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A note on the morphism theorems for (n, m)—semirings

ADINA POP and MONICA LAURAN

ABSTRACT. In this paper, some properties of subtractive ideal of (n, m)—semirings are investigated. In ad-
dition, we study the morphisms of (n, m)—semirings starting from the definitions given in the case of univer-
sal algebras. We will present several theorems of correspondence for sub-(n, m)-semirings, ideals, subtractive
ideals that represent the generalization of the morphism theorems of the binary case.

1. INTRODUCTION

Algebraic polyadic structures are applied in many disciplines such as theoretical phy-
sics, computer sciences, coding theory, automata theory and other. The concept of n—ary
group was introduced by Dornte [2] and developed by E. Post [14] , J. Timms [17] for
commutative case. The m—semigroups are studied by F. M. Siosson [16], M. S. Pop [12],
A. Pop [8]. I Purdea [13] and G. Crombez [1] extended the usual ring concept to the
case where the underlying group and semigroup is an commutative n—ary group and an
m—ary semigroup, respectively. In some recently appeared papers, various authors conti-
nue the study of ordinary semigroups introduced by H. S. Vandiver [18] to the case where
the underlying commutative additive semigroup and multiplicative semigroup are not
binary but an n—ary and one m—ary respectively. The new obtained structures are called
(n, m)—semirings [7], [9], [19].

We begin with some preliminaries about the m—semigroups, n—groups, (n, m)— semi-
rings and (n, m)—rings.

Traditionally in the theory of n—groups we use the following abbreviated notation:
the sequence ;, ..., z; is denoted by z (for j < i this symbol is empty). If z;,, =

k
ZTitg = ... = Ty = x, then instead of a::fl we write ® The algebra (S, ()4) is cal-
led an n—semigroup if for any i € {2,3,...,n} and all z4,...,22,—1 € S, the following
associativity laws are true i.e
(@) a7+ = (@7 @ 2+
An n—semigroup (S, () ) is called n—group if foranyi € {1,2,...,n}and allay,...,a, €

S, the equation (a{~',z,a? ;)+ = a; has a unique solution in S. In some n-groups there is

an element e € S (called identity or neutral element) such that ((IEI) x (ne_ 1))+ = z holds
forallz € Sand foralli € {1,...,n}. Itis interesting that there are n-groups with two or
more neutral elements or which do not contain such elements [2],[14]. From the definition
of the n-group (5, ()4+) we can see that for every « € S there is only one y € S, satisfying

. (n—1) . _ .
the equation (* = ~ y);+ = «. This element, denoted by 7, so called querelement of x, defines
the power z[=1. W. Dérnte [2] proved that in any n-group for all a,x € 4;2 < 4,5 < n,

i-2) _ (n—i n—j) _ (j—2
we have (( 27" )a)+ =gand (a( 7V ))Jr = a.
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An n—semigroup A will be called:
-semicommutative [2], if for any a4, ..., a, € A we have (a1, ab L an)y = (an,ah " a1) 4
-commutative [2], if (z7) 1 = (xZE

-entropic (medial)[2], if for all n? elements of 4, a;; € 4, i,j € {1,2,...,n} we have
((a%’f)o, (agrll)ov ] (aﬁ?)o)o = ((a?ll)ov (a?22)07 AR (a?g)o)o'
2. IDEALS, SUBTRACTIVE IDEALS

Definition 2.1. ([7]) The algebra (S,()+,()o) where ()1 : S = S; ()o : S™ — S;
m,n € N; m,n > 21is called an (n, m)—semiring if:

1) (S, ()+) is a commutative n—semigroup;

2) (S, ()o) is an m—semigroup ;

3) the “m—ary multiplication” is distributive with respect to “n—ary addition”, i.e.
1

;L)))Jr,(V)x’l” € A and for each permutation o of {1, 2, ...,n}.

1

Wi @) vi)e = (G a1t )on o 01 2 )o) 4

forallzq,...,2n,y1,...,ym € Sand all i € {1,2,...,m}.

An (n,m)—semiring in which (S5,()4) is a commutative m—group is called an
(n,m)—ring. An (n,m)—semiring ((n, m)—ring) in which the m—ary operation is semi-
commutative (commutative) is called a semicommutative (commutative) (n, m)—semiring
((n,m)—ring). For n = m = 2, the (2,2)—semiring ((2,2)—ring) is ordinary semiring
(ring). For n = 2 and m = 3, the (2, 3)—semiring is the ternary semiring introduced by
Dutta and Kar [3].

Definition 2.2. An (n,m)—semiring (S, ( )+, ()o) is called:

a) Additively idempotent, if 2zl =gz, forallz € S;

b) Multiplicatively idempotent, if <!> = z, forall z € S.

c) Idempotent, if it is additively idempotent and multiplicatively idempotent
(n, m)—semiring.

Further, we put zl% = 2; 21l = ((g))Jr and zlFl = (zlF—1 (ngl))Jr for all z € S and
k € N*, zI*] having (n — 1)k + 1 terms.

Similarly, for m—ary operation we put z<%> = ;2> = ((Z}))O and

r<k> = (p<k—1>, (magl))o forall z € S, z<*> having (m — 1)k + 1 terms.

We denote the set of additively idempotents and the set of multiplicatively idempotents
of (n,m)—semiring, with Ida(S) and Idm(S), respectively. ~We observe that an
(n, m)—semiring (S, ()+,()o) is additively idempotent (multiplicatively idempotent), if
and only if Ida(S) = S (Idm(S) = S). An (n, m)—semiring (S5, ( )+, ()o) is idempotent if
and only if Ida(S) = S =Idm(S).

Definition 2.3. The subset H C S of an (n, m)—semiring is called a sub-(n, m)-semiring
if (27)4, (z7")o € H for all 1,...,2, € H, p = max(m,n). An element e € S is called

~1
aditive neutral element or identity if ((ne : x)+ = x, for every & € S. An element z is said
to be zero element (multiplicative absorbing) if (v} ' za?%,), = 2 forall zy,...,2,, € S
andi e {1,...,m}.

Definition 2.4. ([11]) An (n, m)—semiring(S, ( )+, ()o) is called:
a) additively cancellative, if the n—ary semigroup (S, ()+) is cancellative, i.e.,

(@ aaf)y = (@7 bal ) = a=b,
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for all z1, 9, ..,x, € S\ {0} (if zero element, 0 exists) and for every a,b € S
b) multiplicatively cancellative, if the m—semigroup (.5, ( ),) is cancellative, i.e.,

(z’i_l axii)o = (zg_l bxiiy)e = a=b,

for all x1, 2, .., ,m € S\ {0} (if zero element, 0 exists) and for every a,b € S

An element u € S is called multiplicative neutral element or unity if ((Zﬂl) " 1))0 =z
forallz € Sandi € {1,...,m}.

Note that, unlike the case of usual semirings there are (n, m)-semirings which have
more identities (only one of which is zero) and / or more units.

Definition 2.5. A semidomain is an additively and multiplicatively cancellative
(n, m)—semiring with additive neutral element which is also zero element and with mul-
tiplicative neutral element.

Definition 2.6. An integral semidomain is a semidomain that has no divisors of zero.

Example 2.1. ([11]) Let n,m be the positive integers, n,m > 2. The (n, m)—semiring

IT ((n—1)k;+1)-1
N, )4 ()o) (k)4 = k1 + ...+ ky+1and (k") = Z=—F——, k1,....kp € N,
p = max(m, n), has no zero element, but it has multiplicative neutral element, namely 0.
Example 2.2. ([10]) The set of all integers Z endowed with the above defined n—ary ope-
ration with n = 2, ky * ke = k1 + k2 + 1 and 2m + 1—ary operation, m > 2, m € N defined
2m—+1
by (k" e = [ (ki+1)—1,ki,...,k, € N, p = max(m,n), is a commutative and
i=1

multiplicatively cancellative (2, 2m + 1)—ring. It has a neutral aditive element, —1 which
is also the zero element, and two neutral multiplicative elements, namely 0 and —2.

Definition 2.7. Let (S, ( )+, ()o) be an (n, m)—semiring, Then an ¢—ideal A of (S, ( )+, ()o),
i € {1,2,...,n} is defined as a sub-n-semigroup (4, ()4) of (S,()4) (ie. Al C A) sa-

(i=1) (m—i)
tisfying ( S A S )o C A.If Ais an i—ideal of S for every ¢, then it is called an ideal of

S.

Remark 2.1. If (S, ()4, ()o) is an (n, m)—semiring, then:

1) Anideal I of S is a sub-(n, m)—semiring of (n, m)—semiring (S, ()+, ()o;

2) If S has a zero element, then it belongs to all i—ideals and ideal of S, too. In addition,
the subset {0} C S is an ideal, called null ideal and noted (0).

Definition 2.8. Let A be an ideal of an (n, m)—semiring (S, ()+, ()o). The set
cl(A) ={x € S| thereare aj,...,a, 1 € Asuch that (za} '), € A}

is called the k—closure of A.
Proposition 2.1. Let A and B be (n, m)—semiring ideals of an (n, m)—semiring (S, ()4, ()o)-
Then

1) cl(A) is an (n, m)—semiring ideal of S and A Ccl(A);

2)If A C B, then clA C cIB;

3) cl(clA) =clA.

Proof. 1) For all z4,...,x, € clA, there are a;1,...,a;,—1 € A such that (xiaz’lnfl)Jr €A,
fori e {1,2,...,n}. Since A is an (n, m)—semiring ideal, by commutativity and associati-
vity of n—ary operation, we have:

(@) 4(al)4 - (aPn =)+ = (a1 g oo (wnan )4 € AN C A
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Also, forall sy,...,s, €S, x €cldand i € {1,...,n}, thereare ai, ..., a,—1 € Asuch that
(za} ')y € Aand (s} 'a;sT ). € Aforevery j € {1,2,...,n—1}.
But

((szflx 5i11)o> (s’flal 571 1)o0r s (slflan,l sﬁl)o)Jr =

= (51 (zai ™)y sTi)o € A.

Consequently, (s} 'z s ), € cl4 and so clA is an ideal of S.

From Al C A results A C clA.

2)If A C Band z € clA there are ay,...,a,_1 € A C B such that (xa?‘l)Jr € AC B,
hence x € clB.

3) By 2) the inclusion A C clA implies clA Ccl(clA).

If o € cl(clA), then there are 1, . .., 7,_1 € clA such that (zz] ") . € clA. Hence, there

are y1,...yn—1 € A such that ((mm?*l)+y?*1)+ € A. Since (#7 'y1); € A and using
the associativity of the n-ary operation " ()..” we have (z(z} 'y1);y5 ") . € A, whence

x € clA. From this it follows that cl(clA) C clA and clA =cl(clA). O

Definition 2.9. In the special case where A =clA holds, the ideal A is called subtractive
ideal, k—closed or k—ideal of (S,()+,()o). The k—closure, clA4, of an (n,m)—semiring
ideal is always a k—ideal.

An equivalent definition of subtractive ideal is the following:

Definition 2.10. ([19]) The ideal A of an (n,m)—semiring (S, ()+,()o) is a subtractive
ideal if as, . .. an, (al)+ € Aimplies a; € A.

Example 2.3. ([10]) For the commutative (n, m)—semiring (N 311 ) , where N*=N\{0},
i=1j=1
derived from the semiring (N*,+,.), by repeating the binary operations, each sub-n-
n n m
semigroup of (N*, "), kN* is an (n, m)—semiring ideal of | N*, >", [] | , too. Moreover

i=1 i=1 j=1
kN* is a subtractive ideal.

Also, for every k,b € N* the subset kN*; A, = {a € N*;a > b} and Ay, = EN* N 4,
are examples of (n, m)—semiring ideals, but there are various others. We note that unlike
kN*, Ay and Ay, are not subtractive ideals.

Example 2.4. The set A = {0, 1,2, 3} with the operations ()4 : A% - A4,0: A? » A

(5) a1+ ag + as ifar +ag+a3z3 <3
a =
a r=a; +az+az(mod2);2 <r <4 if a; +as+ag >4
respectively,
ai - as ifCLl'CLQSg
a1 O ag = .
r=aj-ay(mod2);2<r <4 if a;-ay >4

is a commutative (3, 2)-semiring with zero element 0 and one multiplicative identity 1.
The set of all additive idempotents Ida(A) = {0, 2, 3} is an ideal of (3, 2)—semiring A, but
is not subtractive ideal since cl{0, 2,3} = S #Ida(S) .

Remark 2.2. In general, the set of all additive idempotents Ida(A) is not necessarily sub-
tractive ideal.
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Example 2.5. Let Z; be the set of all negative integers with zero. Then Z; endowed with
the usual binary addition and (2m + 1)—ary multiplication (xf””l)o =I1-To ... Tomal,
form a commutative (2,2m + 1)—semiring with zero and identity element. For m = 1 we
obtain the (2, 3)—semiring, so called “ternary semiring” defined by Kar S [6]. The subsets
kZ ; where k € N are subtractive ideals of this (2, 2m + 1)—semiring.

Proposition 2.2. ([9]) Let (S, ()+, ()o) be an (n, m)—semiring. If U is a sub—(n, m)—semiring
of S and A is an ideal of (n, m)—semiring (S, ()+,()o) , then:
i) U N A is either empty set or a (n, m)—semiring ideal of the (n, m)—semiring (U, ( )+, ()o)-
i1) If A is a subtractive ideal and U N A # (§, then U N A is also subtractive.

Proof. i) Assume that U N A # @. Since (U,()4+) and (4,()4) are, in particular
sub-n-semigroups of S, if x1, 2, ...,z, € UN Ait follows that ()4 € U N A.

Letui, ug, ..., ui—1, Uit1, ... Uy € U be any elements in U and € UN A. Since (U, ( )o)
is a sub-n-semigroup, we will have (u{"' zu",) € U.
But A is an ideal of the (n, m)— semiring S and U C S. It follows that (u{™' zul,). € A.
Consequently, (u} 'z ult ), € U N A.

ii) Assume that UN A = @. If ya,...,ym € UNA,and x € U with (zy5*)+ € UN A,
considering that A is an k— ideal, it results that « € A. Therefore x € U N A which shows
that U N A is an subtractive ideal of the (n, m)— semiring U. O

Remark 2.3. The intersection of k—ideals is again a k—ideal, whereas the semiring ideal
n—1 (i) (n—1)
AUB |J (A, B )t need not be k—ideal. Indeed in Example 2.3, if we consider the
i=1
(1) (n—i)
k—ideals 2N*,3N*, then the subset 2N* U3N* U (2N*, 3N* ), = N*\ {1} is not a subtractive
ideal.

3. MORPHISM OF (n, m)— SEMIRINGS

Definition 3.11. Let (S, (), ()o) and (S’, ( )+, ()e) be (n, m)—semirings. The function f :
S — S’ is called the morphism of (n,m)—semirings, if for any z; € S with
i€ {1,2,...,max(n,m)} the following statements are true:

F(@0)4) = (f(@1), oo @),

F(@1)o) = (f(1), s f(@m)se.
A morphism from the semiring S into the semiring S is called endomorphism. A semi-
ring isomorphism is both injective and surjective . The semirings S and S” will be called
isomorphic semirings if there exists an isomorphism from S onto S’. In this case we will

write (5, ()4, ()o) = (5%, ()« ()o)-

Next, for simplification, we will write the operations of the two (n, m)—semirings in
the same way.

Theorem 3.1. Let (S, ()1, ()o) and (S',()+,()o), be (n,m)—semirings and f : S — S' a
morphism of (n, m)—semirings.

i) If f is a surjective morphism and the (n,m)—semiring (S, ( )+, ()o) has a zero element 0,
then f(0) = 0 is a zero element in the (n, m)—semiring (S’, ( )+, ()o).

ii) If a € S is an additive (multiplicative) idempontent of (n, m)—semiring (S, ()+, ()o), then
f(a) is an additive (multiplicative) idempontent in the (n, m)—semiring (S, ( )+, ()o)-

iii) If the (n, m)— semiring (S, ( )+, ()o) has an additive (multiplicative) neutral element, and
f is surjective, then f(e) is an additive (multiplicative) neutral element.
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iv) If an element x € S admits an additive querelement T € S (multiplicative querelement
x € S), then there exists a querelement of f(x) and the following applies:

f@) = f(2) (f(z) = f(2)).

Proof. i) Since f is a surjective morphism, then for every 1,2, ...,ym € S’ there exists
T1, 22, ..., Ty € S such that f(z;) =y, € {1,2,...,m}. If we denote by f(0) = 0/, we will
have:

(B 0" yi), = (F(@1), s fl@inn), FO), f(@i), ooy f@m))o
= f((2171 02fl)o) = £(0) =0
ii) If @ € S is an additive (multiplicative) idempotent in (n, m)—semiring (.S, ( )+, ()o),

that is, al'l = a (respectively a<'> = a) then

(n)
fla) = f(@) = (f(@))+ = F(@) (f(a) = f(a=") = f(a)<7).
iii) If e € S is a neutral additive (multiplicative) element, then for any z € S and any
i €{1,2,...,p}, p = maz(n,m) we have:

(i—-1) (n—1)
(e'x e

Since f is a morphism, then

(i-1) (m—i)
o=z (( e’z e ) =2)

(i-1) (n—i) (i— (n—i)
fla)=f(Ce x e )y)=(f(e),f(x), f (e) )+

(=1 (m—i) (= (m=1)
(fl@)=f(Ce z e )o)=(f(e),f(x),f (€) )o)
From the definition of the additive (multiplicative) neutral element, it follows that f(e) is
an additive (multiplicative) neutral element.

)
)

iv) If € S has an additive querelement = € S, then « is unique and ((n51)5)+ =
Considering the properties of morphism f and the uniqueness of the querelement ele-
n— (n—1)
ment, it follows that f(z) = f ((( x1)§)+) = (f () f(Z))+. Consequently, we obtain

f(@) = f(@).
|

It is easy to prove the following;:

Theorem 3.2. Let (S, ()4, ()o), (T, )+, ()o) and (R, ()4, ()o) be (n, m)—semirings.

)Iff: S — Tandp: T — R are morphisms of (n, m)—semirings, then ¢ o f : S — Risa
morphism of (n, m)—semirings.

ii) The identity functionon S, 1g : S — S, 1g(x) = x for any x € S is an isomorphism of the
(n, m)—semiring (S, ()+, ()o)-

iii) If f : S — T is an isomorphism of (n, m)—semirings, then the inverse function f~' : T —
S is an isomorphism of (n, m)—semirings, too.

Using the properties of universal algebras we obtain:

Proposition 3.3. Let (S, ()+, ()o) and (', ()+, ()o) be two universal algebras of the same type,
with the n—ary operation ” ()", the m—ary operation ”(),”, and f : S — S’ a morphism.

i) If (S,()+,()o) is an (n,m)—semiring, then the subalgebra (f(S),()+,()o) of S" is an
(n, m)—semiring. If (n,m)—semiring (S, ( )+, ()o) is semicomutative (commutative), respecti-
vely with multiplicative neutral element, then (n, m)—semiring (f(S), ()+,()o) is semicomuta-
tive (commutative) with a multiplicative neutral element. Generally, if A is a sub-(n, m)-semiring
of (S, ()4, ()o), then the homomorphic image f(A) is a sub-(n, m)-semiring of (S”, ()4, ()o)-
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i) IF (S, (s, (Do) and (57, ()4, ()o) are (n,m)— semirings and A’ is a sub-(n, m)-semiring of

(S, ()45 ()o) , then the inverse image of A’ by f, f (A), is either the empty set or a sub-(n,m)-
semiring of (S, ()+,()o).

Proof. (i) Immediately verified

—1 —1 —1
(ii) Let us observe that f (A’) = f (4’ N f(S)). Notice that f (A’) = 0 if and only if
A'N f(S) = 0. Otherwise, since A" and f(S) are sub-(n, m)-semirings , it follows that A’ N

f(S) is a sub-(n, m)-semiring of (n, m)—semiring (S, ()4, ()o). If a1, a2,...,a, € ;‘1(14’),
p = maz(n,m), then f(a1), f(az),..., f(ap) € A’ N f(S).

It follows that (f(a1),..., f(an))+ € A’ N f(S), respectively (f(a1),..., f(am))o € A’ N
f(S).

Therefore f((a})4+) € A’ N f(S) and f((al*)o) € A’ N f(S) which yields to (a})+ € }1(14’),

~1
respectively (a7")o € f (A'). O
If (n, m)—semirings are (n, m)—rings, then we find the Theorem 2 of I. Purdea ([13]).

Corollary 3.1. The algebraic structure (Imf, ()+()o) is a sub-(n, m)-semiring of (n, m)—semiring

(5% O Oo):

Corollary 3.2. Let (S, ()+,()o) be an (n, m)—semiring with zero element 0, (S’, ()+,()o) an
universal algebra.

(i) If (n,m)—semiring (S, ()+, ()o) has no divisors of zero and the morphism f : S — S’ is
injective, then f(.S) has no divisors of zero.

(ii) If (n, m)—semiring (S, ( )+, ()o) is an integral semidomain and the morphism f : S — S’
is injective, then (f(S), ()+()o) is an integral semidomain.

(iii) If the morphism f : S — S’ is surjective, then the universal algebra (S', ()4, ()o) is an
(n, m)—semiring.

Proof. i) Indeed, for any y1,y2,...,ym € f(S) there are x1,zs,...,x,, € S with the pro-
perty that f(z;)=v;,1€{1,2,...,m}. If (y7")o = f(0), then we obtain (f(z1),..., f(zm))o=
£(0), respectively f((z7")o) = f(0). Since the morphism f is injective, it results (z]*), = 0.
But (n, m)—semiring (.5, ( )+, ( )o) hasno divisors of zero, so there existsani € {1,2,...,m}
such that z; = 0. It follows that f(z;) = f(0), f(0) being zero element in (S’, ( )+, ()o) in
accordance with Theorem 3.1. (i). Therefore there exists i € {1,2,...,m} such that y; =
£(0), which shows us that (n, m)—semiring (f(S), ()+, ().) has no divisors of zero. O

It is easy to prove the following:

Theorem 3.3. Let (S, ()+) be the n—semigrup comutative of (n, m)—semiring (S, ()+,()o)-
Then the set of endomorphisms of this n—semigrup, denoted End(S,()y), forms an
(n, m)—semiring endowed with operations

15 fos ooy Fula () = (fr(@)s - ful@)) 4,
respectively

(91,925 gn)+(x) = (91(92(- - - (gm(z)) .. )))

where f;,g9; € End(S,()+);i€{1,2...,n},j € {1,2,...,m}. The identity function 15 : S —
S, 1g(z) = x is a multiplicative neutral element in (n, m)—semiring (End(S, ()+), [+, ()«)-

The following theorem is a generalization of Theorem 6 ([13])
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Theorem 3.4. If (S, ()+,()o) is an (n,m)—semiring, c1,cCa,...,Cm—2 € S are fixed elements,
not necessarily distinct, then:

i) the function ¢ : (S, ()4) — End(S,()+), ¢(a) = tq witht, : S — S, to(z) = (a ] ? 1),
is a morphism of n—semigroups.

ii) If (n, m)—semiring S is commutative and c1, ca, . . ., ¢m—2 € Idm(S), then ¢ is a morphism
of (n, m)—semirings. If S is a multiplicatively cancellative (n, m)—semiring , then the ¢ is an
injective morphism.

Proof. i) Let the elements a1, as, ..., a, € S be. Then

m—2

e((af)+) =t@r), and t@p), (@) = ((af)+,c{" 7, x)o, forany z € S.
Applying the distributivity law, we will have

tap)y (@) = (a1 "2 2)o, ooy (a0 2 2)o)4 = (tay (@), tay ()4

for any = € S. Therefore p((al)+) = (¢(a1),...,¢(an))y for all ay,as,...,a, € S,s0 pis
a morphism of n—semigroups.
ii) If we consider the elements ay, as, .. ., a,, € S, then we have

m

e((a1")o) = tm), and tm) (x) = ((a7")o 2 x),, forany z € S.

Using the commutativity and the associativity of the m—ary operation and also the fact
that ¢'> = ¢; forany i € {1,2,...,m — 2}, it follows

t(ain o (.TC) = ((G’T)Ov 01<1>a cee 7cv<nl—>27 x)o = (ala C;n_Qv <a2071n_27 ( .- (am CT_Q LB)O . )))O

= ta, (ta2(. c(tag, (X)) = (ta1 Otgy0...0 ta,,)(T),
for any = € S. Therefore p((a")o) = (¢(a1), p(az), ... ¢(am))«-

Next we want to show that the morphism ¢ is injective. If we assume that ¢(a) = ¢(b)
it follows that ¢, = t; and so t,(x) = ty(x) for any z € S. Since S is a multiplicatively
cancellative (n, m)—semiring, it follows that (ac]" 2 x), = (b ?z)o = a = b.

O

In the particular case of (n,2)—semirings, a generalization of the Theorem 7 ([13]) is
obtained.

Corollary 3.3. If (S, ()4, ) is an (n, 2)—semiring, then function ¢ : S — End (S, ()+), ¢(a) =
ta, to : S — S, witht,(x) = a - x is a morphism of (n, 2)—semirings. If (n, 2)—semiring S has a
multiplicative neutral element, then function  is an injective morphism.

Remark 3.4. Theorem 3.3 and Theorem 3.4 are true even when we consider a generaliza-
tion of (n, m)—semiring , namely the n—ary operation () is not commutative, but it is
entropic (medial) ( see [9]).

Proposition 3.4. Let (S, ()+,()o) and (S’,()+,()o) be (n,m)—semirings and f : S — S"a
surjective morphism of (n, m)—semirings. If A and A’ are ideals in (n, m)—semirings S and S’,
then:
i) The set f(A) = {f(a)|a € A} is an ideal in the (n, m)—semiring (S, ()+, ()o).
1

ii) the inverse image of A’ by f, } (A) = {a € A f(a) € A’} is either the empty set or an
ideal in (n,m)—semiring (S, ()4, ()o). In addition, if A’ is a subtractive ideal, then its inverse

-1
image f (A’) is a subtractive ideal (if it is not the empty set).

Proof. i) Since f(A) is in particular a sub-(n, m)-semiring of (S, ()4, ()o), the pair (f(A4), ()+)
is a sub-n-semigroup of the n—semigroup (.5, ()4 ). We will further show that f(A) is an
ideal in (n, m)—semiring (S’, ()+, ()o)-
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Leta’ € f(A) and s,...,s]_1,8;,1,...,5, € S".. Considering that f is a surjective
morphism, it follows that there exists a € A and sy,...,8,-1,8i+1,-..,5m € S with
the property that f(a) = o’ and f(s;) = s}, forany j € {1,2,...,i — 1, +1,...,m}.

i—1

Since A is an ideal in (n,m)—semiring S, it follows that (s{""as}} ), € A and we will
have (3/1171 a, S;:r_ll)o = (f(sl)u ey f(sifl)u f(a)7 f(si+1)7 LR f(Sm)>O = f((81171 as;"‘z_l)o) S
f(A).

-1 -1

ii) Let f(A) # 0 and z1,22,...,2, € f (4’). It follows that f(z1),..., f(z,) € A
Since, in particular, A’ is a sub-n-semigrup of the semigroup (S5’,();) we have
(f(z1),..., f(zn))+ € A" . The function f is a morphism of (n, m)—semirings, therefore

Ff((z7)+) € A’. In conclusion (z) 4 6}1 (A7).

-1
Ifae f(A)and s1,82,...,8i—1,Si+1,.-.,Sm € S, considering that A’ is an ideal in 5’,
then 4
FUsThasiia)o) = (f(s1),-o o flsimn), f(a), f(sian)s oo flsm))o € A
, -1 -1
It follows that (s ' as?:,)o € f (A’). Therefore, f (A’)is an ideal of (n, m)—semiring

CHOFNODE )

-1 —
Further we will show that f (A’)isasubtractiveideal. Indeed, ifx € Sand as, ..., a;, € f

-1
(A’) with the property that (za5*) € f (A’), then f((xa3")+) € A’. Considering the fact
that f is a morphism of (n, m)—semirings, it follows (f(z), f(a2),..., f(am))+ € A’. But
A’ is a subtractive ideal in (n, m)—semiring (S, ( )+, ()o). Hence f(z) € A’ and therefore

-1
x € f (A).Inconclusion, f (A’)is a subtractive ideal in (n, m)—semiring S. O

Remark 3.5. If A is a subtractive ideal of (n, m)—semiring (S, ()+, ()o), it does not gene-
rally result that f(A) is a subtractive ideal in (n, m)—semiring (S’, ( )+, ()o)-

Example 3.6. Let the set S = {0, a,b,c} endowed with a ternary operation (); : S* — S
defined as follows
(,0,0)y =z;(x,¢c,c)y =c forall z € S,
[ a, ifze€{0,a}
(@,0,a)y = { ¢, if x € {b,c}
[ b, ifx€{0,b}
(,0,0)4 = { ¢, if x €{a,c}
(0,a,0)+ = (¢,a,0)+ = (0,c,a) = (0,¢,0)4 = ¢,
and the m-ary operation (), : S™ — S defined by (27*), = 0, for any z1, 2, ..., Tm € S.
The algebraic structure (5, ( )+, ()o) is a commutative (3, m)—semiring with additive neu-
tral element 0 which is also the zero element of the semiring and the set of additive idem-
potents Ida(S) = S.
LetT = {0/, d’, ¢’} be a set endowed with the ternary operation ” (),” defined as follows
(2',0,0"), =a; (2., ) =, foralla’ € T, (0/,a, ). =,

! / / !
(l‘/;a/;a/)* = { Z/: llffil i £10 ¢ }
and the m—ary operation ”(),” defined by (z/™), = 0/ for all 27,5, ...,z,, € T.
Then (T, ( )+, ()o) is also a commutative (3, m)—semiring with an additive neutral ele-
ment 0/, which is also the zero element of the semiring 7" and Ida(T") = T.
The function f : S — T; f(0) = 0, f(a) = f(¢) = ¢, and f(b) = d' is a surjective
morphism.
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The set A = {0,a} is a subtractive ideal of S, but f(A) = {0’, '} is not a subtractive
ideal, because (¢’ 0'¢'), = ¢ € f(A),buta’ ¢ f(A).
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