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Some computational aspects of carbon nanocone using
Q(G) operator, hexagonal network and probabilistic neural
network

V. LOKESHA, K. ZEBA YASMEEN and T. DEEPIKA

ABSTRACT. In this article, we first find closed forms of M -polynomials of carbon nanocones using Q(G)
operator, hexagonal networks and probabilistic neural network. We also reckon closed forms of various degree-
based topological indices of these structures. These indices are numerical tendencies that generally interprit
quantitative structural activity/property/toxicity relationships and correlate certain physico-chemical proper-
ties, such as boiling point, stability, and strain energy, of respective nanomaterial.

1. INTRODUCTION

Carbon nanocones have been observed since 1968 or even earlier, on the surface of
naturally occurring Graphite. Their bases are attached to the graphite and their height
varies between 1 and 40 micrometers. Their walls are often curved and are less regular
than those of the laboratory made nanocones. More recently, carbon nanocones have
gained increased scientific interest due to their unique properties and promising uses in
many novel applications such as energy and gas storage [9].

FIGURE 1. Graph of Q[CNC3[1]].

In hexagonal network there exist three regular plane tilings with composition of same
kind of regular polygons such as triangular, hexagonal and square. In the construction
of hexagonal networks, triangular tiling is used as shown in FIGURE 2. A hexagonal
network of dimension n is usually denoted as HXn, where n is the number of vertices on
each side of hexagon.

A neural network is a computer system modelled on the nerve tissue and nervous sy-
stem. Recently, these networks are applied in chemical and environmental sciences [16].
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Mainly, the probabilistic neural networks are used in biochemical field for the toxicologi-
cal and metabolic responses [10]. For more details about the construction of probabilistic
neural network we refer the reader to [11].

FIGURE 2. Graph of HX5

In chemical graph theory, a molecular graph is a simple graph (having no loops and
multiple edges) in which atoms and chemical bonds between them are represented by
vertices and edges, respectively. A graph G(V,E) with vertex set V (G) and edge set E(G)
is connected if there is a connection between any pair of vertices in G. The degree du of
a vertex u is the number of edges that are incident to it. The operator Q(G) is the graph
obtained from G by inserting a new vertex into each edge of G and by joining edges to
new vertices which lie on adjacent edges of G.

The aim of this paper is to compute the zagreb indices, generalized randic index, in-
verse randic index and SDD index, M -polynomials of carbon nanocones using Q(G) ope-
rator, hexagonal networks and probabilistic neural network.

Definition 1.1. M -polynomial of graph G is defined as

M(G, x, y) =
∑
i≤j

mij(G)xiyj

where mij(G), (i, j ≥ 1) be the number of edges e = uv of G such that (du, dv) = (i, j).

The Wiener index is originally the first and most studied topological index. The Randić
index, [15] denoted by R 1

2
(G) and introduced by Milan Randić in 1975, is also one of the

oldest topological indices. The general Randić index is defined as

Rα(G) =
∑

uv∈E(G)

1

(dudv)α
.

Gutman and Trinajstić [3, 4] introduced first Zagreb index and second Zagreb index,
which are defined as

M1(G) =
∑

uv∈E(G)

(du + dv)

and
M2(G) =

∑
uv∈E(G)

dudv

respectively. Both the first Zagreb index and the second Zagreb index give greater weights
to the inner vertices and edges, and smaller weights to the outer vertices and edges, which
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opposes intuitive reasoning. For a simple connected graph G, the second modified Zagreb
index [18] is defined as

mM2(G) =
∑

uv∈E(G)

{ 1

dudv

}
.

Symmetric division deg index is one of the discrete Adriatic indices, [5, 6, 12, 17]. It is a
good predictor of total surface area for polychlorobiphenyls and is defined as

SDD(G) =
∑

uv∈E(G)

{
d2u + d2v
dudv

}
.

The figuration of the probabilistic neural network have three layers of nodes.
• The first layer has a certain number of nodes also known as input layer, the hid-

den layer or second layer subsist certain number of classes such that each class
contains a particular number of nodes, and the third layer called by output layer
has a number of nodes equal to the number of classes of the second layer.

• The formation of a PNN , each node of the first/input layer is joined to all the
nodes of each class of the second/hidden layer and all the nodes of each class of
the hidden layer are joined to a particular node of the third/output layer.

• Consider p, k, q nodes are the input, hidden and output layers respectively. Thus,
a probabilistic neural network symbolized by PNN(p, k, q) such that

|V (PNN(p, k, q))| = p+ k(q + 1)

and
|E(PNN(p, k, q))| = kq(p+ 1).

The following figure shows the probabilistic neural network PNN(4, 2, 3).

FIGURE 3. Graph of PNN(4, 2, 3).

The following Table 1 relates some well-known degree-based topological indices with
M -polynomials.

where Dx = ∂(f(x,y))
∂x , Dy = ∂(f(x,y))

∂y , Sx =
∫ x
0
f(t,y)
t dt and Sy =

∫ y
0
f(x,t)
t dt.

This paper is organised as follows. Section 1 consists of a brief introduction which is
essential for the development of main results. Section 2 will consist of the first zagreb, se-
cond zagreb, modified second zagreb indices, generalized randic, inverse randic indices
and SDD index of M -polynomials of carbon nanocones using Q(G) operator, hexagonal
networks and probabilistic neural network. Finally, conclusions and appropriate referen-
ces are appended.
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TABLE 1. Derivation of some degree-based topological indices from M -polynomials.

Topological index f(x, y) Derivation from M(G;x, y)
First Zagreb x+ y (Dx +Dy)(M(G;x, y)) |x=y=1

Second Zagreb xy (DxDy)(M(G;x, y)) |x=y=1

Second Modified Zagreb 1
xy (SxSy)(M(G;x, y)) |x=y=1

Randić (xy)α (Dα
xD

α
y )(M(G;x, y)) |x=y=1

Generalized Randić 1
(xy)α (SαxS

α
y )(M(G;x, y)) |x=y=1

Symmetric Division Deg x2+y2

xy (DxSy + SxDy)(M(G;x, y)) |x=y=1

2. M-POLYNOMIALS OF CARBON NANOCONE USING Q(G) OPERATOR, HEXAGONAL
NETWORK AND PROBABILISTIC NEURAL NETWORK

In this section closed forms of M -polynomials of carbon nanocones using Q(G) opera-
tor, hexagonal networks and probabilistic neural networks is calculated and closed forms
of various degree-based topological indices of these structures is also computed.

Theorem 2.1. Let G be a graph of Q[CNCk[n]] nanocones for k ≥ 3 and n = 1, 2, 3, ...,. Then
the M-polynomial is

M(G, x, y) = 2kx2y4 + 2knx2y5 + 2knx3y5 + kn(3n+ 1)x3y6 + 2kx4y5

+ k(2n− 1)x5y5 + 2knx5y6 + 3kn2x6y6.

Proof. Let G be the Q[CNCk[n]] where k is the length of cycle at its central part and n is
the level of hexagons positioned at the conical exterior around its central part as shown
in FIGURE 1. The graph G consists of k(n+1)(5n+4)

2 and 3k[1 + n(3 + 2n)] edges. Graph G
have 8 types of edges as folllows

E(2,4) = {e = uv ∈ E(G) | du = 2, dv = 4} → |E(2,4)| = 2k

E(2,5) = {e = uv ∈ E(G) | du = 2, dv = 5} → |E(2,5)| = 2kn

E(3,5) = {e = uv ∈ E(G) | du = 3, dv = 5} → |E(3,5)| = 2kn

E(3,6) = {e = uv ∈ E(G) | du = 3, dv = 6} → |E(3,6)| = kn(3n+ 1)

E(4,5) = {e = uv ∈ E(G) | du = 4, dv = 5} → |E(4,5)| = 2k

E(5,5) = {e = uv ∈ E(G) | du = 5, dv = 5} → |E(5,5)| = k(2n− 1)

E(5,6) = {e = uv ∈ E(G) | du = 5, dv = 6} → |E(5,6)| = 2kn

E(6,6) = {e = uv ∈ E(G) | du = 6, dv = 6} → |E(6,6)| = 3kn2

Thus, the M -polynomial of Q[CNCk(n)] is

M(G, x, y) =
∑
i≤j

mij(G)xiyj

=
∑
2≤4

m24(G)x2y4 +
∑
2≤5

m25(G)x2y5 +
∑
3≤5

m35(G)x3y5

+
∑
3≤6

m36(G)x3y6 +
∑
4≤5

m45(G)x4y5 +
∑
i=j=5

m55(G)x5y5

+
∑
5≤6

m56(G)x5y6 +
∑
i=j=6

m66(G)x6y6

= | E(2,4) | x2y4+ | E(2,5) | x2y5+ | E(3,5) | x3y5

+ | E(3,6) | x3y6+ | E(4,5) | x4y5+ | E(5,5) | x5y5
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+ | E(5,6) | x5y6+ | E(6,6) | x6y6

∴M(G, x, y) = 2kx2y4 + 2knx2y5 + 2knx3y5 + kn(3n+ 1)x3y6 + 2kx4y5

+ k(2n− 1)x5y5 + 2knx5y6 + 3kn2x6y6.

�

Theorem 2.2. Let G be a graph of Q[CNCk[n]] nanocones for k ≥ 3 and n = 1, 2, 3, ...,. Then

1.M1(G) = 20k + 81kn+ 63kn2.

2.M2(G) = k2[91 + 3n[324n3 + 828n2 + 729n+ 255]].

3.mM2(G) = k2
[
3

2
n4 +

107

20
n3 +

711

100
n2 +

417

100
n+

91

100

]
.

4. Rα(G) = [k2[91 + 3n[324n3 + 828n2 + 729n+ 255]]]α.

5. R
′

α(G) =

[
k2
[
3

2
n4 +

107

20
n3 +

711

100
n2 +

417

100
n+

91

100

]]α
.

6. SDD(G) = k2
[
81n4 +

2517

10
n3 +

2827

10
n2 +

669

5
n+

109

5

]
.

Proof. For polynomial equation applying the Table 1 values, we obtained the required
results. �

Theorem 2.3. Let H be the graph of hexagonal network HXn. Then the M-polynomial is

M(H,x, y) = 12x3y4 + 6x3y6 + (6n− 18)x4y4 + (12n− 24)x4y6

+ (9n2 − 33n+ 30)x6y6.

Proof. Let H be the graph of hexagonal network HXn where n is the number of vertices
on each side of hexagon. The graph H consists of 3n2 − 3n+ 1 vertices and 9n2 − 15n+ 6
edges. Graph H have 5 types of edges as folllows

E(3,4) = {e = uv ∈ E(H) | du = 3, dv = 4} → |E(3,4)| = 12

E(3,6) = {e = uv ∈ E(H) | du = 3, dv = 6} → |E(3,6)| = 6

E(4,4) = {e = uv ∈ E(H) | du = 4, dv = 4} → |E(4,4)| = 6n− 18

E(4,6) = {e = uv ∈ E(H) | du = 4, dv = 6} → |E(4,6)| = 12n− 24

E(6,6) = {e = uv ∈ E(H) | du = 6, dv = 6} → |E(6,6)| = 9n2 − 33n+ 30

Thus, the M -polynomial of HXn is

M(H,x, y) =
∑
i≤j

mij(H)xiyj

=
∑
3≤4

m34(H)x3y4 +
∑
3≤6

m36(H)x3y6 +
∑
i=j=4

m44(H)x4y4

+
∑
4≤6

m46(H)x4y6 +
∑
i=j=6

m66(H)x6y6

= | E(3,4) | x3y4+ | E(3,6) | x3y6+ | E(4,4) | x4y4

+ | E(4,6) | x4y6+ | E(6,6) | x6y6

∴M(H,x, y) = 12kx3y4 + 6x3y6 + (6n− 18)x4y4 + (12n− 24)x4y6

+ (9n2 − 33n+ 30)x6y6.

�
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Theorem 2.4. Let H be a graph of Hexagonal network HXn . Then

1.M1(H) = 108n2 − 372n+ 114.

2.M2(H) = 2916n4 − 20088n3 + 37152n2 − 10188.

3.mM2(H) =
9

4
n4 − 9

2
n3 +

7

2
n2 − 3

2
n+

1

4
.

4.Rα(H) = [108n2 − 372n+ 114]α.

5.R
′

α(H) =

[
9

4
n4 − 9

2
n3 +

7

2
n2 − 3

2
n+

1

4

]α
.

6.SDD(H) = 3[54n4 − 240n3 + 241n2 − 8n+ 19].

Proof. For polynomial equation applying the Table 1 values, we obtained the required
results. �

Theorem 2.5. Let P be a graph of PNN(n, k,m) . Then the M -polynomial is

M(P, x, y) = nkmxn+1ykm + kmxmyn+1.

Proof. Let P be the PNN(n, k,m) where n is the number of vertices in first layer, k is the
number of class in hidden layer and m is the number of vertices in each class. The graph
P consists of n+ k(m+ 1) vertices and km(n+ 1) edges as shown in FIGURE 3. Graph P
have 2 types of edges as folllows

E(n+1,km) = {e = uv ∈ E(G) | du = n+ 1, dv = km} → |E(n+1,km)| = nkm

E(m,n+1) = {e = uv ∈ E(G) | du = m, dv = n+ 1} → |E(m,n+1)| = km

Thus, the M -polynomial of PNN(n, k,m) is

M(P, x, y) =
∑
i≤j

mij(P )xiyj

=
∑

n+1≤km

m(n+1)(km)(P )xn+1ykm +
∑

m≤n+1

m(m)(n+1)(P )xmyn+1

=| E(n+1,km) | xn+1ykm+ | E(m,n+1) | xmyn+1

∴M(P, x, y) = nkmxn+1ykm + kmxmyn+1.

�

Theorem 2.6. Let P be a graph of PNN(n, k,m) neural network. Then

1. M1(P ) = km[n[km+ n+ 2] +m+ 1].

2. M2(P ) = k2m2[n[km(n2 + n+ 1) + (n+ 1)2 +m] +m].

3. mM2(P ) =
kn(m+ 1)

(n+ 1)2

(
km+ (n+ 1)2

)
.

4. Rα(P ) = [k2m2[n[km(n2 + n+ 1) + (n+ 1)2 +m] +m]]α.

5. R
′

α(P ) =

[
kn(m+ 1)

(n+ 1)2

(
km+ (n+ 1)2

)]α
.

6. SDD(P ) = km

[
kmn+

1

n+ 1
(2 + kmn(km+ kn+ n+ 2)

+ n(kn+ 2)) + n(n2 + n+m)

]
.
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Proof. For polynomial equation applying the Table 1 values, we obtained the required
results. �

3. CONCLUSIONS

In this article, we computed the closed form of M -polynomial for carbon nanocones
using Q operator, hexagonal networks HXn and probabilistic neural network PNN(n, k,m).
Then, we derived certain degree-based topological indices for these structures. Also we
plot surfaces associated with these structures that show the dependence of each topologi-
cal index on the parameters of the structure.
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