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Escape from solutions stagnation.
A Study on Ant System solving TSP

CAMELIA-M. PINTEA1, BARNA IANTOVICS2, PETRICĂ C. POP1 and MATTHIAS
DEHMER3,4

ABSTRACT. Nowadays, routing problems arise in different contexts of distribution of goods, transportation
of commodities and people. Routing problems deals with traveling along a given network in an optimal way.
One of the major goals in optimization, including optimization of routing problems, is to reduce the time of
stagnation by finding an exit state. The current work is a study about the ability of ants to escape from solution
stagnation on a particular routing problem, the Traveling Salesman Problem.

1. INTRODUCTION

Sometimes, during the process of solving some combinatorial optimization problems,
the algorithms get stuck in local solutions. Most of the time, during search, a large number
of states with the same heuristic function value are explored.

The complexity of combinatorial optimization problems (COP) is given among others
by the complexity of the large-scale graphs and networks. In [7] a score to categorize
networks based on their structural complexity is introduced. Hamson and Kibler [10] in-
vestigated when to give up searching and start again the Boolean Satisfiability Problem; the
main result was that it was better to re-start from an initial random state than to attempt to
escape from plateaus. Extensive search is used for this purpose. Restarting the algorithm
for escaping from plateaus is not always a good solution. For example, regarding the n-
queens problem, when n > 100, since all plateaus contain improvable states, restarting the
algorithm is not necessary, see [12].

Nowadays there are few techniques to prevent blockages. Routing problems, for exam-
ple the Traveling Salesman Problem [1, 3] and especially large-scale optimization problems
as generalized versions [14], such as the Generalized Traveling Salesman Problem [8, 13] and
the Generalized Vehicle Routing Problem [9], have also stagnation difficulties. In Ant Colony
Optimization (ACO) [4], the artificial ants are agents involved in solving combinatorial op-
timization problems. Recently [19], there is a mathematical model that applies adaptive
dynamics theory to the evolutionary dynamics of ant colonies. We will describe and test
some variants of ACO in the case of the Traveling Salesman Problem (TSP) in order to see
which variant provides the best strategy to escape from stagnation.

The paper is organized as follows. The next section describes the phenomenon of stag-
nation in combinatorial optimization problems. Different ant-based models are studied
in Section Ant systems escaping from stagnation. The study of ant techniques for escaping
from stagnation and discussions about tests results are shown in Section Experiments and
analysis of results. The paper concludes with the benefits of the described techniques and
mentions some further research.
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2. ANT SYSTEMS ESCAPING FROM STAGNATION

Metaheuristic approaches are based on two factors: ”information shared among con-
currently search algorithms” and ”different representation level of the solution space”.
In order to compensate the lack of gradient in cost functions, they frequently re-start the
algorithm. Sometimes fuzziness could be present [2]. One of the most efficient metaheu-
ristic nowadays is Ant Colony Optimization (ACO). In ACO, artificial ants build a solution
to a combinatorial optimization problem by traversing a graph. The ants move from ver-
tex to vertex along the edges of the graph, incrementally building a solution. In some
variants as [3, 13] improved local update rules are used. The ants deposit an amount of
pheromone on the traversed edges. The amount of deposited pheromone depends on the
quality of the already found solution. The other ants use the pheromone information for
guiding towards more promising edges.

Ant Colony Optimization
1 Set parameters, initialize pheromone trails
2 while termination conditions do not meet do
3 Construct Ant Solutions
4 Apply local search (optional)
5 Update pheromones
6 end while
7 return best solution

In order to study the ability of ant systems to escape from stagnation, we investigate the
following variants of ACO.: Ant System (AS) [5], the first implementation of ACO, MAX-
MIN Ant System (MMAS) [17], Ant Colony System (ACS) [3] and Elitist Ant System (EAS) [6].

In Ant System (AS), the artificial ants have some memory, the ants are not completely
blind and they will live in an environment where time is discrete. In AS, agents are guided
by an auto-catalytic process directed by a greedy force [5].

MAX-MIN Ant System (MMAS) [17] is an improvement of Ant System. The most impor-
tant changes are that only the best ant can update the pheromone trails, and the minimum
and maximum values of the pheromone are limited.

Another improved version of Ant System is Ant Colony System (ACS) [3]. In ACS, a local
pheromone update rule is introduced in addition to the AS global pheromone update
rule. Dorigo et al. [6] introduced elitist ants in the Elitist Ant System. The elitist strategy
increases the importance of the ant that found the best tour. Elitism is a daemon action by
which the edges used by an ant generating the best tour from the beginning of the trial
get extra pheromone. The trail of the best tour, reinforced, will influence the search of the
agents.

Elitism seems to better address plateaus [15] when the graph coloring problem is pro-
posed to be solved a Multilevel Cooperative Heuristic (MCH). The proposed problem is diffi-
cult to solve due to the natural expression of the cost function, with large plateaus in which
solutions are ”close’ to each other having the same number of colors.

For the ant-based approach, it is important to study if elitism, when using elitist agents,
can avoid stagnation. Elitist Ant System is going to be compared with the already mentio-
ned ant-based systems: Ant System, Ant Colony System and Max-Min Ant System.

3. EXPERIMENTS AND ANALYSIS OF RESULTS

The main contribution of the paper consists in the study of stagnation for the Traveling
Salesman Problem (TSP), a well known NP hard routing problem, using Ant Colony Opti-
mization techniques. For testing TSP, the following TSPLIB [16] data-sets are considered:
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FIGURE 1. A representation of solution space with plateaus and local and
global solutions.

the 318-city problem of Lin-Kernighan, further denoted T1, and Padberg-Rinaldi data sets
with 1002, denoted T2 and 2392 cities respectively, denoted T3.

Based on preliminary computational experiments, we considered the following values
of the parameters: the heuristic values in the ants’ solution construction, β = 5; the eva-
poration rate is 0.1 and there are ten ants. Tables 1-3 presents the experimental results of
five consecutively runs within the maximal time of 60 seconds. A computer with AMD
2600, 1.9 GHz and 1024 MB memory was used.

The following notations are used in Tables 1-3. Mean RPD is the average of the runs
with the relative percentage deviation (RPD = Algsol−Minsol

Minsol
× 100) values between the

local optima versus the known optimal solution. Max.iter.stagnation represents the maxi-
mum number of iterations until the solution is found for each considered run. Tables 1-3
illustrate the stagnation sizes for the considered ant techniques on the given instances and
also the mean value for each instance.

TABLE 1. Stagnation study for ant-based algorithms on the Euclidean
TSP-318-city problem of Lin-Kernighan.

ACS AS MMAS EAS
Mean Max. Mean Max. Mean Max. Mean iter.
RPD % iter. RPD% iter. RPD % iter. RPD% iter.
2.91 81 2.99 38 2.38 42 2.53 52
2.25 80 3.22 28 2.14 52 1.57 69
4.22 71 4.01 49 2.79 30 2.24 48
1.60 82 3.70 45 2.97 68 0.88 60
1.50 94 3.69 47 1.80 35 1.95 66
2.496 81.6 3.522 41.4 2.416 45.4 1.834 59

Tables 1-3 illustrate stagnation sizes for the considered ant techniques on the given
instances and also the mean value for each instance.
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TABLE 2. Stagnation study for ant-based algorithms on the Euclidean
TSP-1002-city problem of Padberg-Rinaldi.

ACS AS MMAS EAS
Mean Max. Mean Max. Mean Max. Mean iter.
RPD % iter. RPD% iter. RPD % iter. RPD% iter.
0.89 126 2.18 451 1.14 193 1.07 55
1.08 207 2.48 185 0.93 47 1.19 332
1.14 365 2.10 266 1.33 575 1.13 61
1.10 363 2.30 112 1.12 59 1.13 262
1.15 120 2.39 115 0.88 213 1.25 142

TABLE 3. Stagnation sizes for ant-based algorithms on the Euclidean
TSP-2392-city problem of Padberg-Rinaldi.

ACS AS MMAS EAS
Mean Max. Mean Max. Mean Max. Mean iter.
RPD % iter. RPD% iter. RPD % iter. RPD% iter.
1.41 39 3.38 45 1.43 31 1.59 24
1.80 38 3.51 46 1.43 36 1.62 81
1.53 41 3.54 164 1.56 41 1.63 39
1.53 29 3.46 33 1.98 40 1.70 155
1.43 29 3.77 89 1.77 48 1.39 36

TABLE 4. Statistical analysis of stagnation for routing problems for
mean values in %.

Mean 95% interval Mean Std.Dev. (Hi,Low) Med. AvgDMed.
AS 3.11 2.817 to 3.412 0.652 (4.01, 2.10) 3.38 0.535
ACS 1.70 1.338 to 2.067 0.862 (4.22, 0.890) 1.50 0.509
MMAS 1.71 1.416 to 2.004 0.642 (2.97, 0.880) 1.56 0.505
EAS 1.52 1.160 to 1.889 0.455 (2.53, 0.880) 1.57 0.348

TABLE 5. Statistical analysis of stagnation for routing problems, itera-
tions in %.

Mean 95% interval Mean Std.Dev. (Hi,Low) Med. AvgDMed.
AS 114 59.59 to 168.8 116 (451.0, 28.0) 49.0 73.3
ACS 118 64.64 to 170.7 110 (365.0, 29.0) 81.0 68.7
MMAS 101 37.68 to 163.6 143 (575.0, 30.0 ) 47.0 63.5
EAS 98.8 44.19 to 153.4 89.1 (332.0, 24.0) 61.0 52.9

Tables 4 and 5 illustrate statistical analysis, for the cumulative results, including: the
mean, the 95% confidence interval for mean, standard deviation, the interval (high, low)
values, the median value and the average absolute deviation from median. Here are the
considered simulation data, the 318-city problem of Lin-Kernighan, T1, Padberg-Rinaldi
data sets with 1002, T2 and 2392 cities denoted T3.

A conclusion of the analysis is that Elitist Ant System has in general the smallest sizes,
showing that elitism is in general efficient in order to escape fast from stagnation.
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Figures 1 and 2 illustrate the statistical difference between the results of the algorithms,
ACS, AS, MMAS and EAS related to the mean RPD and iteration values. Figure 2 illus-
trate the plot of the group means with 95% confidence intervals on the ACO considered
algorithms for both mean and iteration values.

FIGURE 2. A Linear Box Plot of the considered data tested with the Ant
Colony Optimization algorithms: AS, ACS, MMAS and EAS.: the mean
values (left) and the iteration values (right).

FIGURE 3. The plot of the group means with 95% confidence intervals on
the considered Ant Colony Optimization algorithms: AS, ACS, MMAS
and EAS; on the left side for the mean values and on the right side for the
iteration values.

In particular for the 318-city problem of Lin-Kernighan, Ant System has achieved better
results than Elitist Ant System, Ant Colony System and Max-Min Ant System. Here AS with
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positive feedback avoids premature convergence and also escapes relatively fast from
stagnation but the final solution is not the best.

So, when analyzing the results of solving the Traveling Salesman Problem with ant
algorithms, we observe that in order to escape from stagnation, under current conditions
the elitism is more relevant than the local update pheromone rules.

Further research directions could include hybrid techniques with intelligent agent ba-
sed system [11], ant systems, Hill Climbing and Directed Plateau Search [18]. A good strategy
could be to introduce a small amount of noise to the search process or to use for example
sensitive agents [13] and a combination of diversification and deterministic greedy moves.

4. CONCLUSIONS AND FURTHER RESEARCH

The paper includes bio-inspired techniques, ant systems, involved in a preliminary
study about the ability to reduce the exploration time when solving the Traveling Sales-
man Problem. Several ant-based algorithms are tested and analyzed including the Elitist
Ant System. The variant with elitist agents has the potential to escape fast from stagna-
tion for the tested instances and used parameters. Further research will involve studies of
hybrid techniques to escape from stagnation on a large-scale combinatorial optimization
problem.
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