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A note on the morphism theorems for (n,m)−semirings

ADINA POP and MONICA LAURAN

ABSTRACT. In this paper, some properties of subtractive ideal of (n,m)−semirings are investigated. In ad-
dition, we study the morphisms of (n,m)−semirings starting from the definitions given in the case of univer-
sal algebras. We will present several theorems of correspondence for sub-(n,m)-semirings, ideals, subtractive
ideals that represent the generalization of the morphism theorems of the binary case.

1. INTRODUCTION

Algebraic polyadic structures are applied in many disciplines such as theoretical phy-
sics, computer sciences, coding theory, automata theory and other. The concept of n−ary
group was introduced by Dörnte [2] and developed by E. Post [14] , J. Timms [17] for
commutative case. The m−semigroups are studied by F. M. Siosson [16], M. S. Pop [12],
A. Pop [8]. I. Purdea [13] and G. Crombez [1] extended the usual ring concept to the
case where the underlying group and semigroup is an commutative n−ary group and an
m−ary semigroup, respectively. In some recently appeared papers, various authors conti-
nue the study of ordinary semigroups introduced by H. S. Vandiver [18] to the case where
the underlying commutative additive semigroup and multiplicative semigroup are not
binary but an n−ary and one m−ary respectively. The new obtained structures are called
(n,m)−semirings [7], [9], [19].

We begin with some preliminaries about the m−semigroups, n−groups, (n,m)− semi-
rings and (n,m)−rings.

Traditionally in the theory of n−groups we use the following abbreviated notation:
the sequence xi, . . . , xj is denoted by xji (for j < i this symbol is empty). If xi+1 =

xi+2 = . . . = xi+k = x, then instead of x+ki+1 we write
(k)
x . The algebra (S, ( )+) is cal-

led an n−semigroup if for any i ∈ {2, 3, . . . , n} and all x1, . . . , x2n−1 ∈ S, the following
associativity laws are true i.e

((xn1 )+, x
2n−1
n+1 )+ = (xi−11 , (xi+n−1i )+, x

2n−1
i+n )+.

An n−semigroup (S, ( )+) is called n−group if for any i ∈ {1, 2, . . . , n} and all a1, . . . , an ∈
S, the equation (ai−11 , x, ani+1)+ = ai has a unique solution in S. In some n-groups there is

an element e ∈ S (called identity or neutral element) such that (
(i−1)
e x

(n−i)
e )+ = x holds

for all x ∈ S and for all i ∈ {1, . . . , n}. It is interesting that there are n-groups with two or
more neutral elements or which do not contain such elements [2],[14]. From the definition
of the n-group (S, ( )+) we can see that for every x ∈ S there is only one y ∈ S, satisfying

the equation (
(n−1)
x y)+ = x. This element, denoted by x, so called querelement of x, defines

the power x[−1]. W. Dörnte [2] proved that in any n-group for all a, x ∈ A; 2 ≤ i, j ≤ n,

we have (
(i−2)
x x

(n−i)
x a)+ = a and (a

(n−j)
x x

(j−2)
x )+ = a.

Received: 12.03.2018. In revised form: 13.03.2018. Accepted: 20.03.2018
2010 Mathematics Subject Classification. 20N15, 16Y60, 16Y99, 22A99, 16N99.
Key words and phrases. n−group, n−semigroup, (n,m)−semirings, ideal and subtractive ideal of

(n,m)−semiring, semiring morfism.

79



80 Adina Pop and Monica Lauran

An n−semigroup A will be called:
-semicommutative [2], if for any a1, . . . , an ∈ A we have (a1, a

n−1
2 , an)+ = (an, a

n−1
2 , a1)+;

-commutative [2], if (xn1 )+ = (x
σ(n)
σ(1) )+,(∀)xn1 ∈ A and for each permutation σ of {1, 2, ..., n}.

-entropic (medial)[2], if for all n2 elements of A, aij ∈ A, i, j ∈ {1, 2, . . . , n}we have

((a1n11 )◦, (a
2n
21 )◦, . . . , (a

nn
n1 )◦)◦ = ((an111 )◦, (a

n2
12 )◦, . . . , (a

nn
1n )◦)◦.

2. IDEALS, SUBTRACTIVE IDEALS

Definition 2.1. ([7]) The algebra (S, ( )+, ( )◦) where ( )+ : Sn → S; ( )◦ : Sm → S;
m,n ∈ N; m,n ≥ 2 is called an (n,m)−semiring if:

1) (S, ( )+) is a commutative n−semigroup;
2) (S, ( )◦) is an m−semigroup ;
3) the ”m−ary multiplication” is distributive with respect to ”n−ary addition”, i.e.

(yi−11 , (xn1 )+, y
m
i+1)◦ = ((yi−11 x1 y

m
i+1)◦, . . . , (y

i−1
1 xn y

m
i+1)◦)+,

for all x1, . . . , xn, y1, . . . , ym ∈ S and all i ∈ {1, 2, . . . ,m}.

An (n,m)−semiring in which (S, ( )+) is a commutative m−group is called an
(n,m)−ring. An (n,m)−semiring ((n,m)−ring) in which the m−ary operation is semi-
commutative (commutative) is called a semicommutative (commutative) (n,m)−semiring
((n,m)−ring). For n = m = 2, the (2, 2)−semiring ((2, 2)−ring) is ordinary semiring
(ring). For n = 2 and m = 3, the (2, 3)−semiring is the ternary semiring introduced by
Dutta and Kar [3].

Definition 2.2. An (n,m)−semiring (S, ( )+, ( )◦) is called:
a) Additively idempotent, if x[1] = x, for all x ∈ S;
b) Multiplicatively idempotent, if x<1> = x, for all x ∈ S.
c) Idempotent, if it is additively idempotent and multiplicatively idempotent
(n,m)−semiring.

Further, we put x[0] = x; x[1] = (
(n)
x )+ and x[k] = (x[k−1],

(n−1)
x )+ for all x ∈ S and

k ∈ N∗, x[k] having (n− 1)k + 1 terms.

Similarly, for m−ary operation we put x<0> = x; x<1> = (
(m)
x )◦ and

x<k> = (x<k−1>,
(m−1)
x )◦ for all x ∈ S, x<k> having (m− 1)k + 1 terms.

We denote the set of additively idempotents and the set of multiplicatively idempotents
of (n,m)−semiring, with Ida(S) and Idm(S), respectively. We observe that an
(n,m)−semiring (S, ( )+, ( )◦) is additively idempotent (multiplicatively idempotent), if
and only if Ida(S) = S (Idm(S) = S). An (n,m)−semiring (S, ( )+, ( )◦) is idempotent if
and only if Ida(S) = S =Idm(S).

Definition 2.3. The subset H ⊆ S of an (n,m)−semiring is called a sub-(n,m)-semiring
if (xn1 )+, (xm1 )◦ ∈ H for all x1, . . . , xp ∈ H , p = max(m,n). An element e ∈ S is called

aditive neutral element or identity if (
(n−1)
e x)+ = x, for every x ∈ S. An element z is said

to be zero element (multiplicative absorbing) if (xi−11 z xmi+1)◦ = z for all x1, . . . , xm ∈ S
and i ∈ {1, . . . ,m}.

Definition 2.4. ([11]) An (n,m)−semiring(S, ( )+, ( )◦) is called:
a) additively cancellative, if the n−ary semigroup (S, ( )+) is cancellative, i.e.,

(xi−11 a xni+1)+ = (xi−11 b xni+1)+ ⇒ a = b,
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for all x1, x2, .., xn ∈ S \ {0} (if zero element, 0 exists) and for every a, b ∈ S
b) multiplicatively cancellative, if the m−semigroup (S, ( )◦) is cancellative, i.e.,

(xi−11 a xmi+1)◦ = (xi−11 b xmi+1)◦ ⇒ a = b,

for all x1, x2, .., xm ∈ S \ {0} (if zero element, 0 exists) and for every a, b ∈ S

An element u ∈ S is called multiplicative neutral element or unity if (
(i−1)
u x

(m−i)
u )◦ = x

for all x ∈ S and i ∈ {1, . . . ,m}.
Note that, unlike the case of usual semirings there are (n,m)-semirings which have

more identities (only one of which is zero) and / or more units.

Definition 2.5. A semidomain is an additively and multiplicatively cancellative
(n,m)−semiring with additive neutral element which is also zero element and with mul-
tiplicative neutral element.

Definition 2.6. An integral semidomain is a semidomain that has no divisors of zero.

Example 2.1. ([11]) Let n,m be the positive integers, n,m ≥ 2. The (n,m)−semiring

(N, ( )+, ( )◦) (kn1 )+ = k1 + . . . + kn + 1 and (km1 )◦ =

m∏
j=1

((n−1)kj+1)−1

n−1 , k1, . . . , kp ∈ N,
p = max(m,n), has no zero element, but it has multiplicative neutral element, namely 0.

Example 2.2. ([10]) The set of all integers Z endowed with the above defined n−ary ope-
ration with n = 2, k1 ∗ k2 = k1 + k2 + 1 and 2m+ 1−ary operation, m ≥ 2, m ∈ N defined

by (k2m−11 )◦ =
2m+1∏
i=1

(ki + 1)− 1, k1, . . . , kp ∈ N, p = max(m,n), is a commutative and

multiplicatively cancellative (2, 2m+ 1)−ring. It has a neutral aditive element, −1 which
is also the zero element, and two neutral multiplicative elements, namely 0 and −2.

Definition 2.7. Let (S, ( )+, ( )◦) be an (n,m)−semiring, Then an i−idealA of (S, ( )+, ( )◦),
i ∈ {1, 2, ..., n} is defined as a sub-n-semigroup (A, ( )+) of (S, ( )+) (i.e. A[1] ⊆ A) sa-

tisfying (
(i−1)
S A

(m−i)
S )◦ ⊆ A. If A is an i−ideal of S for every i, then it is called an ideal of

S.

Remark 2.1. If (S, ( )+, ( )◦) is an (n,m)−semiring, then:
1) An ideal I of S is a sub-(n,m)−semiring of (n,m)−semiring (S, ( )+, ( )◦;
2) If S has a zero element, then it belongs to all i−ideals and ideal of S, too. In addition,

the subset {0} ⊆ S is an ideal, called null ideal and noted (0).

Definition 2.8. Let A be an ideal of an (n,m)−semiring (S, ( )+, ( )◦). The set

cl(A) = {x ∈ S | there are a1, . . . , an−1 ∈ A such that (xan−11 )+ ∈ A}
is called the k−closure of A.

Proposition 2.1. Let A and B be (n,m)−semiring ideals of an (n,m)−semiring (S, ( )+, ( )◦).
Then

1) cl(A) is an (n,m)−semiring ideal of S and A ⊆cl(A);
2) If A ⊆ B, then clA ⊆ clB;
3) cl(clA) =clA.

Proof. 1) For all x1, . . . , xn ∈ clA, there are ai1, . . . , ai,n−1 ∈ A such that (xia
i,n−1
i1 )+ ∈ A,

for i ∈ {1, 2, . . . , n}. Since A is an (n,m)−semiring ideal, by commutativity and associati-
vity of n−ary operation, we have:

((xn1 )+(a
n1
11 )+ · · · (a

n,n−1
1,n−1 )+)+ = ((x1a

1,n−1
11 )+, . . . , (xna

n,n−1
n1 )+)+ ∈ A[1] ⊆ A
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Also, for all s1, . . . , sm ∈ S, x ∈ clA and i ∈ {1, ..., n}, there are a1, . . . , an−1 ∈ A such that
(xan−11 )+ ∈ A and (si−11 ajs

m
i+1)◦ ∈ A for every j ∈ {1, 2, . . . , n− 1}.

But (
(si−11 x smi+1)◦, (s

i−1
1 a1 s

m
i+1)◦, . . . , (s

i−1
1 an−1 s

m
i+1)◦

)
+
=

= (si−11 (x an−11 )+ s
m
i+1)◦ ∈ A.

Consequently, (si−11 x smi+1)◦ ∈ clA and so clA is an ideal of S.
From A[1] ⊆ A results A ⊆ clA.

2) If A ⊆ B and x ∈ clA there are a1, . . . , an−1 ∈ A ⊆ B such that (xan−11 )+ ∈ A ⊆ B,
hence x ∈ clB.

3) By 2) the inclusion A ⊆ clA implies clA ⊆cl(clA).
If x ∈ cl(clA), then there are x1, . . . , xn−1 ∈ clA such that

(
xxn−11

)
+
∈ clA. Hence, there

are y1, . . . yn−1 ∈ A such that
(
(xxn−11 )+y

n−1
1

)
+
∈ A. Since (xn−11 y1)+ ∈ A and using

the associativity of the n-ary operation ”( )+” we have
(
x(xn−11 y1)+y

n−1
2

)
+
∈ A, whence

x ∈ clA. From this it follows that cl(clA) ⊆ clA and clA =cl(clA). �

Definition 2.9. In the special case where A =clA holds, the ideal A is called subtractive
ideal, k−closed or k−ideal of (S, ( )+, ( )◦). The k−closure, clA, of an (n,m)−semiring
ideal is always a k−ideal.

An equivalent definition of subtractive ideal is the following:

Definition 2.10. ([19]) The ideal A of an (n,m)−semiring (S, ( )+, ( )◦) is a subtractive
ideal if a2, . . . an, (an1 )+ ∈ A implies a1 ∈ A.

Example 2.3. ([10]) For the commutative (n,m)−semiring

(
N∗,

n∑
i=1

,
m∏
j=1

)
, whereN∗=N\{0},

derived from the semiring (N∗,+, ·), by repeating the binary operations, each sub-n-

semigroup of (N∗,
n∑
i=1

), kN∗ is an (n,m)−semiring ideal of

(
N∗,

n∑
i=1

,
m∏
j=1

)
, too. Moreover

kN∗ is a subtractive ideal.
Also, for every k, b ∈ N∗ the subset kN∗; Ab = {a ∈ N∗; a ≥ b} and Ak,b = kN∗ ∩ Ab

are examples of (n,m)−semiring ideals, but there are various others. We note that unlike
kN∗, Ab and Ak,b are not subtractive ideals.

Example 2.4. The set A = {0, 1, 2, 3}with the operations ( )+ : A3 → A, ◦ : A2 → A

(a31)+ =

{
a1 + a2 + a3 if a1 + a2 + a3 ≤ 3

r ≡ a1 + a2 + a3(mod2); 2 ≤ r < 4 if a1 + a2 + a3 ≥ 4

respectively,

a1 ◦ a2 =

{
a1 · a2 if a1 · a2 ≤ 3

r ≡ a1 · a2(mod2); 2 ≤ r < 4 if a1 · a2 ≥ 4

is a commutative (3, 2)-semiring with zero element 0 and one multiplicative identity 1.
The set of all additive idempotents Ida(A) = {0, 2, 3} is an ideal of (3, 2)−semiring A, but
is not subtractive ideal since cl{0, 2, 3} = S 6=Ida(S) .

Remark 2.2. In general, the set of all additive idempotents Ida(A) is not necessarily sub-
tractive ideal.
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Example 2.5. Let Z−0 be the set of all negative integers with zero. Then Z−0 endowed with
the usual binary addition and (2m+1)−ary multiplication (x2m+1

1 )◦ = x1 ·x2 · . . . ·x2m+1,
form a commutative (2, 2m+ 1)−semiring with zero and identity element. For m = 1 we
obtain the (2, 3)−semiring, so called ”ternary semiring” defined by Kar S [6]. The subsets
kZ−0 ; where k ∈ N are subtractive ideals of this (2, 2m+ 1)−semiring.

Proposition 2.2. ([9]) Let (S, ( )+, ( )◦) be an (n,m)−semiring. If U is a sub−(n,m)−semiring
of S and A is an ideal of (n,m)−semiring (S, ( )+, ( )◦) , then:
i) U ∩A is either empty set or a (n,m)−semiring ideal of the (n,m)−semiring (U, ( )+, ( )◦).
ii) If A is a subtractive ideal and U ∩A 6= ∅, then U ∩A is also subtractive.

Proof. i) Assume that U ∩ A 6= ∅. Since (U, ( )+) and (A, ( )+) are, in particular
sub-n-semigroups of S, if x1, x2, . . . , xn ∈ U ∩A it follows that (xn1 )+ ∈ U ∩A.

Let u1, u2, . . . , ui−1, ui+1, . . . um ∈ U be any elements in U and x ∈ U ∩A. Since (U, ( )◦)

is a sub-n-semigroup, we will have (ui−11 xumi+1) ∈ U.
But A is an ideal of the (n,m)− semiring S and U ⊆ S. It follows that (ui−11 xumi+1)◦ ∈ A.
Consequently, (ui−11 xumi+1)◦ ∈ U ∩A.

ii) Assume that U ∩ A = ∅. If y2, ..., ym ∈ U ∩ A, and x ∈ U with (x ym2 )+ ∈ U ∩ A,
considering that A is an k− ideal, it results that x ∈ A. Therefore x ∈ U ∩ A which shows
that U ∩A is an subtractive ideal of the (n,m)− semiring U . �

Remark 2.3. The intersection of k−ideals is again a k−ideal, whereas the semiring ideal

A ∪ B
n−1⋃
i=1

(
(i)

A,
(n−i)
B )+ need not be k−ideal. Indeed in Example 2.3, if we consider the

k−ideals 2N∗,3N∗, then the subset 2N∗∪3N∗∪ (
(i)

2N∗,
(n−i)
3N∗ )+ = N∗ \{1} is not a subtractive

ideal.

3. MORPHISM OF (n,m)− SEMIRINGS

Definition 3.11. Let (S, ( )+, ( )◦) and (S′, ( )∗, ( )•) be (n,m)−semirings. The function f :
S → S′ is called the morphism of (n,m)−semirings, if for any xi ∈ S with
i ∈ {1, 2, . . . ,max(n,m)} the following statements are true:

f((xn1 )+) = (f(x1), . . . , f(xn))∗,

f((xm1 )◦) = (f(x1), . . . , f(xm))•.

A morphism from the semiring S into the semiring S is called endomorphism. A semi-
ring isomorphism is both injective and surjective . The semirings S and S′ will be called
isomorphic semirings if there exists an isomorphism from S onto S′. In this case we will
write (S, ( )+, ( )◦) ∼= (S′, ( )∗, ( )•).

Next, for simplification, we will write the operations of the two (n,m)−semirings in
the same way.

Theorem 3.1. Let (S, ( )+, ( )◦) and (S′, ( )+, ( )◦), be (n,m)−semirings and f : S → S′ a
morphism of (n,m)−semirings.

i) If f is a surjective morphism and the (n,m)−semiring (S, ( )+, ( )◦) has a zero element 0,
then f(0) = 0′ is a zero element in the (n,m)−semiring (S′, ( )+, ( )◦).

ii) If a ∈ S is an additive (multiplicative) idempontent of (n,m)−semiring (S, ( )+, ( )◦), then
f(a) is an additive (multiplicative) idempontent in the (n,m)−semiring (S′, ( )+, ( )◦).

iii) If the (n,m)− semiring (S, ( )+, ( )◦) has an additive (multiplicative) neutral element, and
f is surjective, then f(e) is an additive (multiplicative) neutral element.
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iv) If an element x ∈ S admits an additive querelement x ∈ S (multiplicative querelement
x ∈ S), then there exists a querelement of f(x) and the following applies:

f(x) = f(x) (f(x) = f(x)).

Proof. i) Since f is a surjective morphism, then for every y1, y2, ..., ym ∈ S′ there exists
x1, x2, ..., xm ∈ S such that f(xi) = yi, i ∈ {1, 2, ...,m}. If we denote by f(0) = 0′, we will
have: (

yi−11 0′ ymi+1

)
◦ = (f(x1), ..., f(xi−1), f(0), f(xi), ..., f(xm))◦

= f
(
(xi−11 0 xmi+1)◦

)
= f(0) = 0′.

ii) If a ∈ S is an additive (multiplicative) idempotent in (n,m)−semiring (S, ( )+, ( )◦),
that is, a[1] = a (respectively a<1> = a) then

f(a) = f(a[1]) =
(n)

(f(a))+ = f(a)[1]
(
f(a) = f(a<1>) = f(a)<1>

)
.

iii) If e ∈ S is a neutral additive (multiplicative) element, then for any x ∈ S and any
i ∈ {1, 2, ..., p}, p = max(n,m) we have:

(
(i−1)
e x

(n−i)
e )+ = x

(
(
(i−1)
e x

(m−i)
e )◦ = x

)
Since f is a morphism, then

f(x) = f((
(i−1)
e x

(n−i)
e )+) = (f

(i−1)
(e) , f(x), f

(n−i)
(e) )+.(

f(x) = f((
(i−1)
e x

(m−i)
e )◦) = (f

(i−1)
(e) , f(x), f

(m−i)
(e) )◦

)
.

From the definition of the additive (multiplicative) neutral element, it follows that f(e) is
an additive (multiplicative) neutral element.

iv) If x ∈ S has an additive querelement x ∈ S, then x is unique and (
(n−1)
x x)+ = x.

Considering the properties of morphism f and the uniqueness of the querelement ele-

ment, it follows that f(x) = f((
(n−1)
x x)+) = (f

(n−1)
(x) f(x))+. Consequently, we obtain

f(x) = f(x).
�

It is easy to prove the following:

Theorem 3.2. Let (S, ( )+, ( )◦) , (T, ( )+, ( )◦) and (R, ( )+, ( )◦) be (n,m)−semirings.
i) If f : S → T and ϕ : T → R are morphisms of (n,m)−semirings, then ϕ ◦ f : S → R is a

morphism of (n,m)−semirings.
ii) The identity function on S, 1S : S → S, 1S(x) = x for any x ∈ S is an isomorphism of the

(n,m)−semiring (S, ( )+, ( )◦).
iii) If f : S → T is an isomorphism of (n,m)−semirings, then the inverse function f−1 : T →

S is an isomorphism of (n,m)−semirings, too.

Using the properties of universal algebras we obtain:

Proposition 3.3. Let (S, ( )+, ( )◦) and (S′, ( )+, ( )◦) be two universal algebras of the same type,
with the n−ary operation ”()+”, the m−ary operation ”()◦”, and f : S → S′ a morphism.

i) If (S, ( )+, ( )◦) is an (n,m)−semiring, then the subalgebra (f(S), ( )+, ( )◦) of S′ is an
(n,m)−semiring. If (n,m)−semiring (S, ( )+, ( )◦) is semicomutative (commutative), respecti-
vely with multiplicative neutral element, then (n,m)−semiring (f(S), ( )+, ( )◦) is semicomuta-
tive (commutative) with a multiplicative neutral element. Generally, ifA is a sub-(n,m)-semiring
of (S, ( )+, ( )◦), then the homomorphic image f(A) is a sub-(n,m)-semiring of (S′, ( )+, ( )◦).
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ii) If (S, ( )+, ( )◦) and (S′, ( )+, ( )◦) are (n,m)−semirings and A′ is a sub-(n,m)-semiring of

(S′, ( )+, ( )◦) , then the inverse image of A′ by f ,
−1
f (A′), is either the empty set or a sub-(n,m)-

semiring of (S, ( )+, ( )◦).

Proof. (i) Immediately verified

(ii) Let us observe that
−1
f (A′) =

−1
f (A′ ∩ f(S)). Notice that

−1
f (A′) = ∅ if and only if

A′ ∩ f(S) = ∅. Otherwise, since A′ and f(S) are sub-(n,m)-semirings , it follows that A′ ∩

f(S) is a sub-(n,m)-semiring of (n,m)−semiring (S′, ( )+, ( )◦). If a1, a2, . . . , ap ∈
−1
f (A′),

p = max(n,m), then f(a1), f(a2), ..., f(ap) ∈ A′ ∩ f(S).
It follows that (f(a1), . . . , f(an))+ ∈ A′ ∩ f(S), respectively (f(a1), . . . , f(am))◦ ∈ A′ ∩
f(S).

Therefore f((an1 )+) ∈ A′ ∩ f(S) and f((am1 )◦) ∈ A′ ∩ f(S) which yields to (an1 )+ ∈
−1
f (A′),

respectively (am1 )◦ ∈
−1
f (A′). �

If (n,m)−semirings are (n,m)−rings, then we find the Theorem 2 of I. Purdea ([13]).

Corollary 3.1. The algebraic structure (Imf, ()+()◦) is a sub-(n,m)-semiring of (n,m)−semiring
(S′, ( )+, ( )◦).

Corollary 3.2. Let (S, ( )+, ( )◦) be an (n,m)−semiring with zero element 0, (S′, ( )+, ( )◦) an
universal algebra.

(i) If (n,m)−semiring (S, ( )+, ( )◦) has no divisors of zero and the morphism f : S → S′ is
injective, then f(S) has no divisors of zero.

(ii) If (n,m)−semiring (S, ( )+, ( )◦) is an integral semidomain and the morphism f : S → S′

is injective, then (f(S), ( )+( )◦) is an integral semidomain.
(iii) If the morphism f : S → S′ is surjective, then the universal algebra (S′, ( )+, ( )◦) is an

(n,m)−semiring.

Proof. i) Indeed, for any y1, y2, . . . , ym ∈ f(S) there are x1, x2, . . . , xm ∈ S with the pro-
perty that f(xi)=yi, i∈{1, 2,. . .,m}. If (ym1 )◦ = f(0), then we obtain (f(x1), . . . , f(xm))◦=
f(0), respectively f((xm1 )◦) = f(0). Since the morphism f is injective, it results (xm1 )◦ = 0.
But (n,m)−semiring (S, ( )+, ( )◦) has no divisors of zero, so there exists an i ∈ {1, 2, . . . ,m}
such that xi = 0. It follows that f(xi) = f(0), f(0) being zero element in (S′, ( )+, ( )◦) in
accordance with Theorem 3.1. (i). Therefore there exists i ∈ {1, 2, . . . ,m} such that yi =
f(0), which shows us that (n,m)−semiring (f(S), ( )+, ( )◦) has no divisors of zero. �

It is easy to prove the following:

Theorem 3.3. Let (S, ( )+) be the n−semigrup comutative of (n,m)−semiring (S, ( )+, ( )◦).
Then the set of endomorphisms of this n−semigrup, denoted End(S, ( )+), forms an
(n,m)−semiring endowed with operations

[f1, f2, . . . , fn]+(x) = (f1(x), . . . , fn(x))+,

respectively
(g1, g2, . . . , gn)?(x) = (g1(g2(. . . (gm(x)) . . .)))

where fi, gj ∈ End(S, ( )+); i ∈ {1, 2 . . . , n}, j ∈ {1, 2, . . . ,m}. The identity function 1S : S →
S, 1S(x) = x is a multiplicative neutral element in (n,m)−semiring (End(S, ( )+), [ ]+, ( )?).

The following theorem is a generalization of Theorem 6 ([13])
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Theorem 3.4. If (S, ( )+, ( )◦) is an (n,m)−semiring, c1, c2, . . . , cm−2 ∈ S are fixed elements,
not necessarily distinct, then:

i) the function ϕ : (S, ( )+)→ End(S, ( )+), ϕ(a) = ta with ta : S → S, ta(x) = (a cm−21 x)◦
is a morphism of n−semigroups.

ii) If (n,m)−semiring S is commutative and c1, c2, . . . , cm−2 ∈ Idm(S), then ϕ is a morphism
of (n,m)−semirings. If S is a multiplicatively cancellative (n,m)−semiring , then the ϕ is an
injective morphism.

Proof. i) Let the elements a1, a2, . . . , an ∈ S be. Then

ϕ((an1 )+) = t(an1 )+ and t(an1 )+(x) = ((an1 )+, c
m−2
1 , x)◦, for any x ∈ S.

Applying the distributivity law, we will have

t(an1 )+(x) = ((a1 c
m−2
1 x)◦, . . . , (an c

m−2
1 x)◦)+ = (ta1(x), . . . , tan(x))+

for any x ∈ S. Therefore ϕ((an1 )+) = (ϕ(a1), . . . , ϕ(an))+ for all a1, a2, . . . , an ∈ S, so ϕ is
a morphism of n−semigroups.

ii) If we consider the elements a1, a2, . . . , am ∈ S, then we have

ϕ((am1 )◦) = t(am1 )◦ and t(am1 )◦(x) = ((am1 )◦ c
m−2
1 x)◦, for any x ∈ S.

Using the commutativity and the associativity of the m−ary operation and also the fact
that c<1>

i = ci for any i ∈ {1, 2, . . . ,m− 2}, it follows

t(am1 )◦(x) = ((am1 )◦, c
<1>
1 , . . . , c<1>

m−2, x)◦ = (a1, c
m−2
1 , (a2c

m−2
1 , (. . . (am c

m−2
1 x)◦ . . .)))◦

= ta1(ta2(. . . (tam(x)) . . .)) = (ta1 ◦ ta2 ◦ . . . ◦ tam)(x),

for any x ∈ S. Therefore ϕ((am1 )◦) = (ϕ(a1), ϕ(a2), . . . ϕ(am))?.
Next we want to show that the morphism ϕ is injective. If we assume that ϕ(a) = ϕ(b)

it follows that ta = tb and so ta(x) = tb(x) for any x ∈ S. Since S is a multiplicatively
cancellative (n,m)−semiring, it follows that (a cm−21 x)◦ = (b cm−21 x)◦ ⇒ a = b.

�

In the particular case of (n, 2)−semirings, a generalization of the Theorem 7 ([13]) is
obtained.

Corollary 3.3. If (S, ( )+, ·) is an (n, 2)−semiring, then function ϕ : S → End (S, ( )+), ϕ(a) =
ta, ta : S → S, with ta(x) = a · x is a morphism of (n, 2)−semirings. If (n, 2)−semiring S has a
multiplicative neutral element, then function ϕ is an injective morphism.

Remark 3.4. Theorem 3.3 and Theorem 3.4 are true even when we consider a generaliza-
tion of (n,m)−semiring , namely the n−ary operation ( )+ is not commutative, but it is
entropic (medial) ( see [9]).

Proposition 3.4. Let (S, ( )+, ( )◦) and (S′, ( )+, ( )◦) be (n,m)−semirings and f : S → S′ a
surjective morphism of (n,m)−semirings. If A and A′ are ideals in (n,m)−semirings S and S′,
then:

i) The set f(A) = {f(a)|a ∈ A} is an ideal in the (n,m)−semiring (S′, ( )+, ( )◦).

ii) the inverse image of A′ by f ,
−1
f (A′) = {a ∈ A| f(a) ∈ A′} is either the empty set or an

ideal in (n,m)−semiring (S, ( )+, ( )◦). In addition, if A′ is a subtractive ideal, then its inverse

image
−1
f (A′) is a subtractive ideal (if it is not the empty set).

Proof. i) Since f(A) is in particular a sub-(n,m)-semiring of (S, ()+, ()◦), the pair (f(A), ()+)
is a sub-n-semigroup of the n−semigroup (S, ( )+). We will further show that f(A) is an
ideal in (n,m)−semiring (S′, ( )+, ( )◦).
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Let a′ ∈ f(A) and s′1, . . . , s
′
i−1, s

′
i+1, . . . , s

′
m ∈ S′.. Considering that f is a surjective

morphism, it follows that there exists a ∈ A and s1, . . . , si−1, si+1, . . . , sm ∈ S with
the property that f(a) = a′ and f(sj) = s′j , for any j ∈ {1, 2, . . . , i − 1, i + 1, . . . ,m}.
Since A is an ideal in (n,m)−semiring S, it follows that (si−11 a smi+1)◦ ∈ A and we will
have (s′i−11 a′ s′mi+1)◦ = (f(s1), . . . , f(si−1), f(a), f(si+1), . . . , f(sm))◦ = f((si−11 a smi+1)◦) ∈
f(A).

ii) Let
−1
f (A′) 6= ∅ and x1, x2, . . . , xn ∈

−1
f (A′). It follows that f(x1), . . . , f(xn) ∈ A′.

Since, in particular, A′ is a sub-n-semigrup of the semigroup (S′, ( )+) we have
(f(x1), . . . , f(xn))+ ∈ A′ . The function f is a morphism of (n,m)−semirings, therefore

f((xn1 )+) ∈ A′. In conclusion (xn1 )+ ∈
−1
f (A′).

If a ∈
−1
f (A′) and s1, s2, . . . , si−1, si+1, . . . , sm ∈ S, considering that A′ is an ideal in S′,

then
f((si−11 a smi+1)◦) = (f(s1), . . . , f(si−1), f(a), f(si+1), . . . , f(sm))◦ ∈ A′.

It follows that (si−11 a smi+1)◦ ∈
−1
f (A′). Therefore,

−1
f (A′) is an ideal of (n,m)−semiring

(S, ( )+, ( )◦).

Further we will show that
−1
f (A′) is a subtractive ideal. Indeed, if x ∈ S and a2, . . . , am ∈

−1
f

(A′) with the property that (x am2 )+ ∈
−1
f (A′), then f((x am2 )+) ∈ A′. Considering the fact

that f is a morphism of (n,m)−semirings, it follows (f(x), f(a2), . . . , f(am))+ ∈ A′. But
A′ is a subtractive ideal in (n,m)−semiring (S, ( )+, ( )◦). Hence f(x) ∈ A′ and therefore

x ∈
−1
f (A′). In conclusion,

−1
f (A′) is a subtractive ideal in (n,m)−semiring S. �

Remark 3.5. If A is a subtractive ideal of (n,m)−semiring (S, ( )+, ( )◦), it does not gene-
rally result that f(A) is a subtractive ideal in (n,m)−semiring (S′, ( )+, ( )◦).

Example 3.6. Let the set S = {0, a, b, c} endowed with a ternary operation ( )+ : S3 → S
defined as follows

(x, 0, 0)+ = x ; (x, c, c)+ = c for all x ∈ S,

(x, a, a)+ =

{
a, if x ∈ {0, a}
c, if x ∈ {b, c}

(x, b, b)+ =

{
b, if x ∈ {0, b}
c, if x ∈ {a, c}

(0, a, b)+ = (c, a, b)+ = (0, c, a)+ = (0, c, b)+ = c,

and the m-ary operation ( )◦ : S
m → S defined by (xm1 )◦ = 0, for any x1, x2, ..., xm ∈ S.

The algebraic structure (S, ( )+, ( )◦) is a commutative (3,m)−semiring with additive neu-
tral element 0 which is also the zero element of the semiring and the set of additive idem-
potents Ida(S) = S.

Let T = {0′, a′, c′} be a set endowed with the ternary operation ”( )?” defined as follows
(x′, 0′, 0′)? = x′; (x′, c′, c′)? = c′, for all x′ ∈ T , (0′, a′, c′)∗ = c′,

(x′, a′, a′)? =

{
a′, if x′ ∈ {0′, a′}
c′, if x′ = c′

and the m−ary operation ”( )◦” defined by (x′m1 )◦ = 0′ for all x′1, x′2, . . . , x′m ∈ T .
Then (T, ( )?, ( )◦) is also a commutative (3,m)−semiring with an additive neutral ele-

ment 0′, which is also the zero element of the semiring T and Ida(T ) = T.
The function f : S → T ; f(0) = 0′, f(a) = f(c) = c′, and f(b) = a′ is a surjective

morphism.
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The set A = {0, a} is a subtractive ideal of S, but f(A) = {0′, c′} is not a subtractive
ideal, because (a′ 0′ c′)? = c′ ∈ f(A), but a′ /∈ f(A).
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