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On an open problem regarding the spectral radius of the
derivatives of a function and of its iterates

VASILE BERINDE1,4, ŞTEFAN MĂRUŞTER 2 and IOAN A. RUS3

ABSTRACT. The main aim of this note is to investigate empirically the relationship between the spectral ra-
dius of the derivative of a function f : Rm → Rm and the spectral radius of the derivatives of its iterates, which
is done by means of some numerical experiments for mappings of two and more variables. In this way we give a
partial answer to an open problem raised in [Rus, I. A., Remark on a La Salle conjecture on global asymptotic stability,
Fixed Point Theory, 17 (2016), No. 1, 159–172] and [Rus, I. A., A conjecture on global asymptotic stability, commu-
nicated at the Workshop ”Iterative Approximation of Fixed Points”, SYNASC2017, Timişoara, 21-24 September
2017] and also illustrate graphically the importance and difficulty of this problem in the general context. An
open problem regarding the domains of convergence is also proposed.

1. PRELIMINARIES

Let X be a nonempty set and f : X → X be an operator. Denote by

Ff = {x ∈ X : f(x) = x}

the set of fixed points of f . By definition, see for example [24], f is a Picard operator if
(i) Ff = {x∗};
(ii) fn(x)→ x∗ as n→∞, for all x ∈ X .

Property (ii) above expresses the fact that x∗ is globally asymptotically stable.
Note also that, if f is a Picard operator, then

Ff = Ffn = {x∗},∀ n ∈ N∗.

In this context, the following two conjectures are very natural, see [25].
Conjecture 1. (La Salle, [14]) Let f : Rm → Rm be such that:
(i) there exists x∗ ∈ Rm with f(x∗) = x∗;

(ii) f ∈ C1(Rm,Rm);
(iii) the spectral radius of the differential of f at x, ρ(df(x)), is < 1 for all x ∈ Rm.

Then, x∗ is globally asymptotically stable.
On the other hand, Belitskiĭ and Lyubich in [5] formulated the following conjecture:
Conjecture 2. (Belitskiĭ and Lyubich, [5]) Let K := R or C, Ω ⊂ Km be an open subset,

Ω1 ⊂ Km be a compact, convex subset with Ω1 ⊂ Ω. Let f : Ω→ Km be a function. We suppose
that:

(i) f ∈ C1(Ω,Km);
(ii) f(Ω1) ⊂ Ω1;

(iii) ρ(df(x)) < 1, ∀ x ∈ Ω1.
Then, f

∣∣
Ω1

: Ω1 → Ω1 is a Picard operator.
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Remark 1.1. ([25]) Let (X, d) be a metric space and f : X → X be an operator. The
following statements are equivalent:

(i) f is a Picard operator;
(ii) for all k ∈ N∗, fk is a Picard operator;

(iii) there exists k ∈ N∗ such that fk is a Picard operator.

Based on the previous equivalences, very recently, Professor I. A. Rus in [25] proposed
the following

Conjecture 3. (Rus, [25]) Let X be a real Banach space, Ω ⊂ X be an open, convex subset and
f : Ω→ Ω be an operator. We suppose that:

(i) f ∈ C1(Ω, X);
(ii) dfk(x) : X → X is a Picard operator, for all x ∈ Ω and all k ∈ N∗;

(iii) Ff 6= ∅.
Then f is a Picard operator.

Starting from the above facts, the following three open problems related to Conjectures
1-3 were formulated in [28].

Problem 1.1. There exist counterexamples to La Salle and Belitskiĭ-Lyubich conjectures. Which
of them are counterexamples to Rus’ conjecture, too ?

Problem 1.2. Under which conditions we have that

%(df(x)) < 1, ∀x ∈ Ω ⇒ %(dfk(x)) < 1,∀x ∈ Ω, (1.1)

is valid for all k ∈ N∗?

Problem 1.3. Under which conditions we have that

%(df(x)) < 1 ∀x ∈ Ω ⇒ f is nonexpansive?

We first illustrate the complexity of Problem 1.2 by means of the next examples.

Example 1.1. Let f ∈ C1(R,R) such that

|f ′(x)| < 1,∀x ∈ R. (1.2)

Then implication (1.1) holds. Indeed, in this case

ρ(df(x)) = |f ′(x)|
and

ρ(dfk(x)) = ρ
(
df(fk−1(x) ◦ df(fk−2(x) ◦ · · · ◦ df(f(x)

)
=

= |f ′(fk−1(x))| · |f ′(fk−2(x))| · . . . |f ′(x)| < 1,∀x ∈ R, (1.3)
in view of inequality (1.2).

Example 1.2. (Triangular functions) Let f : Rm → Rm be a triangular function, i.e.,

f(x1, ..., xm) = (f1(x1), f2(x1, x2), ..., fm(x1, ..., xm)), (x1, ..., xm) ∈ Rm,

where fi : Ri → Ri are given first order differentiable functions.
In [13] the authors proved that for triangular functions the LaSalle Conjecture is a the-

orem. For this class of functions, the implication (1.1) in Problem 1.2 holds, too.
Indeed, in this case we have

ρ (df(x)) = max

(
|f ′1(x1)| ,

∣∣∣∣∂f2(x1, x2)

∂x2

∣∣∣∣ , . . . , ∣∣∣∣∂fm(x1, . . . , xm)

∂xm

∣∣∣∣) ,
ρ
(
df2(x)

)
= max

(
|f ′1(f1(x1))| · |f ′1(x1)| ,

∣∣∣∣∂f ′2(f1(x1), f2(x1, x2))

∂x2

∣∣∣∣ · ∣∣∣∣∂f2(x1, x2)

∂x2

∣∣∣∣ , . . .)



On an open problem regarding the spectral radius of the derivatives 35

Example 1.3. ([12], [25]) Let f : R3 → R3 be given by

f(x1, x2, x3) =
(x1

2
+ x3(x1 + x2x3)2,

x2

2
− (x1 + x2x3)2,

x3

2

)
,

for all (x1, x2, x3) ∈ R3.
Then, f is a counterexample to both La Salle conjecture (Conjecture 2) and Problem 1.2

(see [12], [25]). Indeed, although

ρ(df(x1, x2, x3)) < 1,∀(x1, x2, x3) ∈ R3,

and f(0) = 0, we have
ρ(df2(2, 0, 2)) > 1.

Starting from this background, the main aim of this note is to present an alternative
approach to Problem 1.2, by means of some numerical experiments. The information we
obtain from these experiments is quite satisfactory and allows us to get a clearer idea on
how difficult should be an analytical approach to Problem 1.2 in general.

2. NUMERICAL EXPERIMENTS

We have restricted these experiments to finite dimensional spaces and to mappings in
two and more variables. However, for the sake of graphic representation, only numerical
experiments for mappings in two variables are reported here. The amplitude of the ex-
periments were seriously limited by the difficulties of computing high order iterates and
their derivatives. Indeed, the computation of such iterates involve high complexity, both
symbolic and numeric treatment (the attempt to get symbolic iteration, even for a simple
mapping, leads to extremely long formulas). However, such numerical experiments pro-
vide significant information on the problem and on the theoretical approach that can be
done.

We verified for the case of a significant number of mappings whether the implication
(1.1):

%(df(x)) < 1, ∀x ∈ Ω ⇒ %(dfk(x)) < 1, ∀x ∈ Ω, k ∈ N∗

is true or not.
This has been done in the following way. We considered the sets

Ck = {x ∈ Ω| %(dfk(x)) < 1}, k ∈ N∗,
and have depicted them.

In all figures that are presented in this paper, the black area represents the region in
which the implication is true. We will use the term domain of convergence for the set Ck and
condition of convergence for %(dfk(x)) < 1.

Example 2.4. Consider the function f1 : R2 → R2, given by

f1((x1, x2)T ) =

(
0.3 sin(x1) + x1x2

x3
1 − 0.5x2

)
, (x1, x2) ∈ R2.

We note that p = (0, 0)T is a fixed pointoff1. Let rk denote the spectral radius of dfk(p).
The sets Ck and values of rk = %(dfk1 (p)) are depicted in Figure 1, for k = 1, ..., 6.

Remark 2.2. Based on the results we obtained by numerical tests performed for function
f1 in Example 2.4, it appears that the sequence of sets {Ck}, starting with k = 2, is as-
cending, every set Ck almost covers the previous set Ck−1. Note that the scalar sequence
{rk} is strictly decreasing: r1 = 0.5, r2 = 0.25, r3 = 0.125, r4 = 0.0625, r5 = 0.03125, r6 =
0.015625 and so on, since, by (1.3),

%(dfk1 (p)) = |f ′1(p)|k.
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In Figure 1 the values rk are written under the corresponding surfaces.

FIGURE 1. The sets Ck(k = 1, 2, 3, 4, 5, 6), corresponding to f1

Remark 2.3. We used the term ”almost covers” because we can only make a ”visual”
comparison between two successive sets (it can be verified this conjecture rigorously). It
seems also that the shape of sets Ck (the black regions) stabilizes, i.e., they do not change
anymore.

It follows that, by using a stronger computer, like Blue-gin from the Laboratories at
West University of Timişoara, the sequence {Ck} could be obtained for more values of k
and we could even compare two successive sets Ck and Ck+1, to decide about the inclu-
sion mentioned above.

Example 2.5. We now consider the function f2 : R2 → R2, given by

f2(x1, x2) =

(
0.2x1 + x2

2

x1x2 − cos(x2)

)
, (x1, x2) ∈ R2.

Note that p = (0, 0)T that we used in the numerical tests is no more a fixed point of f2.
In Figure 2 are depicted the sets Ck for k = 1, ..., 6. The sequence of sets Ck is now

descending starting with k = 3: every set Ck−1 almost covers the next one, Ck. Note
also that, as a consequence of the fact that p = (0, 0)T is not a fixed point of f2, the scalar
sequence rk = %(dfk2 (p)) behaves differently, i.e., starting with k = 2, it is increasing:
r2 = 0.04, r3 = 0.224, ..., r6 = 3.263.

It is then not surprising that in this case the convergence condition is lost at p = (0, 0)T ,
which is not a fixed point of f2.
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Note also that the descending characteristics of the successive convergence domains is,
in some extent, relative. For example, it is obvious that there exists convergence points in
C5 which are not found in the convergence domain of C4.

FIGURE 2. The sets Ck, k = 1, 2, 3, 4, 5, 6, corresponding to f2

Remark 2.4. For k = 6 the convergence domain is a very small set of points. We should
underline that in our computer program we used the option ”Continue on error” (which
is common in mathematical software) when the spectral radius is computed. It is rather
possible that a lot of good points to be lost. In particular, at the fixed point p of f2, the
computer program finds an error when calculating %(df2(p)), for k = 6.

Example 2.6. Consider the function f3 : R2 → R2, given by

f3(x) =

(
x1 − sin(x2)

x2
1 + 0.5x2

)
.

In Figure 3 are depicted the sets Ck, k = 1, ..., 6. In this case p = (0, 0)T is a fixed point of
f3 but the spectral radius of dfk3 (p), k = 1, 2, ... is constant, i.e., %(df3(p)) = 1. However,
the convergence domains seem to be descending starting with k = 5.

Apart of the three examples presented above, we performed a significant number of
numerical tests with different functions in two and more variables, rather casually chosen.
In most of those cases, the sequence {rk}was strictly decreasing.

The properties revealed for the function f1 held exactly in the same manner for all these
examples reported in this note. When the sequence {%k} is monotone increasing, the beha-
viour of the convergence domains are, in general, unpredictable.

We therefore can state at the end of this note the following open problem.
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FIGURE 3. The sets Ck, k = 1, 2, 3, 4, 5, 6, corresponding to f3

Problem 2.4. Suppose that Ω contains a fixed point p and that the sequence {%(dfk(p))} is strictly
decreasing. Then the convergence domains is ascending starting with some k0, i.e., Ck−1 ⊂
Ck, k ≥ k0.

3. CONCLUSIONS

More numerical tests and developments in the study of the convergence sets for various
iterative methods were performed by the second author and his collaborators and were
published in some recent papers [18]-[23].
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[21] Măruşter, Şt. and Măruşter, L., Local convergence of generalized Mann iteration, Numer. Algorithms, 76 (2017),

No. 4, 905–916
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