Some properties of the analytic functions with bounded radius rotation

Yaşar Polatog̃lu, Asena Çetinkaya and Oya Mert

Abstract

In the present paper, we introduce a new subclass of normalized analytic starlike functions by using bounded radius rotation associated with $q-$ analogues in the open unit disc \mathbb{D}. We investigate growth theorem, radius of starlikeness and coefficient estimate for the new subclass of starlike functions by using bounded radius rotation associated with q - analogues denoted by $\mathcal{R}_{k}(q)$, where $k \geq 2, q \in(0,1)$.

1. Introduction

Let \mathcal{A} be the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{D}=\{z:|z|<1\}$ and satisfy the conditions $f(0)=0, f^{\prime}(0)=1$ for every $z \in \mathbb{D}$. We say that f_{1} is subordinate to f_{2}, written as $f_{1} \prec f_{2}$, if there exists a Schwarz function ϕ which is analytic in \mathbb{D} with $\phi(0)=0$ and $|\phi(z)|<1$, such that $f_{1}(z)=f_{2}(\phi(z))$. In particular, when f_{2} is univalent, then the above subordination is equivalent to $f_{1}(0)=f_{2}(0)$ and $f_{1}(\mathbb{D}) \subset f_{2}(\mathbb{D})$ (Subordination principle [3]).

In 1971, Pinchuk [4] introduced and studied the classes \mathcal{P}_{k} and \mathcal{R}_{k}, where \mathcal{R}_{k} generalizes the class of starlike functions. Here \mathcal{P}_{k} denotes the class of functions $p(z)=$ $1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$, analytic in \mathbb{D} with $p(0)=1$ and having the representation

$$
p(z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t)
$$

where μ is real-valued function of bounded variation for which

$$
\int_{0}^{2 \pi} d \mu(t)=2 \quad \text { and } \quad \int_{0}^{2 \pi}|d \mu(t)| \leq k .
$$

The class \mathcal{R}_{k}, defined by Pinchuk in [4], consists of those functions f which satisfy the condition

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|\operatorname{Re}\left(r e^{i \theta} \frac{f^{\prime}\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right)\right| d \theta \leq k \pi, 0<r<1, z=r e^{i \theta} . \tag{1.2}
\end{equation*}
$$

Geometrically, the condition (1.2) is the total variation of the angle between radius vector $f\left(r e^{i \theta}\right)$ makes with the positive real axis is bounded by $k \pi$. Thus \mathcal{R}_{k} is the class of bounded radius rotation bounded by $k \pi$.

[^0]Denote by \mathcal{P}_{q} the family of functions p of the form $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$, analytic \mathbb{D} and satisfy the condition

$$
\left|p(z)-\frac{1}{1-q}\right| \leq \frac{1}{1-q},
$$

where $q \in(0,1)$ is a fixed real number.
The following lemma is first introduced in [6], later given in [2]:
Lemma 1.1. p is an element of \mathcal{P}_{q} if and only if $p(z) \prec \frac{1+z}{1-q z}$. This result is sharp for the functions $p(z)=\frac{1+\phi(z)}{1-q \phi(z)}$, where ϕ is a Schwarz function.

Using the definitions \mathcal{P}_{k} and \mathcal{P}_{q}, Noor and Noor introduced the class $\mathcal{P}_{k}(q)$ in [5] as below:

Definition 1.1. A function p of the form $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$, analytic in \mathbb{D} with $p(0)=1$ is said to be in the class $\mathcal{P}_{k}(q), k \geq 2, q \in(0,1)$ if and only if there exists $p_{1}^{(1)}, p_{2}^{(2)} \in \mathcal{P}_{q}$ such that

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}^{(1)}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}^{(2)}(z) \tag{1.3}
\end{equation*}
$$

For $q \rightarrow 1^{-}, \mathcal{P}_{k}(q)$ reduces to \mathcal{P}_{k}, (see [4]); for $k=2, \mathcal{P}_{k}(q)$ reduces to \mathcal{P}_{q}; for $k=2$, $q \rightarrow 1^{-}, \mathcal{P}_{k}(q)$ reduces to \mathcal{P} which is the well known class of functions with positive real part.

In the present paper, we give a new subclass of starlike functions with bounded radius rotation associated with q - analogues denoted by $\mathcal{R}_{k}(q)$.

Definition 1.2. Let f of the form (1.1) be an element of \mathcal{A}. If f satisfies the condition

$$
\begin{equation*}
z \frac{f^{\prime}(z)}{f(z)}=p(z), \quad p \in \mathcal{P}_{k}(q) \tag{1.4}
\end{equation*}
$$

with $k \geq 2, q \in(0,1)$, then f is called starlike function with bounded radius rotation with $q-$ analogues denoted by $\mathcal{R}_{k}(q)$.

Motivated by Definition 1.2, we investigate growth theorem, radius of starlikeness and coefficient inequality for the class $\mathcal{R}_{k}(q)$.

2. Main results

We first give growth theorem for the class $\mathcal{R}_{k}(q)$.
Theorem 2.1. If $f \in \mathcal{R}_{k}(q)$, then

$$
\begin{equation*}
r F(q, k,-r) \leq|f(z)| \leq r F(q, k, r) \tag{2.5}
\end{equation*}
$$

where

$$
F(q, k, r)=\frac{(1+q r)^{\left(\frac{k}{4}-\frac{1}{2}\right) \frac{(1+q)}{q}}}{(1-q r)^{\left(\frac{k}{4}+\frac{1}{2}\right) \frac{(1+q)}{q}}}
$$

$$
k \geq 2, q \in(0,1)
$$

Proof. Let p be an element of \mathcal{P}_{q} and $|z|=r<1$, then by Lemma 1.1 we have

$$
\begin{equation*}
\frac{1-r}{1+q r} \leq \operatorname{Rep}(z) \leq|p(z)| \leq \frac{1+r}{1-q r} . \tag{2.6}
\end{equation*}
$$

After simple calculations in (2.6), we get

$$
\begin{equation*}
\frac{1-\frac{k}{2}(1+q) r+q r^{2}}{(1-q r)(1+q r)} \leq \operatorname{Rep}(z) \leq \frac{1+\frac{k}{2}(1+q) r+q r^{2}}{(1-q r)(1+q r)} \tag{2.7}
\end{equation*}
$$

Inequality in (2.7) shows that the set of variability of $p \in \mathcal{P}_{k}(q)$ is the closed disc

$$
\begin{equation*}
\left|p(z)-\frac{1+q r^{2}}{1-q^{2} r^{2}}\right| \leq \frac{\frac{k}{2}(1+q) r}{1-q^{2} r^{2}} \tag{2.8}
\end{equation*}
$$

On the other hand from defintion of $\mathcal{R}_{k}(q)$, we can write

$$
\begin{equation*}
\left|z \frac{f^{\prime}(z)}{f(z)}-\frac{1+q r^{2}}{1-q^{2} r^{2}}\right| \leq \frac{\frac{k}{2}(1+q) r}{1-q^{2} r^{2}} \tag{2.9}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{1-\frac{k}{2}(1+q) r+q r^{2}}{(1-q r)(1+q r)} \leq \operatorname{Re} z \frac{f^{\prime}(z)}{f(z)} \leq \frac{1+\frac{k}{2}(1+q) r+q r^{2}}{(1-q r)(1+q r)} \tag{2.10}
\end{equation*}
$$

Since

$$
\operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right)=r \frac{\partial}{\partial r} \log |f(z)|
$$

then the equality (2.10) can be written

$$
\begin{equation*}
\frac{1-\frac{k}{2}(1+q) r+q r^{2}}{r(1-q r)(1+q r)} \leq \frac{\partial}{\partial r} \log |f(z)| \leq \frac{1+\frac{k}{2}(1+q) r+q r^{2}}{r(1-q r)(1+q r)} \tag{2.11}
\end{equation*}
$$

Taking integration on both sides of (2.11), we obtain

$$
r F(q, k,-r) \leq|f(z)| \leq r F(q, k, r)
$$

where

$$
F(q, k, r)=\frac{(1+q r)^{\left(\frac{k}{4}-\frac{1}{2}\right) \frac{(1+q)}{q}}}{(1-q r)^{\left(\frac{k}{4}+\frac{1}{2}\right) \frac{(1+q)}{q}}}
$$

This estimate is sharp because extremal function is

$$
f(z)=\frac{z(1+q z)^{\left(\frac{k}{4}-\frac{1}{2}\right) \frac{(1+q)}{q}}}{(1-q z)^{\left(\frac{k}{4}+\frac{1}{2}\right) \frac{(1+q)}{q}}} .
$$

Corollary 2.1. If we take $q=0$ in (2.9), we obtain

$$
\left|z \frac{f^{\prime}(z)}{f(z)}-1\right| \leq \frac{k r}{2}
$$

which gives

$$
\begin{equation*}
\frac{1}{r}-\frac{k}{2} \leq \frac{\partial}{\partial r} \log |f(z)| \leq \frac{1}{r}+\frac{k}{2} \tag{2.12}
\end{equation*}
$$

Integrating both sides of (2.12), we obtain

$$
\begin{equation*}
r F(k,-r) \leq|f(z)| \leq r F(k, r) \tag{2.13}
\end{equation*}
$$

where $F(k, r)=e^{\frac{k r}{2}}$. The inequality in (2.13) is sharp because extremal function is

$$
f(z)=z e^{\frac{k z}{2}}
$$

Theorem 2.2. For $k \geq 2$ and $q \in(0,1)$, starlikeness of the class $\mathcal{R}_{k}(q)$ is

$$
\begin{equation*}
r^{*}(f)=\frac{k(1+q)-\sqrt{k^{2}(1+q)^{2}-16 q}}{4 q} . \tag{2.14}
\end{equation*}
$$

Proof. Let $f \in \mathcal{A}$, then the real number

$$
r^{*}(f)=\sup \left\{r>0, \operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right)>0 \quad \text { for all } \quad z \in \mathbb{D}\right\}
$$

is called the starlikeness of the class \mathcal{A}. Then the inequality in (2.10) gives the starlikeness of the class $\mathcal{R}_{k}(q)$, that is

$$
\operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right) \geq \frac{1-\frac{k}{2}(1+q) r+q r^{2}}{(1-q r)(1+q r)}
$$

Hence for $r<r^{*}$ the right side of the preceding inequality is positive if

$$
r^{*}(f)=\frac{k(1+q)-\sqrt{k^{2}(1+q)^{2}-16 q}}{4 q}
$$

Remark 2.1. If $q \rightarrow 1^{-}$, then radius in (2.14) reduces to $r^{*}(f)=\frac{k-\sqrt{k^{2}-4}}{2}$. This is the radius of starlikeness of the class \mathcal{R}_{k} which was obtained by Pinchuk [4].

We now prove coefficient inequality for the class $\mathcal{R}_{k}(q)$. For our main theorem, we need the following two lemmas.
Lemma 2.2. [1] If p is an element of \mathcal{P}_{q}, then $\left|p_{n}\right| \leq 1+q$ for all $n \geq 1$. This result is sharp.
Lemma 2.3. Let $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ be an element of $\mathcal{P}_{k}(q)$, then

$$
\left|p_{n}\right| \leq \frac{k}{2}(1+q)
$$

for all $n \geq 1, k \geq 2$ and $q \in(0,1)$.This result is sharp for the functions

$$
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}^{(1)}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}^{(2)}(z)
$$

where $p_{1}^{(1)}, p_{2}^{(2)} \in \mathcal{P}_{q}$.
Proof. Let $p_{1}^{(1)}=1+a_{1} z+a_{2} z^{2}+\ldots$ and $p_{2}^{(2)}=1+b_{1} z+b_{2} z^{2}+\ldots \quad$. Since $p \in \mathcal{P}_{k}(q)$, then we have

$$
\begin{aligned}
p(z) & =\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}^{(1)}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}^{(2)}(z) \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left(1+a_{1} z+a_{2} z^{2}+\ldots\right)-\left(\frac{k}{4}-\frac{1}{2}\right)\left(1+b_{1} z+b_{2} z^{2}+\ldots\right) .
\end{aligned}
$$

Then, for nth term, we have

$$
p_{n}=\left(\frac{k}{4}+\frac{1}{2}\right) a_{n}-\left(\frac{k}{4}-\frac{1}{2}\right) b_{n} .
$$

Taking into account Lemma 2.2, $\left|a_{n}\right| \leq 1+q$ and $\left|b_{n}\right| \leq 1+q$ for all $n \geq 1$. Therefore

$$
\begin{aligned}
\left|p_{n}\right| & =\left|\left(\frac{k}{4}+\frac{1}{2}\right) a_{n}-\left(\frac{k}{4}-\frac{1}{2}\right) b_{n}\right| \\
& \leq\left(\frac{k}{4}+\frac{1}{2}\right)\left|a_{n}\right|+\left(\frac{k}{4}-\frac{1}{2}\right)\left|b_{n}\right| \\
& \leq\left(\frac{k}{4}+\frac{1}{2}\right)(1+q)+\left(\frac{k}{4}-\frac{1}{2}\right)(1+q) .
\end{aligned}
$$

This shows that,

$$
\left|p_{n}\right| \leq \frac{k}{2}(1+q)
$$

for all $n \geq 1, k \geq 2$ and $q \in(0,1)$.
Theorem 2.3. If $f \in \mathcal{R}_{k}(q)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1}{(n-1)!} \prod_{\nu=0}^{n-2}\left(\nu+\frac{k}{2}(1+q)\right) \tag{2.15}
\end{equation*}
$$

This inequality is sharp for every $n \geq 2, k \geq 2$ and $q \in(0,1)$.
Proof. In view of definition of the class $\mathcal{R}_{k}(q)$ and subordination principle, we can write

$$
z \frac{f^{\prime}(z)}{f(z)}=p(z)
$$

where $p \in \mathcal{P}_{k}(q)$ with $p(0)=1$. Since $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$, then we have

$$
z f^{\prime}(z)=f(z) p(z)
$$

Therefore,
$z+2 a_{2} z^{2}+3 a_{3} z^{3}+\ldots=z+\left(a_{2}+p_{1}\right) z^{2}+\left(a_{3}+p_{1} a_{2}+p_{2}\right) z^{3}+\left(a_{4}+p_{1} a_{3}+p_{2} a_{2}+p_{3}\right) z^{4}+\ldots$
Comparing the coefficients of z^{n} on both sides, we obtain

$$
n a_{n}=a_{n}+p_{1} a_{n-1}+p_{2} a_{n-2}+\ldots+p_{n-2} a_{2}+p_{n-1}
$$

for all integer $n \geq 2$. In view of Lemma 2.3, we get

$$
(n-1)\left|a_{n}\right| \leq \frac{k}{2}(1+q)\left(\left|a_{n-1}\right|+\ldots+\left|a_{2}\right|+1\right)
$$

or equivalently

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1}{(n-1)} \frac{k}{2}(1+q) \sum_{\nu=1}^{n-1}\left|a_{\nu}\right|, \quad\left|a_{1}\right|=1 . \tag{2.16}
\end{equation*}
$$

Induction shows that we have

$$
\left|a_{n}\right| \leq \frac{1}{(n-1)!} \prod_{\nu=0}^{n-2}\left(\nu+\frac{k}{2}(1+q)\right)
$$

This estimate is sharp because extremal function is

$$
z \frac{f^{\prime}(z)}{f(z)}=\left(\frac{k}{4}+\frac{1}{2}\right) \frac{1+z}{1-q z}-\left(\frac{k}{4}-\frac{1}{2}\right) \frac{1-z}{1+q z}
$$

which gives

$$
f(z)=\frac{z(1+q z)^{\left(\frac{k}{4}-\frac{1}{2}\right) \frac{(1+q)}{q}}}{(1-q z)^{\left(\frac{k}{4}+\frac{1}{2}\right) \frac{(1+q)}{q}}} .
$$

Remark 2.2. Taking $q \rightarrow 1^{-}$and choosing $k=2$ in (2.15), we get $\left|a_{n}\right| \leq n$ for every $n \geq 2$. This result is the well known coefficient inequality for starlike functions.

References

[1] Çetinkaya, A., Kahramaner, Y. and Polatog̃lu, Y., Some results on q - starlike functions of complex order, Submitted, 2017
[2] Çetinkaya, A. and Mert, O., A certain class of harmonic mappings related to functions of bounded boundary rotation, Proc. of $12^{\text {th }}$ Symposium on Geometric Function Theory and Applications, (2016), 67-76
[3] Goodman, A. W., Univalent functions volume I and II, Polygonal Pub. House, 1983
[4] Pinchuk, B., Functions of Bounded Boundary Rotation, Isr. J. Math., 10 (1971), 6-16
[5] Noor, K. I. and Noor, M. A., Linear combinations of generaized q - starlike functions, Appl. Math. Inf. Sci., 11 (2017), 745-748
[6] Yemişci, A. and Polatog̃lu, Y., Growth and distortion theorems for q - convex functions, Submitted, 2016

```
Department of Mathematics and Computer Sciences
Istanbul KÜltür University
Istanbul, Turkey
E-mail address: y.polatoglu@iku.edu.tr
Department of Mathematics and Computer Sciences
Istanbul KÜltÜr University
Istanbul, Turkey
E-mail address: asnfigen@hotmail.com
Department of Basic Sciences
Istanbul Altinbaş University
Istanbul, Turkey
E-mail address: oya.mert@altinbas.edu.tr
```


[^0]: Received: 22.06.2018. In revised form: 03.12.2018. Accepted: 10.12.2018
 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Bounded radius rotation, growth theorem, radius of starlikeness, coefficient estimate.
 Corresponding author: Asena Çetinkaya, asnfigen@hotmail.com

