Hankel determinant for m-fold symmetric bi-univalent functions

Şahsene Altinkaya and Sibel Yalçin

ABSTRACT. In this paper, we consider a general subclass $H_{\Sigma_{m}}(\beta)$ of Σ_{m} consisting of analytic and m-fold symmetric bi-univalent functions in the open unit $\operatorname{disc} \mathcal{U}$. An estimate for the second Hankel determinant for m-fold symmetric bi-univalent functions are determined.

1. Introduction

Let \mathcal{A} represent the class of functions f which are analytic in the open unit $\operatorname{disc} \mathcal{U}=$ $\{z: z \in \mathbb{C},|z|<1\}$, with in the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Let \mathcal{S} be the subclass of \mathcal{A} consisting of the functions f of the form (1.1) which are also univalent in \mathcal{U}. It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, satisfying $f^{-1}(f(z))=z(z \in \mathcal{U})$ and $f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathcal{U} if both f and f^{-1} are univalent in \mathcal{U}. Let Σ denote the class of bi-univalent functions defined in the unit disc \mathcal{U}. For a brief history and interesting examples of functions in the class Σ, see the pioneering work on this subject by Srivastava et al. [16], which has apparently revived the study of biunivalent functions in recent years (see also [2], [3], [4], [9], [10], [15] and [17]).

For each function $f \in \mathcal{S}$, the function

$$
\begin{equation*}
h(z)=\sqrt[m]{f\left(z^{m}\right)} \quad(z \in \mathcal{U}, m \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

is univalent and maps the unit disc \mathcal{U} into a region with m-fold symmetry. A function is said to be m-fold symmetric (see [8], [14]) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(z \in \mathcal{U}, m \in \mathbb{N}) \tag{1.4}
\end{equation*}
$$

We denote by \mathcal{S}_{m} the class of m-fold symmetric univalent functions in \mathcal{U}, which are normalized by the series expansion (1.4). In fact, the functions in the class \mathcal{S} are onefold symmetric. Analogous to the concept of m-fold symmetric univalent functions, we here introduced the concept of m-fold symmetric bi-univalent functions. Each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each integer $m \in \mathbb{N}$. The

[^0]normalized form of f is given as in (1.4) and the series expansion for f^{-1}, which has been recently proven by Srivastava et al. [18], is given as follows:
\[

$$
\begin{align*}
& \left.g(w)=w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right)\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1} \tag{1.5}\\
& +\cdots
\end{align*}
$$
\]

where $f^{-1}=g$. We denote by Σ_{m} the class of m-fold symmetric bi-univalent functions in \mathcal{U}. For $m=1$, the formula (1.5) coincides with the formula (1.2) of the class Σ. Some examples of m-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}},\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}},\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)\right]^{\frac{1}{m}}
$$

The $q^{\text {th }}$ Hankel determinant for $n \geq 0$ and $q \geq 1$ is stated by Noonan and Thomas [11] as

$$
H_{q}(n)=\left|\begin{array}{llll}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right| \quad\left(a_{1}=1\right)
$$

This determinant has also been considered by several authors. In particular, sharp upper bounds on $H_{2}(2)$ were obtained by the authors of articles ([1], [12], [13], [19], [20]) different subclasses of univalent and bi-univalent functions.

Note that

$$
H_{2}(1)=\left|\begin{array}{cc}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right|=a_{3}-a_{2}^{2}, \quad H_{2}(2)=\left|\begin{array}{cc}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|=a_{2} a_{4}-a_{3}^{2} .
$$

The Hankel determinant $H_{2}(1)=a_{3}-a_{2}^{2}$ is well-known as Fekete-Szegö functional (see [6]).
Definition 1.1. (See [18]) A function $f \in \Sigma_{m}$ is said to be in the class $H_{\Sigma_{m}}(\beta)$, if the following conditions are satisfied:

$$
\Re\left(f^{\prime}(z)\right)>\beta \quad(0 \leq \beta<1, z \in \mathcal{U})
$$

and

$$
\Re\left(g^{\prime}(w)\right)>\beta \quad(0 \leq \beta<1, w \in \mathcal{U})
$$

where $g=f^{-1}$.

2. Preliminary results

Let \mathcal{P} be the class of functions $p(z)$ with positive real part consisting of all analytic functions $p: \mathcal{U} \rightarrow \mathbb{C}$ satisfying the following conditions:

$$
p(0)=1, \quad \Re(p(z))>0 .
$$

Lemma 2.1. (See [14]) If the function $p \in \mathcal{P}$ is defined by

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots,
$$

then

$$
\left|p_{n}\right| \leq 2 \quad(n \in \mathbb{N}=\{1,2,3, \cdots\})
$$

Lemma 2.2. (See [7]) If the function $p \in \mathcal{P}$, then

$$
\begin{aligned}
& 2 p_{2}=p_{1}^{2}+x\left(4-p_{1}^{2}\right) \\
& 4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-p_{1}\left(4-p_{1}^{2}\right) x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z
\end{aligned}
$$

for some x, z with $|x| \leq 1$ and $|z| \leq 1$.

3. Main results

Theorem 3.1. Let f given by (1.4) be in the class $H_{\Sigma_{m}}(\beta), 0 \leq \beta<1$. Then

$$
\begin{aligned}
& \left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq \\
& \left\{\begin{array}{l}
\frac{(1-\beta)^{2}}{m+1}\left[\frac{4(1-\beta)^{2}}{m+1}+\frac{4}{3 m+1}\right], \beta \in\left[0,1-\frac{m(3 m+1)+\sqrt{m^{2}(3 m+1)^{2}+8(m+1)(2 m+1)^{2}(3 m+1)}}{4(2 m+1)(3 m+1)}\right] \\
(1-\beta)^{2}\left\{\frac{4}{(2 m+1)^{2}}+\left(\frac{-\left[m(2 m+1)(3 m+1)(1-\beta)+(m+1)\left(6 m^{2}+4 m+1\right)\right]^{2}}{\left[(2 m+1)^{2}(3 m+1)(1-\beta)^{2}-m(2 m+1)(3 m+1)(1-\beta)-(m+1)\left(5 m^{2}+4 m+1\right)\right]}\right) .\right. \\
\left.\times \frac{1}{(m+1)^{2}(2 m+1)^{2}(3 m+1)}\right\}, \\
\beta \in\left[1-\frac{m(3 m+1)+\sqrt{m^{2}(3 m+1)^{2}+8(m+1)(2 m+1)^{2}(3 m+1)}}{4(2 m+1)(3 m+1)}, 1\right)
\end{array}\right.
\end{aligned}
$$

Proof. Let $f \in H_{\Sigma_{m}}(\beta)$. Then

$$
\begin{align*}
f^{\prime}(z) & =\beta+(1-\beta) p(z) \tag{3.6}\\
g^{\prime}(w) & =\beta+(1-\beta) q(w) \tag{3.7}
\end{align*}
$$

where $g=f^{-1}$ and p, q in \mathcal{P} and have the forms

$$
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+\cdots
$$

and

$$
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+\cdots
$$

It follows from (3.6) and (3.7) that

$$
\begin{align*}
(m+1) a_{m+1} & =(1-\beta) p_{m} \tag{3.8}\\
(2 m+1) a_{2 m+1} & =(1-\beta) p_{2 m} \tag{3.9}\\
(3 m+1) a_{3 m+1} & =(1-\beta) p_{3 m} \tag{3.10}\\
-(m+1) a_{m+1} & =(1-\beta) q_{m} \tag{3.11}
\end{align*}
$$

$$
\begin{equation*}
(2 m+1)\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]=(1-\beta) q_{2 m} \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
-(3 m+1)\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right]=(1-\beta) q_{3 m} \tag{3.13}
\end{equation*}
$$

From (3.8) and (3.11), we obtain

$$
\begin{equation*}
p_{m}=-q_{m} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{m+1}=\frac{(1-\beta)}{m+1} p_{m} \tag{3.15}
\end{equation*}
$$

Subtracting (3.9) from (3.12), we have

$$
\begin{equation*}
a_{2 m+1}=\frac{(1-\beta)^{2}}{2(m+1)} p_{m}^{2}+\frac{(1-\beta)}{2(2 m+1)}\left(p_{2 m}-q_{2 m}\right) \tag{3.16}
\end{equation*}
$$

Also, subtracting (3.10) from (3.13), we have

$$
\begin{equation*}
a_{3 m+1}=\frac{(3 m+2)(1-\beta)^{2}}{4(m+1)(2 m+1)} p_{m}\left(p_{2 m}-q_{2 m}\right)+\frac{(1-\beta)}{2(3 m+1)}\left(p_{3 m}-q_{3 m}\right) . \tag{3.17}
\end{equation*}
$$

Then, we can establish that

$$
\begin{array}{r}
\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right|=\left\lvert\,-\frac{(1-\beta)^{4}}{4(m+1)^{2}} p_{m}^{4}+\frac{m(1-\beta)^{3}}{4(m+1)^{2}(2 m+1)} p_{m}^{2}\left(p_{2 m}-q_{2 m}\right)\right. \tag{3.18}\\
\left.+\frac{(1-\beta)^{2}}{2(m+1)(3 m+1)} p_{m}\left(p_{3 m}-q_{3 m}\right)-\frac{(1-\beta)^{2}}{4(2 m+1)^{2}}\left(p_{2 m}-q_{2 m}\right)^{2} \right\rvert\,
\end{array}
$$

According to Lemma 2.2 and (3.14), we write

$$
\left.\begin{array}{l}
2 p_{2 m}=p_{m}^{2}+x\left(4-p_{m}^{2}\right) \tag{3.19}\\
2 q_{2 m}=q_{m}^{2}+y\left(4-q_{m}^{2}\right)
\end{array}\right\} \Rightarrow p_{2 m}-q_{2 m}=\frac{4-p_{m}^{2}}{2}(x-y)
$$

and
(3.20) $\quad 4 p_{3 m}=p_{m}^{3}+2\left(4-p_{m}^{2}\right) p_{m} x-p_{m}\left(4-p_{m}^{2}\right) x^{2}+2\left(4-p_{m}^{2}\right)\left(1-|x|^{2}\right) z$
(3.21) $\quad 4 q_{3 m}=q_{m}^{3}+2\left(4-q_{m}^{2}\right) q_{m} y-q_{m}\left(4-q_{m}^{2}\right) y^{2}+2\left(4-q_{m}^{2}\right)\left(1-|y|^{2}\right) w$

$$
\begin{aligned}
& p_{3 m}-q_{3 m}=\frac{p_{m}^{3}}{2}+\frac{p_{m}\left(4-p_{m}^{2}\right)}{2}(x+y)-\frac{p_{m}\left(4-p_{m}^{2}\right)}{4}\left(x^{2}+y^{2}\right) \\
& +\frac{4-p_{m}^{2}}{2}\left[\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right] .
\end{aligned}
$$

Then, using (3.19) and (3.20), in (3.18), we obtain

$$
\begin{aligned}
& \left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right|=\left\lvert\,-\frac{(1-\beta)^{4}}{4(m+1)^{2}} p_{m}^{4}+\frac{m(1-\beta)^{3}}{4(m+1)^{2}(2 m+1)} p_{m}^{2} \frac{4-p_{m}^{2}}{2}(x-y)\right. \\
& +\frac{(1-\beta)^{2}}{2(m+1)(3 m+1)} \frac{p_{m}^{4}}{2}+\frac{(1-\beta)^{2}}{2(m+1)(3 m+1)} p_{m}^{2} \frac{4-p_{m}^{2}}{2}(x+y)-\frac{(1-\beta)^{2}}{2(m+1)(3 m+1)} p_{m}^{2} \frac{\left(4-p_{m}^{2}\right)}{4}\left(x^{2}+y^{2}\right) \\
& \left.+\frac{(1-\beta)^{2}}{2(m+1)(3 m+1)} p_{m} \frac{\left(4-p_{m}^{2}\right)}{2}\left[\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right]-\frac{(1-\beta)^{2}}{4(2 m+1)^{2}} \frac{\left(4-p_{m}^{2}\right)^{2}}{4}(x-y)^{2} \right\rvert\,
\end{aligned}
$$

and
(3.22)

$$
\begin{aligned}
\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| & \leq \frac{(1-\beta)^{4}}{4(m+1)^{2}} p_{m}^{4}+\frac{(1-\beta)^{2}}{2(m+1)(3 m+1)} \frac{p_{m}^{4}}{2}+\frac{(1-\beta)^{2}}{2(m+1)(3 m+1)} p_{m}\left(4-p_{m}^{2}\right) \\
& +\left[\frac{m(1-\beta)^{3}}{4(m+01)^{2}(2 m+1)} p_{m}^{2} \frac{\left(4-p_{m}^{2}\right)}{2}+\frac{(1-\beta)^{2}}{2(m+1)(3 m+1)} p_{m}^{2} \frac{\left(4-p_{m}^{2}\right)}{2}\right](|x|+|y|) \\
& +\left[\frac{(1-\beta)^{2}}{2(m+1)(3 m+1)} p_{m}^{2} \frac{\left(4-p_{m}^{2}\right)}{4}-\frac{(1-\beta)^{2}}{2(m+1)(3 m+1)} p_{m} \frac{\left(4-p_{m}^{2}\right)}{2}\right]\left(|x|^{2}+|y|^{2}\right) \\
& +\frac{(1-\beta)^{2}}{4(2 m+1)^{2}} \frac{\left(4-p_{m}^{2}\right)^{2}}{4}(|x|+|y|)^{2} .
\end{aligned}
$$

Since $p \in \mathcal{P}$, so $\left|p_{m}\right| \leq 2$. Letting $\left|p_{m}\right|=p$, we may assume without restriction that $p \in[0,2]$. For $\eta=|x| \leq 1$ and $\mu=|y| \leq 1$, we get

$$
\left|a_{m+1} a_{3 m+1}-a_{2 m+1}^{2}\right| \leq T_{1}+(\eta+\mu) T_{2}+\left(\eta^{2}+\mu^{2}\right) T_{3}+(\eta+\mu)^{2} T_{4}=G(\eta, \mu)
$$

where

$$
\begin{aligned}
& T_{1}=T_{1}(p)=\frac{(1-\beta)^{2}}{2(m+1)}\left[\left(\frac{(1-\beta)^{2}}{2(m+1)}+\frac{1}{2(3 m+1)}\right) p^{4}-\frac{1}{3 m+1} p^{3}+\frac{4}{3 m+1} p\right] \geq 0 \\
& T_{2}=T_{2}(p)=\frac{(1-\beta)^{2}}{4(m+1)} p^{2}\left(4-p^{2}\right)\left[\frac{m(1-\beta)}{2(m+1)(2 m+1)}+\frac{1}{3 m+1}\right] \geq 0 \\
& T_{3}=T_{3}(p)=\frac{(1-\beta)^{2}}{8(m+1)(3 m+1)} p\left(4-p^{2}\right)(p-2) \leq 0 \\
& T_{4}=T_{4}(p)=\frac{(1-\beta)^{2}}{4(2 m+1)^{2}} \frac{\left(4-p^{2}\right)^{2}}{4} \geq 0
\end{aligned}
$$

We now need to maximize the function $G(\eta, \mu)$ on the closed square $[0,1] \times[0,1]$. We must investigate the maximum of $G(\eta, \mu)$ according to $p \in(0,2), p=0$ and $p=2$ taking into account the sign of $G_{\eta \eta} \cdot G_{\mu \mu}-\left(G_{\eta \mu}\right)^{2}$.

Firstly, let $p \in(0,2)$. Since $T_{3}<0$ and $T_{3}+2 T_{4}>0$ for $p \in(0,2)$, we conclude that

$$
G_{\eta \eta} \cdot G_{\mu \mu}-\left(G_{\eta \mu}\right)^{2}<0
$$

Thus the function G cannot have a local maximum in the interior of the square. Now, we investigate the maximum of G on the boundary of the square.

For $\eta=0$ and $0 \leq \mu \leq 1$ (similarly $\mu=0$ and $0 \leq \eta \leq 1$), we obtain

$$
G(0, \mu)=H(\mu)=\left(T_{3}+T_{4}\right) \mu^{2}+T_{2} \mu+T_{1} .
$$

i. The case $T_{3}+T_{4} \geq 0$: In this case for $0<\mu<1$ and any fixed p with $0<p<2$, it is clear that $H^{\prime}(\mu)=2\left(T_{3}+T_{4}\right) \mu+T_{2}>0$, that is, $H(\mu)$ is an increasing function. Hence, for fixed $p \in(0,2)$, the maximum of $H(\mu)$ occurs at $\mu=1$, and

$$
\max H(\mu)=H(1)=T_{1}+T_{2}+T_{3}+T_{4}
$$

ii. The case $T_{3}+T_{4}<0$: Since $T_{2}+2\left(T_{3}+T_{4}\right) \geq 0$ for $0<\mu<1$ and any fixed p with $0<p<2$, it is clear that $T_{2}+2\left(T_{3}+T_{4}\right)<2\left(T_{3}+T_{4}\right) \mu+T_{2}<T_{2}$ and so $H^{\prime}(\mu)>0$. Hence for fixed $p \in(0,2)$, the maximum of $H(\mu)$ occurs at $\mu=1$.

Also for $p=2$ we obtain

$$
\begin{equation*}
G(\eta, \mu)=\frac{(1-\beta)^{2}}{m+1}\left[\frac{4(1-\beta)^{2}}{m+1}+\frac{4}{3 m+1}\right] \tag{3.23}
\end{equation*}
$$

Taking into account the value (3.23), and the cases i and ii, for $0 \leq \mu \leq 1$ and any fixed p with $0 \leq p \leq 2$,

$$
\max H(\mu)=H(1)=T_{1}+T_{2}+T_{3}+T_{4}
$$

For $\eta=1$ and $0 \leq \mu \leq 1$ (similarly $\mu=1$ and $0 \leq \eta \leq 1$), we obtain

$$
G(1, \mu)=F(\mu)=\left(T_{3}+T_{4}\right) \mu^{2}+\left(T_{2}+2 T_{4}\right) \mu+T_{1}+T_{2}+T_{3}+T_{4} .
$$

Similarly to the above cases of $T_{3}+T_{4}$, we get that

$$
\max F(\mu)=F(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}
$$

Since $H(1) \leq F(1)$ for $p \in[0,2], \max G(\eta, \mu)=G(1,1)$ on the boundary of the square. Thus the maximum of G occurs at $\eta=1$ and $\mu=1$ in the closed square.

Let $K:[0,2] \rightarrow \mathbb{R}$

$$
\begin{equation*}
K(p)=\max G(\eta, \mu)=G(1,1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4} \tag{3.24}
\end{equation*}
$$

Substituting the values of T_{1}, T_{2}, T_{3} and T_{4} in the function K defined by (3.24), yield

$$
\begin{aligned}
K(p)= & \frac{(1-\beta)^{2}}{2}\left\{\left(\frac{(1-\beta)^{2}}{2(m+1)^{2}}-\frac{m(1-\beta)}{2(m+1)^{2}(2 m+1)}-\frac{1}{(m+1)(3 m+1)}+\frac{1}{2(2 m+1)^{2}}\right) p^{4}\right. \\
& \left.+\left(\frac{2 m(1-\beta)}{(m+1)^{2}(2 m+1)}+\frac{6}{(m+1)(3 m+1)}-\frac{4}{(2 m+1)^{2}}\right) p^{2}+\frac{8}{(2 m+1)^{2}}\right\} .
\end{aligned}
$$

Assume that $K(p)$ has a maximum value in an interior of $p \in[0,2]$, by elementary calculation

$$
\begin{aligned}
K^{\prime}(p)= & (1-\beta)^{2}\left\{\left(\frac{(1-\beta)^{2}}{(m+1)^{2}}-\frac{m(1-\beta)}{(m+1)^{2}(2 m+1)}-\frac{2}{(m+1)(3 m+1)}+\frac{1}{(2 m+1)^{2}}\right) p^{3}\right. \\
& \left.+\left(\frac{2 m(1-\beta)}{(m+1)^{2}(2 m+1)}+\frac{6}{(m+1)(3 m+1)}-\frac{4}{(2 m+1)^{2}}\right) p\right\} .
\end{aligned}
$$

As a result of some calculations we can do the following examine:
Case 1. Let $\left(\frac{(1-\beta)^{2}}{2(m+1)^{2}}-\frac{m(1-\beta)}{2(m+1)^{2}(2 m+1)}-\frac{1}{(m+1)(3 m+1)}+\frac{1}{2(2 m+1)^{2}}\right) \geq 0$. Therefore $\beta \in$ $\left[0,1-\frac{m(3 m+1)+\sqrt{m^{2}(3 m+1)^{2}+4(m+1)(3 m+1)\left(5 m^{2}+4 m+1\right)}}{2(2 m+1)(3 m+1)}\right]$ and $K^{\prime}(p)>0$ for $p \in(0,2)$. Since K is an increasing function in the interval $(0,2)$, maximum point of K must be on the boundary of $p \in[0,2]$, that is, $p=2$. Thus, we have

$$
\max K(p)=K(2)=\frac{(1-\beta)^{2}}{m+1}\left[\frac{4(1-\beta)^{2}}{m+1}+\frac{4}{3 m+1}\right] .
$$

Case 2. Let $\left(\frac{(1-\beta)^{2}}{2(m+1)^{2}}-\frac{m(1-\beta)}{2(m+1)^{2}(2 m+1)}-\frac{1}{(m+1)(3 m+1)}+\frac{1}{2(2 m+1)^{2}}\right)<0$. that is, $\beta \in$ $\left(1-\frac{m(3 m+1)+\sqrt{m^{2}(3 m+1)^{2}+4(m+1)(3 m+1)\left(5 m^{2}+4 m+1\right)}}{2(2 m+1)(3 m+1)}, 1\right)$. Then $K^{\prime}(p)=0$ implies the real critical points $p_{01}=0$ or
$p_{02}=\sqrt{\frac{-2\left[m(2 m+1)(3 m+1)(1-\beta)+(m+1)\left(6 m^{2}+4 m+1\right)\right]}{(2 m+1)^{2}(3 m+1)(1-\beta)^{2}-m(2 m+1)(3 m+1)(1-\beta)-(m+1)\left(5 m^{2}+4 m+1\right)}}$.
When

$$
\begin{aligned}
\beta \in & \left(1-\frac{m(3 m+1)+\sqrt{m^{2}(3 m+1)^{2}+4(m+1)(3 m+1)\left(5 m^{2}+4 m+1\right)}}{2(2 m+1)(3 m+1)},\right. \\
& \left.1-\frac{m(3 m+1)+\sqrt{m^{2}(3 m+1)^{2}+8(m+1)(2 m+1)^{2}(3 m+1)}}{4(2 m+1)(3 m+1)}\right]
\end{aligned}
$$

we observe that $p_{02} \geq 2$, that is, p_{02} is out of the interval $(0,2)$. Therefore the maximum value of $K(p)$ occurs at $p_{01}=0$ or $p=p_{02}$ which contradicts our assumption of having the maximum value at the interior point of $p \in[0,2]$. Since K is an increasing function in the interval $(0,2)$, maximum point of K must be on the boundary of $p \in[0,2]$, that is, $p=2$. Thus, we have

$$
\max K(p)=K(2)=\frac{(1-\beta)^{2}}{m+1}\left[\frac{4(1-\beta)^{2}}{m+1}+\frac{4}{3 m+1}\right] .
$$

When $\beta \in\left(1-\frac{m(3 m+1)+\sqrt{m^{2}(3 m+1)^{2}+8(m+1)(2 m+1)^{2}(3 m+1)}}{4(2 m+1)(3 m+1)}, 1\right)$ we observe that $p_{02}<2$, that is, p_{02} is interior of the interval $[0,2]$. Since $K^{\prime \prime}\left(p_{02}\right)<0$, the maximum value of $K(p)$
occurs at $p=p_{02}$. Thus, we have

$$
\begin{aligned}
& K\left(p_{02}\right)=(1-\beta)^{2}\left\{\frac{4}{(2 m+1)^{2}}\right. \\
& \left.-\frac{\left[m(2 m+1)(3 m+1)(1-\beta)+(m+1)\left(6 m^{2}+4 m+1\right)\right]^{2}}{(m+1)^{2}(2 m+1)^{2}(3 m+1)\left[(2 m+1)^{2}(3 m+1)(1-\beta)^{2}-m(2 m+1)(3 m+1)(1-\beta)-(m+1)\left(5 m^{2}+4 m+1\right)\right]}\right\}
\end{aligned}
$$

This completes the proof.
Remark 3.1. (See [5]) Putting $m=1$ in Theorem 3.1 we have the second Hankel determinant for the well-known class $H_{\Sigma_{m}}(\beta)=H_{\Sigma}(\beta)$.
Remark 3.2. Let f given by (1.4) be in the class $S_{\Sigma}^{*}(\beta)$ and $0 \leq \beta<1$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \begin{cases}\frac{(1-\beta)^{2}}{2}\left(2 \beta^{2}-4 \beta+3\right) & \beta \in\left[0, \frac{11-\sqrt{37}}{12}\right) \\ \frac{(1-\beta)^{2}}{9}\left(4-\frac{(17-6 \beta)^{2}}{16\left(9 \beta^{2}-15 \beta+1\right)}\right) & \beta \in\left(\frac{11-\sqrt{37}}{12}, 1\right)\end{cases}
$$

References

[1] Altınkaya, Ş. and Yalçın, S., Second Hankel determinant for a general subclass of bi-univalent functions, TWMS J. Pure Appl. Math., 7 (2015), No. 1, 98-104
[2] Altınkaya, Ş. and Yalçın, S., Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, 353 (2015), No. 12, 1075-1080
[3] Brannan, D. A. and Clunie, J. G., Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute Held at University of Durham, New York: Academic Press, 1979
[4] Brannan, D. A. and Taha, T. S., On some classes of bi-univalent functions, Studia Universitatis Babeş-Bolyai Mathematica, 31 (1986), No. 2, 70-77
[5] Çağlar, M., Deniz, E. and Srivastava, H. M., Second Hankel determinant for certain subclasses of bi-univalent functions, Turk J. Math, 41 (2017), 694-706
[6] Fekete, M. and Szegö, G., Eine Bemerkung Über Ungerade Schlichte Funktionen, J. London Math. Soc., 2 (1933), 85-89
[7] Grenander, U. and Szegö, G., Toeplitz forms and their applications, California Monographs in Mathematical Sciences, Univ. California Press, Berkeley, 1958
[8] Koepf, W., Coefficient of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105 (1989), 324-329
[9] Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68
[10] Netanyahu, E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Archive for Rational Mechanics and Analysis, 32 (1969), 100-112
[11] Noonan, J. W. and Thomas, D. K., On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (1976), No. 2, 337-346
[12] Noor, K. I., Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., 28 (1983), 731-739
[13] Hayami, T. and Owa, S., Generalized Hankel determinant for certain classes, Int. Journal of Math. Analysis, 52 (2010), No. 4, 2473-2585
[14] Pommerenke, Ch., Univalent Functions ,Vandenhoeck \& Ruprecht, Göttingen, 1975
[15] Sakar, F. M. and Güney, H. Ö., Coefficient bounds for a new subclass of analytic bi-close-to-convex functions by making use of Faber polynomial expansion, Turk. J. Math., 41 (2017), 888-895
[16] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23 (2010), No. 10, 1188-1192
[17] Srivastava, H. M., Murugusundaramoorthy, G. and Magesh, N., Certain subclasses of bi-univalent functions associated with the Hohlov operator, Applied Mathematics Letters, 1 (2013), 67-73
[18] Srivastava, H. M., Gaboury, S. and Ghanim, F., Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis, 41 (2015), 153-164
[19] Yavuz, T., Second Hankel determinant for analytic functions defined by Ruscheweyh derivative, International Journal of Analysis and Applications, 8 (2015), No. 1, 63-68
[20] Yavuz, T., Second hankel determinant problem for a certain subclass of univalent functions, International Journal of Mathematical Analysis, 9 (2015), No. 10, 493-498

Department of Mathematics
Bursa Uludag University
16059 Burs,TURKEY
E-mail address: sahsenealtinkaya@gmail.com
E-mail address: syalcin@uludag.edu.tr

[^0]: Received: 01.08.2018. In revised form: 08.12.2018. Accepted: 15.12.2018
 2010 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. m-fold symmetric bi-univalent functions, Hankel determinant.
 Corresponding author: Şahsene Altınkaya; sahsenealtinkaya@gmail.com

