Coefficient estimates for a new subclass of bi-univalent functions defined by convolution

TuĞBa Yavuz

ABSTRACT. In this paper we introduce general subclasses of bi-univalent functions by using convolution. Bounds for the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for bi-univalent functions in these classes are obtained. The obtained results generalize the results which are given in [Murugusundaramoorthy, G., Magesh, M., Prameela, V., Coefficient bounds for certain subclasses of bi-univalent function, Abstr. Appl. Anal., (2013), Art. ID 573017, 3 pp.] and [Brannan, D. A. and Taha, T. S., On some classes of bi-univalent functions, Studia Univ. Babeş Bolyai Math., 31 (1986), No. 2, 70-77].

1. Introduction

Let \mathcal{A} denote the class of analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{D}=\{z:|z|<1\}$ and normalized by

$$
\begin{equation*}
f(0)=0 \text { and } f^{\prime}(0)=1 . \tag{1.2}
\end{equation*}
$$

Let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions $f(z)$ of the form (1.1).
For the function $f(z)$ defined by (1.1) and the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} h_{n} z^{n}, \quad\left(h_{n} \geq 0\right) \tag{1.3}
\end{equation*}
$$

the Hadamard product (or convolution) of $f(z)$ and $h(z)$ is given by

$$
(f * h)(z)=z+\sum_{n=2}^{\infty} a_{n} h_{n} z^{n}=(h * f)(z) .
$$

According to Koebe-One-Quarter Theorem [10], every function f in \mathcal{S} has an inverse function f^{-1} such that

$$
f^{-1}(f(z))=z, \quad(z \in \mathbb{D})
$$

and

$$
f\left(f^{-1}(w)\right)=w, \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right) .
$$

Then the inverse function $f^{-1}(w)$ has the following Taylor expansion

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)+\ldots \tag{1.4}
\end{equation*}
$$

Let Σ denote denote the class of univalent functions in \mathbb{D}. First, Lewin [15] studied the class of bi-univalent functions finding $\left|a_{2}\right| \leq 1.52$.

Received: 16.08.2017. In revised form: 20.03.2018. Accepted: 27.03.2018
2010 Mathematics Subject Classification. 30C45, 33C45.
Key words and phrases. analytic functions, univalent functions, bi-univalent functions, convolution.

Netenyahu [19] showed that max $\left|a_{2}\right|=\frac{4}{3}$ for $f \in \Sigma$. After that, Brannan and Taha [5] defined the class of bi-starlike functions of order β and bi-convex functions of order β, denoted by $S_{\Sigma}^{*}(\beta)$ and $K_{\Sigma}(\beta)$, respectively. They found upper bounds on initial coefficients of functions in these classes.

Recently, many interesting results have been obtained in many articles [1], [2], [8], [9], [11], [14], [16],[17], [21], [22], [23], [25]. In the literature, there are certain results investigating the general bounds on $\left|a_{n}\right|$ for analytic bi-univalent functions under some special conditions, [3],[4], [6], [12],[13]. Hence, it is still open problem to find sharp bound on $\left|a_{n}\right|$ for $n \geq 4$.

On the other hand, Murugusundaramoorthy et al. [18] introduced the following two subclasses of the class \sum of bi-univalent functions and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these subclasses.

Definition 1.1 ([12]). A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{G}_{\Sigma}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
f \in \sum,\left|\arg \left(\frac{z f^{\prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}\right)\right| \leq \frac{\alpha \pi}{2}, 0<\alpha \leq 1,0 \leq \lambda<1, z \in \mathbb{D}
$$

and

$$
\left|\arg \left(\frac{w g^{\prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}\right)\right| \leq \frac{\alpha \pi}{2}, 0<\alpha \leq 1,0 \leq \lambda<1, w \in \mathbb{D}
$$

where g is the inverse function of f.
Also, they give the following results for functions in $\mathcal{G}_{\Sigma}(\alpha, \lambda)$.
Theorem 1.1 ([12]). Let $f(z)$ given by (1.1) in the class $\mathcal{G}_{\Sigma}(\alpha, \lambda), 0<\alpha \leq 1$ and $0 \leq \lambda<1$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{(1-\lambda) \sqrt{1+\alpha}}, \quad\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(1-\lambda)^{2}}+\frac{\alpha}{1-\lambda}
$$

Definition 1.2 ([12]). A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{M}_{\Sigma}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
f \in \sum, \text { and } \operatorname{Re}\left(\frac{z f^{\prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}\right)>\beta, 0<\alpha \leq 1,0 \leq \lambda<1, z \in \mathbb{D}
$$

and

$$
\operatorname{Re}\left(\frac{w g^{\prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}\right)>\beta, 0<\alpha \leq 1,0 \leq \lambda<1, w \in \mathbb{D}
$$

where the function g is the inverse function given by (1.4).
They also found upper bounds for initial coefficients of functions in the class $\mathcal{M}_{\Sigma}(\alpha, \lambda)$.
Theorem 1.2 ([12]). Let $f(z)$ given by (1.1) in the class $\mathcal{M}_{\Sigma}(\alpha, \lambda), 0 \leq \beta<1$ and $0 \leq \lambda<1$. Then

$$
\left|a_{2}\right| \leq \frac{\sqrt{2(1-\beta)}}{1-\lambda}, \quad\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(1-\lambda)^{2}}+\frac{1-\beta}{1-\lambda}
$$

In the paper [7], we can find coefficient bounds more general than the results in Theorem 1.1 and Theorem 1.2. In the present paper, we define new subclasses of bi-univalent functions and also generalize the results in [18] and [5].

Definition 1.3. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{M}_{\Sigma}(h, \alpha, \lambda)$, if the following conditions are satisfied:

$$
\begin{equation*}
f \in \sum,\left|\arg \left(\frac{z(f * h)^{\prime}(z)}{(1-\lambda)(f * h)(z)+\lambda z(f * h)^{\prime}(z)}\right)\right| \leq \frac{\alpha \pi}{2} \tag{1.5}
\end{equation*}
$$

$\left|\arg \left(\frac{w\left((f * h)^{-1}\right)^{\prime}(w)}{(1-\lambda)\left((f * h)^{-1}\right)(w)+\lambda w\left((f * h)^{-1}\right)^{\prime}(w)}\right)\right| \leq \frac{\alpha \pi}{2}, 0<\alpha \leq 1,0 \leq \lambda<1, z, w \in \mathbb{D}$,
where the function $h(z)$ is defined by (1.3) and $(f * h)^{-1}(w)$ is defined by

$$
\begin{equation*}
(f * h)^{-1}(w)=w-a_{2} h_{2} w^{2}+\left(2 a_{2}^{2} h_{2}^{2}-a_{3} h_{3}\right) w^{3}-\left(5 a_{2}^{3} h_{2}^{3}-5 a_{2} h_{2} a_{3} h_{3}+a_{4} h_{4}\right) w^{4}+\ldots \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left((f * h)^{-1}\right)^{\prime}(w)=1-2 a_{2} h_{2} w+3\left(2 a_{2}^{2} h_{2}^{2}-a_{3} h_{3}\right) w^{2}-\ldots \tag{1.7}
\end{equation*}
$$

Remark 1.1. 1) Note that $\mathcal{M}_{\Sigma}\left(\frac{z}{1-z}, \alpha, \lambda\right)=\mathcal{G}_{\Sigma}(\alpha, \lambda)$, which was studied in [18].
2) $\mathcal{M}_{\Sigma}\left(\frac{z}{1-z}, \alpha, 0\right)=S_{\Sigma}(\alpha)$ is the the class of all strong bi-starlike functions of order α introduced by Brannan and Taha [5].

Definition 1.4. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{F}_{\Sigma}(h, \beta, \lambda)$, if the following conditions are satisfied:

$$
\begin{equation*}
f \in \sum, \operatorname{Re}\left(\frac{z(f * h)^{\prime}(z)}{(1-\lambda)(f * h)(z)+\lambda z(f * h)^{\prime}(z)}\right)>\beta \tag{1.8}
\end{equation*}
$$

$$
\operatorname{Re}\left(\frac{w\left((f * h)^{-1}\right)^{\prime}(w)}{(1-\lambda)\left((f * h)^{-1}\right)(w)+\lambda w\left((f * h)^{-1}\right)^{\prime}(w)}\right)>\beta, 0<\alpha \leq 1,0 \leq \lambda<1, z, w \in \mathbb{D},
$$

where $h(z)$ and $(f * h)^{-1}(w)$ are defined in (1.6) and (1.7), respectively.
Remark 1.2. $\mathcal{F}_{\Sigma}\left(\frac{z}{1-z}, \beta, \lambda\right)=\mathcal{M}_{\Sigma}(\alpha, \lambda)$, which was studied by Murugusundaramoorthy et al [18]. $\mathcal{F}_{\Sigma}\left(\frac{z}{1-z}, \beta, 0\right)$ is the class of bi-starlike functions of order β which was first defined in [24].

In order to obtain our main results, we need the following lemma.
Lemma 1.1. [20] If $p(z) \in \mathcal{P}$, then $\left|p_{n}\right| \leq 1$ for each n, where \mathcal{P} is the class of functions $p(z)$,

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots, \forall z \in \mathbb{D}
$$

analytic in \mathbb{D} for which $\operatorname{Re}(p(z))>0$.

2. Main results

Theorem 2.3. Let $f(z)$ given by (1.1) be in the class $\mathcal{M}_{\Sigma}(h, \alpha, \lambda), 0<\alpha \leq 1$ and $0 \leq \lambda<1$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{h_{2}(1-\lambda) \sqrt{1+\alpha}}, \quad\left|a_{3}\right| \leq \frac{\alpha}{(1-\lambda) h_{3}}\left\{\frac{4 \alpha}{(1-\lambda)}+1\right\}
$$

Proof. It is obvious from definition of the class $\mathcal{M}_{\Sigma}(h, \alpha, \lambda)$,

$$
\begin{align*}
\frac{z(f * h)^{\prime}(z)}{(1-\lambda)(f * h)(z)+\lambda z(f * h)^{\prime}(z)} & =[p(z)]^{\alpha} \\
\frac{w\left((f * h)^{-1}\right)^{\prime}(w)}{(1-\lambda)\left((f * h)^{-1}\right)(w)+\lambda w\left((f * h)^{-1}\right)^{\prime}(w)} & =[q(w)]^{\alpha}, \tag{2.9}
\end{align*}
$$

where the functions $p(z)$ and $q(w)$ satisfy the following

$$
\operatorname{Re}(p(z))>0, z \in \mathbb{D}, \quad \operatorname{Re}(q(w))>0, w \in \mathbb{D}
$$

Also, these functions have the following expansions

$$
\begin{gather*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots \tag{2.10}\\
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\ldots \tag{2.11}
\end{gather*}
$$

Equating the coefficients in (2.9), we obtain

$$
\begin{equation*}
(1-\lambda) a_{2} h_{2}=\alpha p_{1} \tag{2.12}
\end{equation*}
$$

$$
\begin{align*}
2(1-\lambda) a_{3} h_{3}= & \alpha\left[p_{2}+\frac{(\alpha-1)}{2} p_{1}^{2}\right]+\alpha^{2} p_{1}^{2} \frac{(1+\lambda)}{(1-\lambda)} \tag{2.13}\\
& -(1-\lambda) a_{2} h_{2}=\alpha q_{1} \tag{2.14}
\end{align*}
$$

$$
\begin{equation*}
2(1-\lambda)\left(2 a_{2}^{2} h_{2}^{2}-a_{3} h_{3}\right)=\alpha\left[q_{2}+\frac{(\alpha-1)}{2} q_{1}^{2}\right]+\alpha^{2} q_{1}^{2} \frac{(1+\lambda)}{(1-\lambda)} \tag{2.15}
\end{equation*}
$$

From (2.12) and (2.14) we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1-\lambda)^{2} a_{2}^{2} h_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.17}
\end{equation*}
$$

Using equations (2.13) and (2.15), we obtain

$$
\begin{equation*}
4(1-\lambda) a_{2}^{2} h_{2}^{2}=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right)+\alpha^{2} \frac{(1+\lambda)}{(1-\lambda)}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.18}
\end{equation*}
$$

From equality (2.17), it is obvious that

$$
\begin{equation*}
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{h_{2}^{2}(1-\lambda)^{2}(1+\alpha)} \tag{2.19}
\end{equation*}
$$

According to Lemma 1.1, we have

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{h_{2}(1-\lambda) \sqrt{1+\alpha}}
$$

In order to find the bound of $\left|a_{3}\right|$, we substract (2.13) from (2.15) and obtain (2.20) $4(1-\lambda)\left(a_{3} h_{3}-a_{2}^{2} h_{2}^{2}\right)=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right)+\alpha^{2} \frac{(1+\lambda)}{(1-\lambda)}\left(p_{1}^{2}-q_{1}^{2}\right)$.

By using equation (2.17) and observing that $p_{1}^{2}=q_{1}^{2}$, equation (2.20) can be reduced to the following form

$$
\begin{equation*}
4(1-\lambda) a_{3} h_{3}=\frac{2 \alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{(1-\lambda)}+\alpha\left(p_{2}-q_{2}\right) \tag{2.21}
\end{equation*}
$$

Now, applying Lemma 1.1, we get the desired result

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\alpha}{(1-\lambda) h_{3}}\left\{\frac{4 \alpha}{(1-\lambda)}+1\right\} \tag{2.22}
\end{equation*}
$$

According to Remark 1.1, we obtain the following special results if we specialize function $h(z)$ and parameter λ.

Corollary 2.1. If we set $h(z)=\frac{z}{1-z}$, we obtain the results in Theorem 1.1.
Remark 2.3. If we set $h(z)=\frac{z}{1-z}$ and $\lambda=0$, we get the result for bi-strongly starlike functions given by Brannan and Taha [5].
Theorem 2.4. Let $f(z)$ given by (1.1) be in the class $\mathcal{F}_{\Sigma}(h, \alpha, \lambda), 0<\alpha \leq 1$ and $0 \leq \lambda<1$. Then

$$
\left|a_{2}\right| \leq \frac{\sqrt{2(1-\beta)}}{(1-\lambda) h_{2}},\left|a_{3}\right| \leq \frac{(1-\beta)}{(1-\lambda) h_{3}}\left\{1+\frac{4(1-\beta)}{(1-\lambda)}\right\} .
$$

Proof. We have the following relations from definition of the class $\mathcal{F}_{\Sigma}(h, \alpha, \lambda)$,

$$
\begin{align*}
\frac{z(f * h)^{\prime}(z)}{(1-\lambda)(f * h)(z)+\lambda z(f * h)^{\prime}(z)} & =\beta+(1-\beta) p(z) \tag{2.23}\\
\frac{w\left((f * h)^{-1}\right)^{\prime}(w)}{(1-\lambda)\left((f * h)^{-1}\right)(w)+\lambda w\left((f * h)^{-1}\right)^{\prime}(w)} & =\beta+(1-\beta) q(w) \tag{2.24}
\end{align*}
$$

where the functions $p(z)$ and $q(w)$ are given by (2.10) and (2.11), respectively.
From (2.24) we have

$$
\begin{gather*}
(1-\lambda) a_{2} h_{2}=(1-\beta) p_{1} \tag{2.25}\\
2(1-\lambda) a_{3} h_{3}=(1-\beta)\left\{p_{2}+(1-\beta) \frac{(1+\lambda)}{(1-\lambda)} p_{1}^{2}\right\} \tag{2.26}\\
-(1-\lambda) a_{2} h_{2}=(1-\beta) q_{1} \tag{2.27}\\
2(1-\lambda)\left(2 a_{2}^{2} h_{2}^{2}-a_{3} h_{3}\right)=(1-\beta)\left\{q_{2}+(1-\beta) \frac{(1+\lambda)}{(1-\lambda)} q_{1}^{2}\right\} . \tag{2.28}
\end{gather*}
$$

From equations (2.25) and (2.27), it follows that

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.29}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1-\lambda)^{2} a_{2}^{2} h_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.30}
\end{equation*}
$$

Now, from (2.26), (2.28) and (2.30), we have

$$
4(1-\lambda) a_{2}^{2} h_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right)+(1-\beta)^{2} \frac{(1+\lambda)}{(1-\lambda)}\left(p_{1}^{2}+q_{1}^{2}\right)
$$

Now, according to Lemma 1.1, we obtain the following result

$$
\left|a_{2}\right| \leq \frac{\sqrt{2(1-\beta)}}{(1-\lambda) h_{2}}
$$

In order to find the upper bound for $\left|a_{3}\right|$ we extract (2.26) from (2.28) to get

$$
4(1-\lambda) a_{3} h_{3}=\frac{2(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{(1-\lambda)}+(1-\beta)\left(p_{2}-q_{2}\right)
$$

By applying Lemma 1.1, we obtain

$$
\left|a_{3}\right| \leq \frac{(1-\beta)}{(1-\lambda) h_{3}}\left\{\frac{4(1-\beta)}{(1-\lambda)}+1\right\} .
$$

In view of Remark 1.2, we obtain the following special results if we specialize the function $h(z)$ and our parameter λ.

Corollary 2.2. If we set $h(z)=\frac{z}{1-z}$, we obtain the results given in Theorem 1.2.
Remark 2.4. If we set $h(z)=\frac{z}{1-z}$ and $\lambda=0$, we get the result for bi-starlike functions given by Taha [24].

References

[1] Altınkaya, Ş. and Yalçın, S., Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, Article ID 145242, 5p., 2015
[2] Altınkaya, Ş. and Yalçın, S., Coefficient bounds for a subclass of bi-univalent functions, TWMS J. Pure Appl. Math., 6 (2015), No. 2, 180-185
[3] Altınkaya, Ş. and Yalçın, S., Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, 353 (2015), No. 12, 1075-1080
[4] Altınkaya, Ş. and Yalçın, S., Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Chebyshev polynomials, Asia Pac. J. Math., 4 (2017), No. 2, 90-99
[5] Brannan, D. A. and Taha, T. S., On some classes of bi-univalent functions, Studia Univ. Babeş Bolyai Math., 31 (1986), No. 2, 70-77
[6] Bulut, S., Faber polynomial coefficient estimates for comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), No. 6, 479-484
[7] Bulut, S., Coefficient estimates for a new subclass of analytic and bi-univalent functions, An. Stiint. Univ. Al. I. Cuza Iaşi. Mat., 62 (2016), No. 2, 305-311
[8] Bulut, S., Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 17 (2016), No. 1, 101-110
[9] Çağlar, M. and Deniz, E., Initial coefficient for a subclass of bi-univalent functions defined by Sălăgean differential operator, Commun. Fac. Sci.Univ. Ank. Ser. A1 Math. Stat., 66 (2017), No. 1, 85-91
[10] Duren, P. L., Univalent Functions, Grundlehren der Math. Wiss., Sringer-Verlag, New York, 259, 1983
[11] Frasin, B. A. and Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), No. 9, 1569-1573
[12] Hamidi, S. G. and Jahangiri, J. M., Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), No. 1, 17-20
[13] Hussain, S., Khan, S., Zaighum, M. A., Darus, M. and Shareet, Z., Coefficient bounds for certain subclass of biunivalent functions associated with Ruscheweyh q-differential operator, J. Comp. Anal., 2017, Article ID 2826514, 9pp.
[14] Jahangiri, J. M. and Hamidi, G. S., Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013, Article ID 190560, 4pp.
[15] Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68
[16] Magesh, N. and Yamini, J., Coefficient bounds for a certain subclass of bi-univalent functions, Int. Math. Forum, 8 (2013), No. 27, 1337-1344
[17] Magesh, N. and Yamini, J., Coefficient bounds for a certain general subclass of analytic and bi-univalent functions, Appl. Math., 5 (2014), 1047-1052
[18] Murugusundaramoorthy, G., Magesh, M. and Prameela, V., Coefficient bounds for certain subclasses of biunivalent function, Abstr. Appl. Anal., 2013, Art. ID 573017, 3 pp.
[19] Netenyahu, E., The minimal distance of the image boundary from the orijin and the second coefficient of functions in $|z|<1$, Arch. Rational Mech. Anal., 32 (1969), 100-112
[20] Pommerenke, C. Univalent Functions, Vandenheock and Ruprecht, Göttingen, Germany, 1975
[21] Porwal, S. and Darus, M. On a new subclass of bi-univalent functions, J. Egypt. Math. Soc., 21 (2013), No. 3, 190-193
[22] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., Certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), No. 10, 1188-1192
[23] Srivastava, H. M., Bulut, S., Çağlar, M. and Yağmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), No. 5, 831-842
[24] Taha, T. S., Topics in univalent functions theory , Phd. Thesis, University of London, UK, 1981
[25] Zireh, A. and Audegani, E. A., Coefficient estimates for a subclass of analytic and bi-univalent functions, Bull. Iranian Math. Soc., 42 (2016), No. 4, 881-889

[^0]
[^0]: Department of Mathematics
 Beykent University
 SARIYER, İStanbul, TURKEy
 E-mail address: tugbayavuz@beykent. edu.tr

