On the computation of the antiderivatives on \mathbb{R} of a class of continuous periodic functions

Dan Bărbosu and Vasile Berinde

ABSTRACT. In this paper we are concerned with the computation of the antiderivatives on \mathbb{R} of a special class of continuous periodic functions. Finally, some applications of the main result are presented.

1. Introduction

Let $a \in \mathbb{R}, a>1$ be given and let $f_{a}: \mathbb{R} \rightarrow \mathbb{R}$ be defined for any $x \in \mathbb{R}$ by

$$
\begin{equation*}
f_{a}(x)=\frac{1}{a+\cos x} . \tag{1.1}
\end{equation*}
$$

Clearly f_{a} is continuous on \mathbb{R} and consequently it possesses antiderivatives on \mathbb{R}.
We note that in the particular case of f_{3}, the following problem has been proposed (as Problem 16) at the National Entrance Exam to Romanian Technical Universities in July 1988, and has been published in Gazeta Matematică no. 11-12 / 1988, page 452:

Problem 1.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{1}{3+\cos x}, x \in \mathbb{R} .
$$

- Find the antiderivatives of f on $[0, \pi)$;
- Find the antiderivatives of f on $[0,2 \pi]$ and compute $\int_{0}^{2 \pi} f(x) d x$.

A similar problem to Problem 1.1, for the function

$$
f(x)=\frac{1}{3+\sin x+\cos x}, x \in \mathbb{R}
$$

has been proposed in 1983 to the Romanian National Olympiad by I. Bârză, see [13].
Note also that Problem 1.1 was the source of many elementary and non elementary developments that were performed by the second author, see [2], [3], [4], [5], [6].

Coming back to the general form (1.1), let us denote by T the following indefinite integral

$$
\begin{equation*}
T=\int \frac{d x}{a+\cos x} . \tag{1.2}
\end{equation*}
$$

If $x \in[0, \pi)$, the change of variables $t=\tan \frac{x}{2}$ leads by routine computations to

$$
\begin{equation*}
T=\frac{2}{\sqrt{a^{2}-1}} \arctan \left(\sqrt{\frac{a-1}{a+1}} \cdot \tan \frac{x}{2}\right)+C, \tag{1.3}
\end{equation*}
$$

[^0]and so, we conclude that the function $G_{a}:[0, \pi) \rightarrow \mathbb{R}$, given by
\[

$$
\begin{equation*}
G_{a}(x)=\frac{2}{\sqrt{a^{2}-1}} \arctan \left(\sqrt{\frac{a-1}{a+1}} \cdot \tan \frac{x}{2}\right)+C \tag{1.4}
\end{equation*}
$$

\]

is an antiderivative of f_{a} on $[0, \pi)$, for any constant $C \in \mathbb{R}$.
If we want to compute an antiderivative of f_{a} on the interval $x \in[0,2 \pi]$, then the problem is more complicated because the function $t=\tan \frac{x}{2}$ is not defined at $x=\pi$. For the particular case of f_{3}, this problem is solved, for example, in [5] and [6], in Chapter 16.

By using (1.4), we see that an antiderivative of f_{a} on $[0,2 \pi]$ will have the form

$$
F_{a}(x)=\left\{\begin{array}{c}
\frac{2}{\sqrt{a^{2}-1}} \arctan \left(\sqrt{\frac{a-1}{a+1}} \cdot \tan \frac{x}{2}\right)+C_{1}, \quad x \in[0, \pi] ; \tag{1.5}\\
C \quad, \quad x=\pi ; \\
\frac{2}{\sqrt{a^{2}-1}} \arctan \left(\sqrt{\frac{a-1}{a+1}} \cdot \tan \frac{x}{2}\right)+C_{2}, \quad x \in[\pi, 2 \pi]
\end{array}\right.
$$

with appropriate values for the constants C, C_{2} and C_{2}.
But in order to be an antiderivative, F_{a} has to be differentiable, hence continuous on $[0,2 \pi]$. By imposing the continuity of F_{a} at $x=\pi$, we deduce that the constants C, C_{2} and C_{2} are related by the following relations

$$
\begin{equation*}
-\frac{\pi}{2}+C_{1}=C=\frac{\pi}{2}+C_{2} \tag{1.6}
\end{equation*}
$$

and therefore, by using (1.5), we obtain the expression for the antiderivative F_{a} :

$$
F_{a}(x)= \begin{cases}\frac{2}{\sqrt{a^{2}-1}} \arctan \left(\sqrt{\frac{a-1}{a+1}} \cdot \tan \frac{x}{2}\right)+C+\frac{\pi}{2}, & x \in[0, \pi) \tag{1.7}\\ C, \quad x=\pi \\ \frac{2}{\sqrt{a^{2}-1}} \arctan \left(\sqrt{\frac{a-1}{a+1}} \cdot \tan \frac{x}{2}\right)+C-\frac{\pi}{2}, & x \in(\pi, 2 \pi]\end{cases}
$$

Remark 1.1. It is easy to check that F_{a} given by (1.7) is indeed an antiderivative of f_{a} on $[0,2 \pi]$, i.e.,
a) F_{a} is differentiable on $[0,2 \pi]$ and b) $F_{a}^{\prime}(x)=f_{a}(x)$, for all $x \in[0,2 \pi]$.

Now, if the requirement is to find an antiderivative of f on $[0,4 \pi]$, the problem will be more difficult, because in that case $t=\tan \frac{x}{2}$ is not defined at $x=\pi$ and $x=3 \pi$ and hence its antiderivative F_{a} will have 6 branches, and so on.

Hence, it is now quite clear that, by using the technique presented above for the interval $[0,2 \pi]$, it is not possible to find an antiderivative of f_{a} on \mathbb{R}.

Starting from this difficulty, the main aim of the next section is to present a method that allows us to compute in a simple manner the antiderivatives of f_{a} on any interval $I \subset \mathbb{R}$. The starting point of this question is Problem 523, page 69 from [9].

We also present some applications of the obtained formula and indicate further developments around this topic.

2. The main result and some applications

The key tool in obtaining the antiderivative of f_{a} on the entire real axis, is to avoid having in its expression the function $\tan \frac{x}{2}$. To this end, we shall use the well known identity

$$
\begin{equation*}
\arctan u-\arctan v=\arctan \frac{u-v}{1+u v} \tag{2.8}
\end{equation*}
$$

valid for any $u, v \in \mathbb{R}$ such that $u v \neq-1$. On any interval $I \subset \mathbb{R}$ that does not contain a point of the form $(2 k+1) \frac{\pi}{2}, k \in \mathbb{Z}$, by using (1.3) we have $\arctan \left(\sqrt{\frac{a-1}{a+1}} \cdot \tan \frac{x}{2}\right)=\arctan \left(\tan \frac{x}{2}\right)+\arctan \left(\sqrt{\frac{a-1}{a+1}} \cdot \tan \frac{x}{2}\right)-\arctan \left(\tan \frac{x}{2}\right)$

$$
=\frac{x}{2}-\left[\arctan \left(\tan \frac{x}{2}\right)-\arctan \left(\sqrt{\frac{a-1}{a+1}} \tan \frac{x}{2}\right)\right] .
$$

By denoting $u=\tan \frac{x}{2}$ and $v=\sqrt{\frac{a-1}{a+1}} \tan \frac{x}{2}$, we have

$$
u-v=\left(1-\sqrt{\frac{a-1}{a+1}}\right) \tan \frac{x}{2}, 1+u v=1+\sqrt{\frac{a-1}{a+1}} \tan ^{2} \frac{x}{2},
$$

and hence, by using the formula $\tan ^{2} \frac{x}{2}=\frac{1-\cos x}{1+\cos x}$, we can remove $\tan \frac{x}{2}$ in the following way

$$
\begin{gathered}
\frac{u-v}{1+u v}=\tan \frac{x}{2}\left(1-\sqrt{\frac{a-1}{a+1}}\right) \cdot \frac{\sqrt{a+1}(1+\cos x)}{\sqrt{a+1}(1+\cos x)+\sqrt{a-1}(1-\cos x)} \\
=\frac{\sin x}{1+\cos x} \cdot\left(1-\sqrt{\frac{a-1}{a+1}}\right) \frac{\sqrt{a+1}(1+\cos x)}{\sqrt{a+1}+\sqrt{a-1}+(\sqrt{a+1}-\sqrt{a-1}) \cos x} \\
=\sin x \cdot \frac{\sqrt{a+1}-\sqrt{a-1}}{(\sqrt{a+1}-\sqrt{a-1}) \cos x+\sqrt{a+1}+\sqrt{a-1}}=\frac{\sin x}{\cos x+\frac{\sqrt{a+1}+\sqrt{a-1}}{\sqrt{a+1}-\sqrt{a-1}}} \\
=\frac{\sin x}{\cos x+\frac{(\sqrt{a+1}+\sqrt{a-1})^{2}}{2}}=\frac{\sin x}{a+\sqrt{a^{2}-1}+\cos x} .
\end{gathered}
$$

Therefore, for all values of x in an interval $I \subset \mathbb{R}$ that does not contain points of the form $(2 k+1) \frac{\pi}{2}, k \in \mathbb{Z}$, the following identity is valid

$$
\begin{equation*}
\arctan \left(\tan \frac{x}{2}\right)-\arctan \left(\frac{a-1}{\sqrt{a^{2}-1}} \tan \frac{x}{2}\right)=\arctan \left(\frac{\sin x}{a+\sqrt{a^{2}-1}+\cos x}\right) . \tag{2.9}
\end{equation*}
$$

Remark 2.2. We stress on the fact that the identity (2.9) has been obtained only for an interval $I \subset \mathbb{R}$ that does not contain points of the form $(2 k+1) \frac{\pi}{2}, k \in \mathbb{Z}$, because in all calculations that lead to (2.9), the function $\tan \frac{x}{2}$ was still involved.

However, by taking advantage of the right hand side of (2.9) one can prove by direct computation of the derivatives that the following result holds.
Theorem 2.1. The function $F_{a}: \mathbb{R} \rightarrow \mathbb{R}$, given by

$$
\begin{equation*}
F_{a}(x)=\frac{1}{\sqrt{a^{2}-1}}\left(x-2 \arctan \frac{\sin x}{a+\sqrt{a^{2}-1}+\cos x}\right)+C, x \in \mathbb{R} \tag{2.10}
\end{equation*}
$$

is an antiderivative on \mathbb{R} of the function f_{a} given by (1.1).
We end this section by giving some examples on how one can apply formula (2.10) for solving difficult related problems.
Example 2.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{1}{3+\cos x}, x \in \mathbb{R} .
$$

Compute $\int_{0}^{2 \pi} f(x) d x$.

Solution. We have $a=3$ and by (2.10), we deduce that

$$
F(x)=\frac{1}{2 \sqrt{2}}\left(x-2 \arctan \frac{\sin x}{3+2 \sqrt{2}+\cos x}\right)+C, x \in \mathbb{R}
$$

is an antiderivative of f on \mathbb{R}. Therefore

$$
\int_{0}^{2 \pi} f(x) d x=F(2 \pi)-F(0)=\frac{\pi}{\sqrt{2}}
$$

which is the result obtained in [5] and [6] to Problem 1.1 but by using formula (1.7).
Example 2.2 (problem 450, page 41, [11]). Compute the definite integral

$$
\begin{equation*}
I=\int_{0}^{\frac{\pi}{2}} \frac{d x}{2 \cos x+3} \tag{2.11}
\end{equation*}
$$

Solution. The integral can be written in the form

$$
\begin{equation*}
I=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{d x}{\frac{3}{2}+\cos x} \tag{2.12}
\end{equation*}
$$

and applying (2.10) with $a=\frac{3}{2}$, one obtains

$$
\begin{gathered}
I=\left.\frac{1}{2} \cdot \frac{1}{\sqrt{\frac{9}{4}-1}}\left(x-2 \arctan \frac{\sin x}{\frac{3}{2}+\sqrt{\frac{9}{4}-1}+\cos x}\right)\right|_{0} ^{\frac{\pi}{2}}= \\
=\frac{1}{2} \cdot \frac{2}{\sqrt{5}}\left(\frac{\pi}{2}-2 \arctan \frac{1}{\frac{3}{2}+\frac{\sqrt{5}}{2}}\right)=\frac{1}{\sqrt{5}}\left(\frac{\pi}{2}-2 \arctan \frac{2}{3+\sqrt{5}}\right)= \\
=\frac{2}{\sqrt{5}}\left(\arctan 1-\arctan \frac{2}{3+\sqrt{5}}\right)=\frac{2}{\sqrt{5}} \cdot \arctan \frac{1-\frac{2}{3+\sqrt{5}}}{1+\frac{2}{3+\sqrt{5}}}= \\
=\frac{2}{\sqrt{5}} \arctan \frac{1+\sqrt{5}}{\sqrt{5}(1+\sqrt{5})}=\frac{2}{\sqrt{5}} \arctan \frac{1}{\sqrt{5}} .
\end{gathered}
$$

Example 2.3 (problem 451, page 41, [11]). Compute the definite integral

$$
\begin{equation*}
I=\int_{0}^{4 \pi} \frac{d x}{5+4 \cos x} \tag{2.13}
\end{equation*}
$$

Solution. We have

$$
\begin{aligned}
I & =\frac{1}{4} \int_{0}^{4 \pi} \frac{d x}{\frac{5}{4}+\cos x}=\left.\frac{1}{4} \cdot \frac{1}{\sqrt{\frac{25}{16}-1}}\left(x-2 \arctan \frac{\sin x}{\frac{5}{4}+\sqrt{\frac{25}{16}-1}+\cos x}\right)\right|_{0} ^{4 \pi}= \\
& =\frac{1}{4} \cdot \frac{4}{3} \cdot 4 \pi=\frac{4 \pi}{3} .
\end{aligned}
$$

Example 2.4 (problem 507, page 45, [11]). Compute the limit

$$
\begin{equation*}
l=\lim _{n \rightarrow \infty} \int_{0}^{n} \frac{d x}{1+n^{2} \cos ^{2} x} \tag{2.14}
\end{equation*}
$$

Solution. Let I_{n} be the definite integral under the limit. We have

$$
\begin{aligned}
& I_{n}= \int_{0}^{n} \frac{d x}{1+n^{2} \cos ^{2} x} d x=\int_{0}^{n} \frac{1}{1+\frac{n^{2}}{2}(1+\cos 2 x)} d x=2 \int_{0}^{n} \frac{1}{n^{2}+2+n^{2} \cos 2 x} d x \\
&=\frac{2}{n^{2}} \int_{0}^{n} \frac{1}{\frac{n^{2}+2}{n^{2}}+\cos 2 x} d x=\frac{1}{n^{2}} \int_{0}^{2 n} \frac{d t}{\frac{n^{2}+2}{n^{2}}+\cos t}= \\
&=\left.\frac{1}{n^{2}} \cdot \frac{1}{\sqrt{\left(\frac{n^{2}+2}{n^{2}}\right)^{2}-1}}\left(t-2 \arctan \frac{\sin t}{\frac{n^{2}+2}{n^{2}}+\sqrt{\left(\frac{n^{2}+2}{n^{2}}\right)^{2}-1}+\cos t}\right)\right|_{0} ^{2 n} \\
&= \frac{1}{\sqrt{4 n^{2}+4}}\left(2 n-2 \arctan \frac{\sin 2 n}{\frac{n^{2}+2}{n^{2}}+\sqrt{\left(\frac{n^{2}+2}{\left.n^{2}\right)^{2}-1}+\cos 2 n\right.}}\right) \\
&= \frac{1}{\sqrt{1+\frac{1}{n^{2}}}}\left(1-\frac{1}{n} \arctan \frac{\sin 2 n}{\frac{n^{2}+2}{n^{2}}+\sqrt{\left(\frac{n^{2}+2}{n^{2}}\right)^{2}-1}+\cos 2 n}\right) .
\end{aligned}
$$

Now,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{n} \arctan \frac{\sin 2 n}{\frac{n^{2}+2}{n^{2}}+\sqrt{\left(\frac{n^{2}+2}{n^{2}}\right)^{2}-1}+\cos 2 n}=0 \Rightarrow l=\lim _{n \rightarrow \infty} I_{n}=1 . \\
\text { 3. MORE DEVELOPMENTS }
\end{gathered}
$$

We end this paper by indicating some elementary and non elementary developments that were obtained by the second author in [2]-[6].

Starting from Problem 1.1, in [5] and [6] the following generalization of the fundamental formula of the integral calculus (also called Leibniz-Newton formula, in the Romanian mathematical literature) has been obtained.

Theorem 3.2 (Theorem 2, Chapter 16, [5]). Let $f:[a, b] \rightarrow \mathbb{R}$ be such that
(i) f is Riemann integrable on $[a, b]$;
(ii) f possesses antiderivatives on $[a, b]$.

Let $c \in(a, b)$ and $F:[a, b] \backslash\{c\} \rightarrow \mathbb{R}$ be a differentiable function with the property

$$
F^{\prime}(x)=f(x), \text { for all } x \in[a, b] \backslash\{c\} .
$$

Then F has lateral limits at the point $x=c$ and

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)+F(c-0)-F(c+0) .
$$

Example 3.5. Consider the function f given in Problem 1.1. Although the function G_{3} given by (1.4) is not an antiderivative of f on the interval $[0,2 \pi]$, however G_{3} satisfies all assumptions of Theorem 3.2 and therefore

$$
\begin{aligned}
\int_{0}^{2 \pi} f(x) d x & =G_{3}(2 \pi)-G_{3}(0)+G_{3}(\pi-0)+G_{3}(\pi+0) \\
= & 0-0+\frac{\pi}{2 \sqrt{2}}-\left(-\frac{\pi}{2 \sqrt{2}}\right)=\frac{\pi}{\sqrt{2}}
\end{aligned}
$$

Remark 3.3. If F in Theorem 3.2 is actually an antiderivative of f, then we obtain the following extension of Leibniz-Newton formula, stated and proven in [7].

Theorem 3.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that
(i) f is Riemann integrable on $[a, b]$;
(ii) f possesses antiderivatives on $[a, b]$.

Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a),
$$

where F is an antiderivative of f on $[a, b]$.
In particular, by Theorem 3.3 we obtain the first fundamental theorem of integral calculus which states that, if f is continuous on the closed interval $[a, b]$ and F is the indefinite integral of f on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

Theorem 3.2 has been extended further to the case of an infinite but numerable set of points c, in the papers [3] and [4].

References

[1] Bărbosu, D. and Muşuroia, N., Asupra calculului primitivelor şi integralelor unor funcţii periodice, Argument, 20 (2018), 3-11
[2] Berinde, V., Primitivabilitate şi integrabilitate aproape peste tot, Manifestarea metodico-ştiinţifică "Creativitate şi eficienţă în învăţământ", Iaşi, 2-3 iunie 1989
[3] Berinde, V., A notion of almost everywhere primitive, Bul. Ştiinţ. Univ. Baia Mare Ser. B, 7 (1991), 33-42
[4] Berinde, V., A generalization of the Riemann integral, Bul. Ştiinț. Univ. Baia Mare Ser. B, 8 (1992), 1-10
[5] Berinde, V., Explorare, investigare şi descoperire in matematică, Efemeride, Baia Mare, 2001
[6] Berinde, V., Exploring, Investigating and Discovering in Mathematics, Birkhäuser, Basel, 2004
[7] Boboc, N., Colojoară, I., Elemente de analiză matematică. Manual pentru clasa a XII-a, Editura Didactică şi Pedagogică, Bucureşti, 1987
[8] Furdui, O., Ivan, M. and Santamarian, A., A note on a UTCN SEEMOUS selection test problem, GMA, 34 (2016), No. 3-4, 34-39
[9] Ivan, M. et all, Teste grilă de matematică, Admitere 2016, UTPRESS, Cluj-Napoca, 2016
[10] Ivan, M. et all, Teste grilă de matematică, Admitere 2017, UTPRESS, Cluj-Napoca, 2017
[11] Ivan, M. et all, Teste grilă de matematică, Admitere 2018, UTPRESS, Cluj-Napoca, 2018
[12] Sireţchi, Gh., Calcul diferenţial şi integral, vol 2, Ed. Ştiinţifică şi Enciclopedică, Bucureşti, 1985
[13] Tomescu, I. et all, Problemele date la olimpiadele de matematică pentru licee, Editura Ştiinţifică, Bucureşti, 1992

[^1]
[^0]: Received: 17.04.2018. In revised form: 03.12.2018. Accepted: 10.12.2018
 2010 Mathematics Subject Classification. 97I50, 97I99.
 Key words and phrases. continuous function, antiderivative.
 Corresponding author: Dan Bărbosu; barbosudan@yahoo.com

[^1]: Department of Mathematics and Computer Science
 North University Center at Baia Mare
 Technical University of Cluj-Napoca
 Victoriei 76, 430122 Baia Mare, Romania
 E-mail address: barbosudan@yahoo.com
 E-mail address: vberinde@cunbm.utcluj.ro

