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On the computation of the antiderivatives on R of a class of
continuous periodic functions

DAN BĂRBOSU and VASILE BERINDE

ABSTRACT. In this paper we are concerned with the computation of the antiderivatives on R of a special
class of continuous periodic functions. Finally, some applications of the main result are presented.

1. INTRODUCTION

Let a ∈ R, a > 1 be given and let fa : R→ R be defined for any x ∈ R by

(1.1) fa(x) =
1

a+ cosx
.

Clearly fa is continuous on R and consequently it possesses antiderivatives on R.
We note that in the particular case of f3, the following problem has been proposed (as

Problem 16) at the National Entrance Exam to Romanian Technical Universities in July
1988, and has been published in Gazeta Matematică no. 11-12 / 1988, page 452:

Problem 1.1. Let f : R→ R be defined by

f(x) =
1

3 + cosx
, x ∈ R.

• Find the antiderivatives of f on [0, π);
• Find the antiderivatives of f on [0, 2π] and compute

∫ 2π

0
f(x)dx.

A similar problem to Problem 1.1, for the function

f(x) =
1

3 + sinx+ cosx
, x ∈ R,

has been proposed in 1983 to the Romanian National Olympiad by I. Bârză, see [13].
Note also that Problem 1.1 was the source of many elementary and non elementary

developments that were performed by the second author, see [2], [3], [4], [5], [6].
Coming back to the general form (1.1), let us denote by T the following indefinite inte-

gral

(1.2) T =

∫
dx

a+ cosx
.

If x ∈ [0, π), the change of variables t = tan x
2 leads by routine computations to

(1.3) T =
2√

a2 − 1
arctan

(√
a− 1

a+ 1
· tan x

2

)
+ C,
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and so, we conclude that the function Ga : [0, π)→ R, given by

(1.4) Ga(x) =
2√

a2 − 1
arctan

(√
a− 1

a+ 1
· tan x

2

)
+ C,

is an antiderivative of fa on [0, π), for any constant C ∈ R.
If we want to compute an antiderivative of fa on the interval x ∈ [0, 2π], then the

problem is more complicated because the function t = tan x
2 is not defined at x = π. For

the particular case of f3, this problem is solved, for example, in [5] and [6], in Chapter 16.
By using (1.4), we see that an antiderivative of fa on [0, 2π] will have the form

(1.5) Fa(x) =


2√
a2−1 arctan

(√
a−1
a+1 · tan

x
2

)
+ C1, x ∈ [0, π];

C , x = π;

2√
a2−1 arctan

(√
a−1
a+1 · tan

x
2

)
+ C2, x ∈ [π, 2π],

with appropriate values for the constants C,C2 and C2.
But in order to be an antiderivative, Fa has to be differentiable, hence continuous on

[0, 2π]. By imposing the continuity of Fa at x = π, we deduce that the constants C,C2 and
C2 are related by the following relations

(1.6) −π
2
+ C1 = C =

π

2
+ C2

and therefore, by using (1.5), we obtain the expression for the antiderivative Fa:

(1.7) Fa(x) =


2√
a2−1 arctan

(√
a−1
a+1 · tan

x
2

)
+ C + π

2 , x ∈ [0, π);

C, x = π;

2√
a2−1 arctan

(√
a−1
a+1 · tan

x
2

)
+ C − π

2 , x ∈ (π, 2π],

Remark 1.1. It is easy to check that Fa given by (1.7) is indeed an antiderivative of fa on [0, 2π],
i.e.,

a) Fa is differentiable on [0, 2π] and b) F ′a(x) = fa(x), for all x ∈ [0, 2π].

Now, if the requirement is to find an antiderivative of f on [0, 4π], the problem will be
more difficult, because in that case t = tan x

2 is not defined at x = π and x = 3π and hence
its antiderivative Fa will have 6 branches, and so on.

Hence, it is now quite clear that, by using the technique presented above for the interval
[0, 2π], it is not possible to find an antiderivative of fa on R.

Starting from this difficulty, the main aim of the next section is to present a method that
allows us to compute in a simple manner the antiderivatives of fa on any interval I ⊂ R.
The starting point of this question is Problem 523, page 69 from [9].

We also present some applications of the obtained formula and indicate further deve-
lopments around this topic.

2. THE MAIN RESULT AND SOME APPLICATIONS

The key tool in obtaining the antiderivative of fa on the entire real axis, is to avoid
having in its expression the function tan x

2 . To this end, we shall use the well known
identity

(2.8) arctanu− arctan v = arctan
u− v
1 + uv

,
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valid for any u, v ∈ R such that uv 6= −1. On any interval I ⊂ R that does not contain a
point of the form (2k + 1)π2 , k ∈ Z, by using (1.3) we have

arctan

(√
a− 1

a+ 1
· tan x

2

)
= arctan

(
tan

x

2

)
+ arctan

(√
a− 1

a+ 1
· tan x

2

)
− arctan

(
tan

x

2

)

=
x

2
−

[
arctan

(
tan

x

2

)
− arctan

(√
a− 1

a+ 1
tan

x

2

)]
.

By denoting u = tan x
2 and v =

√
a−1
a+1 tan

x
2 , we have

u− v =

(
1−

√
a− 1

a+ 1

)
tan

x

2
, 1 + uv = 1 +

√
a− 1

a+ 1
tan2

x

2
,

and hence, by using the formula tan2 x2 = 1−cos x
1+cos x , we can remove tan x

2 in the following
way

u− v
1 + uv

= tan
x

2

(
1−

√
a− 1

a+ 1

)
·

√
a+ 1(1 + cosx)√

a+ 1(1 + cosx) +
√
a− 1(1− cosx)

=
sinx

1 + cosx
·

(
1−

√
a− 1

a+ 1

) √
a+ 1(1 + cosx)√

a+ 1 +
√
a− 1 + (

√
a+ 1−

√
a− 1) cosx

= sinx ·
√
a+ 1−

√
a− 1(√

a+ 1−
√
a− 1

)
cosx+

√
a+ 1 +

√
a− 1

=
sinx

cosx+
√
a+1+

√
a−1√

a+1−
√
a−1

=
sinx

cosx+
(
√
a+1+

√
a−1)

2

2

=
sinx

a+
√
a2 − 1 + cosx

.

Therefore, for all values of x in an interval I ⊂ R that does not contain points of the form
(2k + 1)π2 , k ∈ Z, the following identity is valid

(2.9) arctan
(
tan

x

2

)
− arctan

(
a− 1√
a2 − 1

tan
x

2

)
= arctan

(
sinx

a+
√
a2 − 1 + cosx

)
.

Remark 2.2. We stress on the fact that the identity (2.9) has been obtained only for an
interval I ⊂ R that does not contain points of the form (2k + 1)π2 , k ∈ Z, because in all
calculations that lead to (2.9), the function tan x

2 was still involved.

However, by taking advantage of the right hand side of (2.9) one can prove by direct
computation of the derivatives that the following result holds.

Theorem 2.1. The function Fa : R→ R, given by

(2.10) Fa(x) =
1√

a2 − 1

(
x− 2 arctan

sinx

a+
√
a2 − 1 + cosx

)
+ C, x ∈ R,

is an antiderivative on R of the function fa given by (1.1).

We end this section by giving some examples on how one can apply formula (2.10) for
solving difficult related problems.

Example 2.1. Let f : R→ R be defined by

f(x) =
1

3 + cosx
, x ∈ R.

Compute
∫ 2π

0
f(x)dx.
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Solution. We have a = 3 and by (2.10), we deduce that

F (x) =
1

2
√
2

(
x− 2 arctan

sinx

3 + 2
√
2 + cosx

)
+ C, x ∈ R,

is an antiderivative of f on R. Therefore∫ 2π

0

f(x)dx = F (2π)− F (0) = π√
2
,

which is the result obtained in [5] and [6] to Problem 1.1 but by using formula (1.7).

Example 2.2 (problem 450, page 41, [11]). Compute the definite integral

(2.11) I =

π
2∫

0

dx

2 cosx+ 3
.

Solution. The integral can be written in the form

(2.12) I =
1

2

π
2∫

0

dx
3
2 + cosx

and applying (2.10) with a = 3
2 , one obtains

I =
1

2
· 1√

9
4 − 1

x− 2 arctan
sinx

3
2 +

√
9
4 − 1 + cosx

∣∣∣∣∣
π
2

0

=

=
1

2
· 2√

5

(
π

2
− 2 arctan

1
3
2 +

√
5
2

)
=

1√
5

(
π

2
− 2 arctan

2

3 +
√
5

)
=

=
2√
5

(
arctan 1− arctan

2

3 +
√
5

)
=

2√
5
· arctan

1− 2
3+
√
5

1 + 2
3+
√
5

=

=
2√
5
arctan

1 +
√
5√

5(1 +
√
5)

=
2√
5
arctan

1√
5
.

Example 2.3 (problem 451, page 41, [11]). Compute the definite integral

(2.13) I =

4π∫
0

dx

5 + 4 cosx
.

Solution. We have

I =
1

4

4π∫
0

dx
5
4 + cosx

=
1

4
· 1√

25
16 − 1

x− 2 arctan
sinx

5
4 +

√
25
16 − 1 + cosx

∣∣∣∣∣
4π

0

=

=
1

4
· 4
3
· 4π =

4π

3
.

Example 2.4 (problem 507, page 45, [11]). Compute the limit

(2.14) l = lim
n→∞

n∫
0

dx

1 + n2cos2x
.
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Solution. Let In be the definite integral under the limit. We have

In =

n∫
0

dx

1 + n2cos2x
dx =

n∫
0

1

1 + n2

2 (1 + cos 2x)
dx = 2

n∫
0

1

n2 + 2 + n2 cos 2x
dx

=
2

n2

n∫
0

1
n2+2
n2 + cos 2x

dx =
1

n2

2n∫
0

dt
n2+2
n2 + cos t

=

=
1

n2
· 1√

(n
2+2
n2 )2 − 1

t− 2 arctan
sin t

n2+2
n2 +

√
(n

2+2
n2 )2 − 1 + cos t

∣∣∣∣∣
2n

0

=
1√

4n2 + 4

2n− 2 arctan
sin 2n

n2+2
n2 +

√
(n

2+2
n2 )2 − 1 + cos 2n


=

1√
1 + 1

n2

1− 1

n
arctan

sin 2n

n2+2
n2 +

√
(n

2+2
n2 )2 − 1 + cos 2n

 .

Now,

lim
n→∞

1

n
arctan

sin 2n

n2+2
n2 +

√
(n

2+2
n2 )2 − 1 + cos 2n

= 0⇒ l = lim
n→∞

In = 1.

3. MORE DEVELOPMENTS

We end this paper by indicating some elementary and non elementary developments
that were obtained by the second author in [2]-[6].

Starting from Problem 1.1, in [5] and [6] the following generalization of the fundamen-
tal formula of the integral calculus (also called Leibniz-Newton formula, in the Romanian
mathematical literature) has been obtained.

Theorem 3.2 (Theorem 2, Chapter 16, [5]). Let f : [a, b]→ R be such that
(i) f is Riemann integrable on [a, b];
(ii) f possesses antiderivatives on [a, b].
Let c ∈ (a, b) and F : [a, b] \ {c} → R be a differentiable function with the property

F ′(x) = f(x), for all x ∈ [a, b] \ {c}.
Then F has lateral limits at the point x = c and∫ b

a

f(x)dx = F (b)− F (a) + F (c− 0)− F (c+ 0).

Example 3.5. Consider the function f given in Problem 1.1. Although the function G3

given by (1.4) is not an antiderivative of f on the interval [0, 2π], however G3 satisfies all
assumptions of Theorem 3.2 and therefore∫ 2π

0

f(x)dx = G3(2π)−G3(0) +G3(π − 0) +G3(π + 0)

= 0− 0 +
π

2
√
2
−
(
− π

2
√
2

)
=

π√
2
.

Remark 3.3. If F in Theorem 3.2 is actually an antiderivative of f , then we obtain the
following extension of Leibniz-Newton formula, stated and proven in [7].
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Theorem 3.3. Let f : [a, b]→ R be such that
(i) f is Riemann integrable on [a, b];
(ii) f possesses antiderivatives on [a, b].
Then ∫ b

a

f(x)dx = F (b)− F (a),

where F is an antiderivative of f on [a, b].

In particular, by Theorem 3.3 we obtain the first fundamental theorem of integral calcu-
lus which states that, if f is continuous on the closed interval [a, b] and F is the indefinite
integral of f on [a, b], then ∫ b

a

f(x)dx = F (b)− F (a).

Theorem 3.2 has been extended further to the case of an infinite but numerable set of
points c, in the papers [3] and [4].
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[13] Tomescu, I. et all, Problemele date la olimpiadele de matematică pentru licee, Editura Ştiinţifică, Bucureşti, 1992
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