ∈ N, I = [0, 1], I2 = [0, 1] × [0, 1], RI2 = {f |f : I2 → R},
C(I2) = {f ∈ RI2 |f continuous on I2}. Denote by Bm,n : C(I2) → C(I2) the Bernstein bivariate operator.
This operator associates to each function f ∈ C(I2) the bivariate Bernstein polynomial Bm,n(f ;x, y). It is well
known that the sequence {Bm,n(f ;x, y)}m,n∈N converges to f , uniformly on I2 for each f ∈ C(I2).

In the present paper one investigates the monotonicity of the sequence {Bm,n(f ;x, y)}m,n∈N.
One proves that if f ∈ C(I2) is convex of (1, 1)−order on I2 the sequence {Bm,n(f ;x, y)}m,n∈N is monotonous
decreasing and Bm,n(f ;x, y) ≥ f(x, y), (∀) (x, y) ∈ I2.

1. PRELIMINARIES

In this section one recalls some basic results regarding the convex sets in R2 and the
bivariate convex real valued functions.

Definition 1.1. [15] The set D ⊆ R2 is convex if and only if for any points A1(x1, y1),
A2(x2, y2) ∈ D the segment [A1A2] is included in D, i.e. (∀)λ ∈ [0, 1] it follows

((1− λ)x1 + λx2, (1− λ)y1 + λy2) ∈ D. (1.1)

Suppose m,n ∈ N and Aij(xi, yj) ∈ D for each i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}. By
complete induction with respect m and respectively n, can be proved the following

Lemma 1.1. The set D ⊆ R2 is convex if and only if for any distinct points Aij(xi, yj) ∈ D, any

αi ∈ [0, 1], βj ∈ [0, 1] such that
m∑
i=1

αi = 1,
n∑

j=1

βj = 1 it follows

 m∑
i=1

αixi,

n∑
j=1

βjyj

 ∈ D. (1.2)

Remark 1.1. The set D ⊆ R2 is convex if and only if it is convex with respect each of the
coordinates x, y.

Definition 1.2. [15] Let D ⊆ R2 be a convex set. The function f ∈ RD is convex of (1, 1)-
order onD if and only if for each distinct pointsAij(xi, yj) ∈ D (i = 1, 2; j = 1, 2) and any
constants α1, α2 ∈ [0, 1], β1, β2 ∈ [0, 1] such that α1 + α2 = 1, β1 + β2 = 1, the following
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inequality holds true

f

 2∑
i=1

αixi,

2∑
j=1

βjyi

 ≤ 2∑
i=1

2∑
j=1

αiβjf(xi, yj). (1.3)

Remark 1.2. Considering only the distinct points A11(x1, y1), A22(x2, y2) and choosing
α1 = 1− α, α2 = α, β1 = 1− α, β2 = α (with α ∈ [0, 1]) the inequality (1.3) leads to

f((1− α)x1 + αx2, (1− α)y1 + αy2) ≤ (1− α)f(x1, y1) + αf(x2, y2) (1.4)

which is the classical definition of the convexity for bivariate real valued functions [15].
If one considers the distinct points A11(x1, y1) and A21(x2, y1), then with α1 = 1 − α,

α2 = α, β1 = 1, β2 = 0, the inequality (1.3) becomes

f(1− α)x1 + αx2, y1) ≤ (1− α)f(x1, y1) + α(x2, y1) (1.5)

which proves that f is convex of first order with respect x.
Considering the distinct pointsA11(x1, y1),A12(x1, y2), with α1 = 1, α2 = 0, β1 = 1−α,

β2 = α ∈ [0, 1], the inequality (1.3) becomes

f(x1, (1− α)y1 + αy2) ≤ (1− α)f(x1, y1) + αf(x2, y2) (1.6)

which proves that f is convex of first order with respect y.
We can conclude that if f ∈ RD is convex of (1, 1)-order on D, then f is convex of first
order with respect each on the variables x, y on D.

Reciprocally, if f ∈ RD is convex of first order on D with respect each of the variables
x, y, then f is convex of (1, 1)-order on D.

Taking the above into account, we can state

Lemma 1.2. Let D ⊆ R2 be a convex set. The function f ∈ RD is convex of (1, 1)-order on D if
and only if it is convex of first order on D with respect each of the variables x, y.

In the following one presents the Jensen’s inequality for bivariate functions, convex of
(1, 1)-order.

Lemma 1.3. Let D ⊆ R2 be a convex set. The function f ∈ RD is convex of (1, 1)-order on D
if and only if for each distinct points Aij(xi, yj) ∈ D (1 = 1,m, j = 1, n) and each constants

αi ∈ [0, 1], βj ∈ [0, 1] such that
m∑
i=1

αi = 1,
n∑

j=1

βj = 1, the following inequality holds true

f

 m∑
i=1

αixi,

n∑
j=1

βjyj

 ≤ m∑
i=1

n∑
j=1

αiβjf(xi, yj). (1.7)

Proof. Let be n = 1, m ∈ N. Because f ∈ RD is convex of (1, 1)-order on D, by virtue of
Lemma 1.1 f is convex of first order on D with respect x. Then for each distinct points

Ai1(xi, y1) ∈ D (i = 1,m) and each constants αi ∈ [0, 1] such that
m∑
i=1

αi = 1, using the

Jensen’s inequality for univariate convex functions one obtains

f

(
m∑
i=1

αixi, y1

)
≤

m∑
i=1

αif(xi, y1). (1.8)

But f is also convex of first order with respect y. From (1.8) yields (1.7), applying again
the Jensen’s inequality for univariate convex functions of first order. �
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2. MAIN RESULTS

Let I be the unity interval of real axis, i.e. I = [0, 1]. The Bernstein operators Bm :
C[0, 1]→ C[0, 1], introduced in [9] are defined by

Bm(f ;x) =

m∑
i=0

pm,i(x)f

(
i

m

)
(2.9)

where pm,i(x) =
(
m
i

)
xi(1−x)m−i, m ∈ N, i−0,m, x ∈ [0, 1] are the Bernstein fundamental

polynomials. The polynomial from the right side of (2.9) is the Bernstein polynomial.
Recall that the images of the test functions ei(x) = xi (i = 0, 2) by the operator Bm are
expressed by

Bm(1;x) = 1, Bm(t;x) = x, Bm(t2;x) = x2 +
x(1− x)

m
. (2.10)

Let I2 be the unity square and f ∈ C(I2). The parametric extensions Bx
m;By

n : C(I2)→
C(I2) of the operator (2.9) are defined respectively by

Bx
m(f ;x, y) =

m∑
i=0

pm,i(x)f

(
i

m
, y

)
, y ∈ I; (2.11)

By
n(f ;x, y) =

n∑
j=0

pn,j(y)f

(
x,
j

n

)
, x ∈ I. (2.12)

It is well known [4] that the operators Bx
m, By

n commute on C(I2), their product being the
bivariate Bernstein operator Bm,n = Bx

mB
y
n, defined for any m,n ∈ N, f ∈ C(I2) by

Bm,n(f ;x, y) =

m∑
i=0

n∑
j=0

pm,i(x)pn,j(y)f

(
i

m
,
i

n

)
. (2.13)

It is well known [4], [17], [21] that the sequence {Bm,n(f ;x, y)}m,n converges to f , uni-
formly on I2 for each f ∈ C(I2).

We investigate some monotonicity properties of the sequence of bivariate Bernstein
polynomials.
For start, let us to recall two results related to the Bernstein univariate polynomials, which
can be found in Agratini’s monograph [1]. They were established by Aramă [3].

Theorem 2.1. If f ∈ C(I) is convex of first order on I = [0, 1], the following inequality holds
true

Bm(f ;x) ≥ f(x), (∀)x ∈ I. (2.14)

Theorem 2.2. If f ∈ C(I) is convex of first order on I = [0, 1] the sequence {Bm(f ;x)}m∈N of
Bernstein polynomials is monotonous decreasing, i.e.

Bm+1(f ;x) ≤ Bm(f ;x), (∀)x ∈ I. (2.15)

Next, we shall prove

Theorem 2.3. Suppose f ∈ C(I2) is convex of (1, 1)−order on I2. The following inequality
holds true

Bm,n(f ;x, y) ≥ f(x, y) (2.16)

for each m,n ∈ N and each (x, y) ∈ I2.
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Proof. The function f ∈ C(I2) being convex of (1, 1)−order on I2, we can apply the Jen-
sen’s inequality for bivariate convex of (1, 1)−order functions (the inequality (1.7)), with

αi = pm,i(x)
m∑
i=0

(
m
i

)
xi(1− x)m−i, xi =

i

m
(i = 0,m) and respectively

βj = pn,j(y) =
n∑

j=0

(
n
j

)
yj(1− y)n−j , yj =

j

n
(j = 0, n).

Because
m∑
i=0

pm,i(x)
i

m
= Bm(t;x) = x and

n∑
j=0

pn,j(y)
j

n
= Bn(s; y) = y we can write

f(x, y) = f

 m∑
i=0

pm,i(x)
i

m
,

n∑
j=0

pn,j(y)
i

n


≤

m∑
i=0

n∑
k=0

pm,i(x)pn,j(y)f

(
i

m
,
j

n

)
= Bm,n(f ;x, y).

�

In order to obtain the monotonicity of the sequence {Bm,n(f ;x, y)}, we need two results
related to Bernstein’s univariate polynomials.
The first one can be found in the monograph [1] (Theorem 2.17, p. 83) and it is contained
in the following

Theorem 2.4. The derivatives of the Bernstein univariate operator Bm(f ;x) are expressed as

B(j)
m (f ;x) = m(m− 1) . . . (m− j + 1)

m−i∑
i=0

pm−j,i(x)∆j
1
m

f

(
i

m

)
, j ≤ m (2.17)

where

∆i
1
m
f

(
i

m

)
= f

(
i+ 1

m

)
− f

(
i

m

)
and

∆j
1
m

f

(
i

m

)
= ∆j−1

1
m

f

(
i+ 1

m

)
−∆j−1

1
m

f

(
i

m

)

is the finite difference of f with starting point
i

m
and step h =

1

m
.

Using the above results, we shall prove

Theorem 2.5. If f ∈ C(I) is convex of first order on I , thenBm(f ;x) is also convex of first order
on I .

Proof. It is sufficient to prove that the second order derivative B(2)
m (f ;x) > 0, (∀)x ∈ I .

From (2.17) yields:

B(2)
m (f ;x) = m(m− 1)

m−2∑
i=0

pm−j,i(x) ∆2
1
m
f

(
i

m

)
. (2.18)
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But

∆2
1
m
f

(
i

m

)
= ∆1

1
m
f

(
i+ 1

m

)
−∆1

1
m
f

(
i

m

)
= f

(
i+ 2

m

)
− f

(
i+ 1

m

)
− f

(
i+ 1

m

)
+ f

(
i

m

)
=

1

m
·
f
(
i+2
m

)
− f

(
i+1
m

)
1
m

− 1

m
·
f
(
i+1
m

)
− f

(
i
m

)
1
m

=
1

m

([
i+ 1

m
,
i+ 2

m
; f

]
−
[
i

m
,
i+ 1

m
; f

])
=

1

m
· 2

m

[
i

m
,
i+ 1

m
,
i+ 2

m
; f

]
=

2

m2

[
i

m
,
i+ 1

m
,
i+ 2

m
; f

]
,

where the brackets denotes divided differences. In the above calculus we used the defini-
tion of divided difference, the relationship between finite and divided differences and the
recurrence formula for divided differences.
Because f is convex of first order on I , it follows [13] that[

i

m
,
i+ 1

m
,
i+ 2

m
; f

]
> 0.

Coming back in (2.17), we get B(2)
m (f ;x) > 0, (∀)x ∈ Int (I), which proves that Bm(f ;x)

is a convex function of first order on I . �

Now we can prove

Theorem 2.6. If f ∈ C(I2) is convex of first order on I2 the sequence {Bm,n(f ;x, y)}m,n∈N is
monotone decreasing on I2, i.e.

Bm+1,n+1(f ;x, y) ≤ Bm,n(f ;x, y) (2.19)

for each m,n ∈ N and each (x, y) ∈ I2.

Proof. Recall that Bm,n = Bx
mB

y
n. The function f ∈ C(I2) being convex of (1, 1)−th order

on I2, it is convex of first order with respect y (by virtue of Lemma 1.2). Applying then
the Theorem 2.2 to the operator By

n, we get

By
n+1(f ;x, y) ≤ By

n(f ;x, y). (2.20)

By virtue of Theorem 2.5, By
n+1(f ;x, y) is convex of first order with respect x. From (2.19),

via Theorem 2.2, it follows

Bx
m+1B

y
n+1(f ;x, y) ≤ Bx

mB
y
n(f ;x, y) (2.21)

which is in fact the desired inequality (2.19). �
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