CREAT. MATH. INFORM.
28 (2019), No. 2,
105-112

Abel extensions of some classical Tauberian theorems

Erdal Gül and Mehmet Albayrak

Abstract

The well-known classical Tauberian theorems given for A_{λ} (the discrete Abel mean) by Armitage and Maddox in [Armitage, H. D and Maddox, J. I., Discrete Abel means, Analysis, 10 (1990), 177-186] is generalized. Similarly the "one-sided" Tauberian theorems of Landau and Schmidt for the Abel method are extended by replacing $\lim A s$ with Abel-lim $A \sigma_{n}^{i}(s)$. Slowly oscillating of $\left\{s_{n}\right\}$ is a Tauberian condition of the Hardy-Littlewood Tauberian theorem for Borel summability which is also given by replacing $\lim _{t}(B s)_{t}=\ell$, where t is a continuous parameter, with $\lim _{n}(B s)_{n}=\ell$, and further replacing it by $\operatorname{Abel}-\lim \left(B \sigma_{k}^{i}(s)\right)_{n}=\ell$, where B is the Borel matrix method.

1. Introduction

Let $u=\left\{u_{n}\right\}$ be a sequence in \mathbb{R} (or \mathbb{C}).
Definition 1.1. ([2], [3], [5]) A series $\sum_{k=0}^{\infty} u_{k}$ of real (or complex) numbers is called Abel summable to ℓ if the series $\sum_{k=0}^{\infty} s_{k} x^{k}$ is convergent for $0 \leq x<1$ and

$$
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{k=0}^{\infty} s_{k} x^{k}=\ell \text {, where } s_{n}=\sum_{k=0}^{n} u_{k}
$$

In this case, we write $A b e l-\lim s_{n}=\ell$.
Definition 1.2. ([1]) A series $\sum_{k=0}^{\infty} u_{k}$ of real (or complex) numbers is called A_{λ} (the discrete Abel mean) convergent to ℓ if the series $\sum_{k=0}^{\infty} s_{k} x_{n}^{k}$ is convergent for all n and

$$
\lim _{x_{n} \rightarrow 1^{-}}\left(1-x_{n}\right) \sum_{k=0}^{\infty} s_{k} x_{n}^{k}=\ell,
$$

where $\lambda=\left\{\lambda_{n}\right\}$ is a given sequence such that $1 \leq \lambda_{0}<\lambda_{1}<\ldots<\lambda_{n} \rightarrow \infty$ and the sequence $\left\{x_{n}\right\}$ is defined by $x_{n}=1-\frac{1}{\lambda_{n}}$. Clearly $0 \leq x_{0}<x_{1}<\ldots<x_{n} \rightarrow 1$. In this case, we write $A_{\lambda}-\lim s_{n}=\ell$.

From definition 1.2, we say that the $\left\{s_{n}\right\}$ is in the domain of the method A_{λ} if the sequence $\left(A_{\lambda} s\right)_{n}:=\left(1-x_{n}\right) \sum_{k=0}^{\infty} s_{k} x_{n}^{k}$ is convergent for all n.
For $i \in \mathbb{N}$ and $n \in \mathbb{N}^{*}$, define

$$
\sigma_{n}^{i}(s)=\left\{\begin{array}{lll}
\frac{1}{n+1} \sum_{k=0}^{n} \sigma_{k}^{i-1}(s) & \text { if } & i \geq 1 \\
s_{n} & \text { if } & i=0
\end{array}\right.
$$

[^0]Abel's well- known Limit Theorem says that the Abel summability method is regular if $\lim s_{n}=\ell$ implies $A b e l-\lim s_{n}=\ell$. As we know the converse is false in general, e.g Abel $\sum_{n=0}^{\infty}(-1)^{n}=\frac{1}{2}$ (Abel) but $\lim _{n \rightarrow \infty} \sum_{k=0}^{n}(-1)^{k} \neq \frac{1}{2}$. Also, it is obvious that Abel $-\lim s_{n}=\ell$ implies $A_{\lambda}-\lim s_{n}=\ell$. Hence A_{λ} also defines a regular method. A_{λ} summability method is regular; that is, if, $A_{\lambda}-\lim s_{n}=\ell$ then $A_{\lambda}-\lim \sigma_{n}^{1}(s)=\ell$.
By [7], the series $\Sigma_{n=0}^{\infty} u_{n}$ is Borel summable to ℓ provided that

$$
\lim _{t \rightarrow \infty} e^{-t} \sum_{k=0}^{\infty} \frac{s_{k} t^{k}}{k!}=\ell
$$

Consider as in [4] the summability matrix $B=\left(b_{n k}\right)$ is given by

$$
b_{n k}=\frac{e^{-n} n^{k}}{k!}
$$

By [11], it is known that $\left\{s_{n}\right\}$ is slowly oscillating if for any given $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ and $N=N(\varepsilon)$ such that

$$
\left|s_{m}-s_{n}\right|<\varepsilon \text { if } n \geq N(\varepsilon) \text { and } n \leq m \leq(1+\delta) n
$$

and $\left\{s_{n}\right\}$ of real numbers is slowly decreasing if

$$
\liminf \left(s_{m}-s_{n}\right) \geq 0 \text { whenever } n \rightarrow \infty, m>n \text { with } \frac{m}{n} \rightarrow 1
$$

Thus, in particular, $\left\{s_{n}\right\}$ is slowly oscillating when $n \Delta s_{n}$ is bounded and $\left\{s_{n}\right\}$ is slowly decreasing when $n \Delta s_{n}$ is bounded below.
Also, we say that $\left\{s_{n}\right\}$ is strongly slowly oscillating if

$$
\left(s_{m}-s_{n}\right) \rightarrow 0 \text { whenever } n \rightarrow \infty, m>n \text { with } \frac{m}{n}=O(1)
$$

and $\left\{s_{n}\right\}$ is strongly slowly decreasing if $\left\{s_{n}\right\}$ is real and

$$
\liminf \left(s_{m}-s_{n}\right) \geq 0 \text { whenever } n \rightarrow \infty, m>n \text { with } \frac{m}{n}=O(1)
$$

Define $t_{n}=\sum_{k=1}^{n} k u_{k}=\sum_{k=1}^{n} k \Delta s_{k}$ and $\Delta s_{k}=s_{k}-s_{k-1}, s_{-1}=0$. We will prove that

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{n} k u_{k}=(n+1) s_{n}-\sum_{k=0}^{n} s_{k} . \tag{1.1}
\end{equation*}
$$

We prove this by using mathematical induction. We show that our claims true for $n=1$:

$$
\begin{gathered}
t_{1}=1 u_{1}=2 s_{1}-\left(s_{0}+s_{1}\right)=2 s_{1}-s_{1}-s_{0}=s_{1}-s_{0}=u_{1} . \\
\text { For } n=2, \quad t_{2}=u_{1}+2 u_{2}=3 s_{2}-\left(s_{0}+s_{1}+s_{2}\right)=2 s_{2}-s_{0}-s_{1}=2 u_{2}+u_{1} .
\end{gathered}
$$

Assume that it is true for $n=m$;

$$
\begin{equation*}
t_{m}=\sum_{k=1}^{m} k u_{k}=(m+1) s_{m}-\sum_{k=0}^{m} s_{k} \tag{1.2}
\end{equation*}
$$

and we prove that it is true for $n=m+1$: we add both sides $(m+1) u_{m+1}$ of the equality (1.2)

$$
t_{m}+(m+1) u_{m+1}=\sum_{k=1}^{m} k u_{k}+(m+1) u_{m+1}=(m+1) s_{m}+(m+1) u_{m+1}-\sum_{k=0}^{m} s_{k}
$$

$$
\begin{aligned}
& t_{m+1}=\sum_{k=1}^{m+1} k u_{k}=(m+1) s_{m+1}+s_{m+1}-s_{m+1}-\sum_{k=0}^{m} s_{k} \\
& t_{m+1}=\sum_{k=1}^{m+1} k u_{k}=(m+2) s_{m+1}-\sum_{k=0}^{m+1} s_{k} .
\end{aligned}
$$

Thus proof is done. We obtain from (1.1)

$$
z_{n}:=\frac{t_{n}}{n+1}=s_{n}-\sigma_{n}^{1}(s)=\frac{1}{n+1} \sum_{k=1}^{n} k \Delta s_{k}=n \Delta \sigma_{n}^{1}(s)
$$

and

$$
\sigma_{n}^{i}(z)=\sigma_{n}^{i}(s)-\sigma_{n}^{i+1}(s)=n \Delta \sigma_{n}^{i+1}(s) .
$$

Here, $\left\{z_{n}\right\}$ is known as the Kronecker identity. The classical control modulo of the oscillatory behaviour of a sequence $\left\{s_{n}\right\}$ is denoted by $w_{n}^{0}(s)=n \Delta s_{n}$. The general control modulo of the oscillatory behaviour of nonnegative integer order $m \geq 1$ of a sequence $\left\{s_{n}\right\}$ is defined inductively in [3] by $w_{n}^{m}(s)=w_{n}^{m-1}(s)-\sigma_{n}^{1}\left(w_{n}^{m-1}(s)\right)$. General control modulo is developed by Çanak in [2].

Throughout this paper, the symbols $s_{n}=o(1)$ and $s_{n}=O(1)$ mean that $s_{n} \rightarrow 0$ as $n \rightarrow \infty$ and that $\left\{s_{n}\right\}$ is bounded for large enough n, respectively.

Theorem 1.1. ([1]) Let $\left\{\lambda_{n}\right\}$ be a strictly increasing sequence of real numbers which tends to infinity such that

$$
\lim _{n} \frac{\lambda_{n+1}}{\lambda_{n}}=1 .
$$

If the $A_{\lambda}-\lim s_{n}=\ell$ and $\left\{s_{n}\right\}$ is slowly decreasing, then $\lim s_{n}=\ell$.
Lemma 1.1. ([1]) If $\left\{s_{n}\right\}$ is slowly decreasing, then $\left\{\frac{t_{n}}{n}\right\}$ is bounded below.
Now, we will prove that the hypothesis $A_{\lambda}-\lim s_{n}=\ell$ and slowly decreasing of $\left\{s_{n}\right\}$ can be replaced by $A_{\lambda}-\lim \sigma_{n}^{i}(s)=\ell$ and slowly decreasing of $\left\{z_{n}\right\}$. So, we generalize some classical types of Tauberian theorems for given A_{λ}. Moreover, we extend the "one-sided" Tauberian theorems of Landau and Schmidt's Tauberian theorems for the Abel method by replacing $\lim A s$ with Abel-lim $A \sigma_{n}^{i}(s)$.
Before proving our statements, we recall more results that we will need in the sequel.
Theorem 1.2. ([9], [11])
(1) If Abel- $\lim s_{n}=\ell$ and $n \Delta s_{n} \geq-c$ for a positive number c then $\lim s_{n}=\ell$.
(2) Let a sequence $\left\{s_{n}\right\}$ of real numbers be slowly decreasing. Then

Abel $-\lim s_{n}=\ell$ implies $\lim s_{n}=\ell$.
(3) If Borel $-\lim s_{n}=\ell$ and $\Delta s_{n}=o(1)$ then $\lim \sigma_{n}^{1}(s)=\ell$.

2. Main results

Lemma 2.2. If the $\left\{s_{n}\right\}$ is in the domain of method A_{λ} for which $\lambda_{n}=n^{\beta}$, for some $\beta \geq 1$ and $n \Delta s_{n} \geq-c$ for some positive c, then the transformed sequence $n \Delta\left(A_{\lambda} \sigma_{k}^{i}(s)\right)_{n}$ is also of one-sided, that is $n \Delta\left(A_{\lambda} \sigma_{k}^{i}(s)\right)_{n} \geq c_{1}$ for some positive c_{1}.
Proof. By the proof of Theorem 2.5 in [6], if $n \Delta s_{n} \geq-c$ for a positive number c then $n \Delta \sigma_{n}^{i}(s) \geq-c$. In [1] Armitage and Maddox showed that if we let $v_{k}(x)=\frac{x^{k}}{k}$ then

$$
(1-x) \sum_{k=0}^{\infty} \sigma_{k}^{i}(s) x^{k}=\sum_{k=1}^{\infty} \Delta \sigma_{k}^{i}(s) x^{k}=\sum_{k=1}^{\infty} y_{k}\left(v_{k}(x)-v_{k+1}(x)\right), \quad 0<x<1
$$

where $y_{k}=\sum_{j=1}^{k} j \Delta \sigma_{j}^{i}(s)$. It follows that from $n \Delta \sigma_{n}^{i}(s) \geq-c, y_{k}=\sum_{j=1}^{k} j \Delta \sigma_{j}^{i}(s) \geq-k c$. Hence we see that since $\left\{\sigma_{k}^{i}(s)\right\}$ verifies the one-sided Tauberian condition, $\left\{y_{k}\right\}$ is bounded below by $-k M$ for some positive number M. If the Abel transform of $\left\{\sigma_{n}^{i}(s)\right\}$ is denoted by $A(x)=\left(A \sigma_{k}^{i}(s)\right)_{x}$ then, for such a positive constant M, we have

$$
\begin{aligned}
& n \Delta A\left(x_{n}\right)=n\left(A\left(x_{n}\right)-A\left(x_{n-1}\right)\right)=n\left(\sum_{k=1}^{\infty} y_{k} \int_{x_{n-1}}^{x_{n}} y^{k-1}(1-y) d y\right) \\
& \geq-n\left(M \sum_{k=1}^{\infty} k \int_{x_{n-1}}^{x_{n}} y^{k-1}(1-y) d y\right)=-n\left(M \int_{x_{n-1}}^{x_{n}} \sum_{k=1}^{\infty} k y^{k-1}(1-y) d y\right) \\
& =-n\left(M \int_{x_{n-1}}^{x_{n}}(1-y)^{-1} d y\right) \geq n\left(-M \log \frac{n^{\beta}}{(n-1)^{\beta}}\right) \geq-M \log \left(\frac{n^{\beta}+1}{(n-1)^{\beta}}\right)^{n} \\
& =-M \log \left(\frac{n^{\beta}}{(n-1)^{\beta}}+\frac{1}{(n-1)^{\beta}}\right)^{n}=-M \log \left(C^{\beta}+D^{\beta}\right)^{n} \\
& =-M \log C^{n \beta}\left[1+\left(\frac{D}{C}\right)^{\beta}\right]^{n}=-M\left[\log \left(\frac{n}{n-1}\right)^{n \beta}+\log \left(1+\frac{1}{n^{\beta}}\right)^{n}\right] \\
& =-M\left[\beta \log \left(1+\frac{1}{n-1}\right)^{n}+\log \left[\left[1+\left(\frac{1}{n}\right)^{\beta}\right]^{n^{\beta}}\right]^{n^{1-\beta}}\right] \\
& =-M\left[\beta \log \left[\left(1+\frac{1}{n-1}\right)^{n-1}\left(1+\frac{1}{n-1}\right)\right]+\log \left[\left[1+\left(\frac{1}{n}\right)^{\beta}\right]^{n^{\beta}}\right]^{n^{1-\beta}}\right] .
\end{aligned}
$$

Hence, we obtain

$$
\left.\begin{array}{l}
\liminf _{n} n \Delta A_{\lambda}\left(x_{n}\right) \geq \\
\quad \liminf \\
n
\end{array}\right) M\left[\beta \log \left[\left(1+\frac{1}{n-1}\right)^{n-1}\left(1+\frac{1}{n-1}\right)\right]+\log \left[\left[1+\left(\frac{1}{n}\right)^{\beta}\right]^{n^{\beta}}\right]^{n^{1-\beta}}\right] \quad \begin{aligned}
& \quad=-M \lim \sup _{n}\left[\beta \log \left[\left(1+\frac{1}{n-1}\right)^{n-1}\left(1+\frac{1}{n-1}\right)\right]+\log \left[\left[1+\left(\frac{1}{n}\right)^{\beta}\right]^{n^{\beta}}\right]^{n^{1-\beta}}\right] \\
& \quad=-M\left(\beta+\log e^{0}\right)=-M \beta .
\end{aligned}
$$

Consequently, we see that the sequence $\left(A_{\lambda} \sigma_{k}^{i}(s)\right)_{n}$ obeys the one-sided Tauberian condition.

Lemma 2.3. If the $\left\{s_{n}\right\}$ is in the domain of the method A_{λ} and is of slowly decreasing then the transformed sequence $\left(A_{\lambda} \sigma_{k}^{i}(s)\right)_{n}$ is also of slowly decreasing.

Proof. Proof is similar to one of Lemma 2.2.
Lemma 2.4. If $\left\{s_{n}\right\}$ is slowly decreasing then $\left\{\sigma_{n}^{i}(s)\right\}$ for all $i \geq 1$ is slowly decreasing.
Proof. We claim that $\left\{\sigma_{n}^{i}(s)\right\}$ for all $i \geq 1$ is slowly decreasing. We will prove this by using mathematical induction. We show that our claims true for $i=1$. Let $\left\{s_{n}\right\}$ be slowly decreasing. By Lemma 1.1, $z_{n}=\frac{t_{n}}{n}=s_{n}-\sigma_{n}^{1}(s)$ is bounded below. Hence, $z_{n}=n \Delta \sigma_{n}^{1}(s)$ is bounded below. Consequently, $\left\{\sigma_{n}^{1}(s)\right\}$ is slowly decreasing. Assume that it is true for
$i=t-1$, and we will prove that it is true for $i=t$. By assumption, since $\left\{\sigma_{n}^{t-1}(s)\right\}$ is slowly decreasing and applying Lemma 1.1, we obtain $\left.\sigma_{n}^{t-1}(z)\right)=n \Delta \sigma_{n}^{t}(s)$ is bounded below. Hence, there exits a positive constant M such that $n \Delta \sigma_{n}^{t}(s) \geq-M$ for all n. For n large enough, $n>N_{1}, \sigma_{m}^{t}(s)-\sigma_{n}^{t}(s)=\sum_{k=n+1}^{m} \Delta \sigma_{k}^{t}(s) \geq-\sum_{k=n+1}^{m} \frac{M}{k}=-M\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{m}\right) \geq$ $-M\left(\frac{1}{n+1}+\frac{1}{n+1}+\ldots+\frac{1}{n+1}\right) \geq-M\left(1-\frac{m}{n}\right) \geq-M(1-1)=0$, by $\frac{m}{n} \rightarrow 1$.

Lemma 2.5. If $\left\{s_{n}\right\}$ is slowly oscillating then $\left\{\sigma_{n}^{i}(u)\right\}$ for all $i \geq 1$ is slowly oscillating.
Proof. Proof is similar to one of Lemma 2.4.
Lemma 2.6. If $\left\{s_{k}\right\}$ is slowly oscillating then $\left\{\left(B \sigma_{k}^{i}(s)\right)_{n}\right\}$ is slowly oscillating.
Proof. By Lemma 2.5, slow oscillating of $\left\{s_{k}\right\}$ implies both $\left\{\sigma_{k}^{i}(s)\right\}$ for all $i \geq 1$ is slowly oscillating and $\Delta \sigma_{k}^{i}(s)=o(1)$. It follows that $\left|\sum_{k=n+1}^{m} \Delta \sigma_{k}^{i}(s)\right| \leq \frac{\varepsilon}{2}$ for n large enough. Thus we have

$$
\begin{aligned}
& \left|\left(B \sigma_{k}^{i}(s)\right)_{m}-\left(B \sigma_{k}^{i}(s)\right)_{n}\right|=\left|\left(B \sigma_{k}^{i}(s)\right)_{n+r}-\left(B \sigma_{k}^{i}(s)\right)_{n}\right| \\
& \quad=\left|\sum_{p=0}^{\infty} \sum_{j=0}^{p} b_{r, j} b_{n, p-j} \sigma_{p}^{i}(s)-\sum_{k=0}^{\infty} b_{n, k} \sigma_{k}^{i}(s)\right| \\
& \quad=\left|\sum_{j=0}^{\infty} b_{r, j} \sum_{p=j}^{\infty} b_{n, p-j} \sigma_{p}^{i}(s)-\sum_{k=0}^{\infty} b_{n, k} \sigma_{k}^{i}(s)\right| \\
& \quad=\left|\sum_{j=0}^{\infty} b_{r, j} \sum_{k=0}^{\infty} b_{n, k} \sigma_{k+j}^{i}(s)-\sum_{k=0}^{\infty} b_{n, k} \sigma_{k}^{i}(s)\right| \\
& \quad=\left|\sum_{j=0}^{\infty} b_{r, j} \sum_{k=0}^{\infty} b_{n, k}\left(\sigma_{k+j}^{i}(s)-\sigma_{k}^{i}(s)\right)\right| \\
& = \\
& \quad\left|\sum_{j=0}^{\infty} b_{r, j} \sum_{k=0}^{\infty} b_{n, k} \sum_{p=1}^{j} \Delta \sigma_{k+p}^{i}(s)\right| \\
& \quad \leq \sum_{j=0}^{\infty} b_{r, j} \sum_{k=0}^{\infty} b_{n, k} \sum_{p=1}^{j_{0}}\left|\Delta \sigma_{k+p}^{i}(s)\right|+\sum_{j=0}^{\infty} b_{r, j} \sum_{k=0}^{\infty} b_{n, k}\left|\sum_{p=j_{0}+1}^{j} \Delta \sigma_{k+p}^{i}(s)\right| \\
& \quad \leq \sum_{j=0}^{\infty} b_{r, j} \sum_{k=0}^{\infty} b_{n, k} \sum_{p=1}^{j_{0}} \frac{1}{k+p}+\sum_{j=0}^{\infty} b_{r, j} \sum_{k=0}^{\infty} b_{n, k} \frac{\varepsilon}{2} \\
& \quad \leq \sum_{j=0}^{\infty} b_{r, j} \sum_{k=0}^{\infty} b_{n, k} \sum_{p=1}^{j} \frac{1}{k+1}+\frac{\varepsilon}{2} \sum_{j=0}^{\infty} b_{r, j} \sum_{k=0}^{\infty} b_{n, k} \\
& \quad \leq \sum_{j=0}^{\infty} j b_{r, j} \sum_{k=0}^{\infty} b_{n, k} \frac{1}{k+1}+\frac{\varepsilon}{2}=\sum_{k=0}^{\infty} b_{n, k} \frac{1}{k+1}+\frac{\varepsilon}{2} \\
& \quad=\sum_{k=0}^{\infty} b_{n, k} \frac{n}{n(k+1)}+\frac{\varepsilon}{2}=\frac{1}{n} \sum_{k=0}^{\infty} b_{n, k} \frac{n}{k+1}+\frac{\varepsilon}{2} \\
& =\frac{1}{n} \sum_{k=0}^{\infty} b_{n, k+1}+\frac{\varepsilon}{2}=\frac{1}{n}+\frac{\varepsilon}{2} \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \\
& \quad
\end{aligned}
$$

for $n \geq n_{0}$ large enough.

Theorem 2.3 extends the Theorem 1.1 which is given in [1].
Theorem 2.3. Let $\lim _{n \rightarrow \infty} \frac{\lambda_{n+1}}{\lambda_{n}}=1$. If $A_{\lambda}-\lim \sigma_{n}^{i}(s)=\ell$ and $\left\{z_{n}\right\}$ is slowly decreasing then $\lim s_{n}=\ell$.

Proof. Since A_{λ} method is regular, $A_{\lambda}-\lim \sigma_{n}^{i+1}(s)=\ell$. Hence, we have $A_{\lambda}-\lim \sigma_{n}^{i}(z)=0$. By Lemma 2.4, as $z_{n}=n \Delta \sigma_{n}^{1}(s)$ is slowly decreasing, $\left(\sigma_{n}^{i}(z)\right)=n \Delta \sigma_{n}^{i+1}(s)$ for all $i \geq 1$ is slowly decreasing. Since $\left\{\sigma_{n}^{i}(z)\right\}$ is A_{λ} summability to $0, \lim \sigma_{n}^{i}(z)=\lim n \Delta \sigma_{n}^{i+1}(s)=0$. $\lim n \Delta \sigma_{n}^{i+1}(s)=0$ implies $n \Delta \sigma_{n}^{i+1}(s)$ is bounded below, that is, $n \Delta \sigma_{n}^{i+1}(s) \geq-c$ for some positive c. It follows that $\left\{\sigma_{n}^{i+1}(s)\right\}$ is slowly decreasing. If $\sigma_{n}^{i}(z)=\sigma_{n}^{i}(s)-\sigma_{n}^{i+1}(s)$ is slowly decreasing, then $\left\{\sigma_{n}^{i}(s)\right\}$ is slowly decreasing. From $A_{\lambda}-\lim \sigma_{n}^{i}(s)=\ell$, we have $\lim \sigma_{n}^{i}(s)=\ell$. By the fact that every sequence (C, 1) limitable is Abel limitable, we have Abel $-\lim \sigma_{n}^{i-1}(s)=\ell$. Abel $-\lim \sigma_{n}^{i-1}(s)=\ell$ implies $A_{\lambda}-\lim \sigma_{n}^{i-1}(s)=\ell$. If we continue in that way, we obtain, $A_{\lambda}-\lim s_{n}=\ell$. By Theorem 1.1, $\lim s_{n}=\ell$.

Theorem 2.3 generalises Theorem 1.1. For example, if we consider the case $i=1$ then the sequence $\left\{s_{n}\right\}$ which is the Taylor coefficients of the function f defined by $f(t)=$ $\sin (1-t)^{-1}$ on $0<t<1$ is not A_{λ} convergent however, Cesaro of the sequence $\left\{s_{n}\right\}$ is A_{λ} convergent.

An immediate consequence of Theorem 2.3 is that the boundedness below of $n \Delta z_{n}$ is a Tauberian condition for A_{λ}.
Corollary 2.1. Let $\lim _{n \rightarrow \infty} \frac{\lambda_{n+1}}{\lambda_{n}}=1$. If $A_{\lambda}-\lim \sigma_{n}^{i}(s)=\ell$ and $n \Delta z_{n} \geq-c$ for some positive c, then $\lim s_{n}=\ell$.

Also, by considering $\left\{s_{n}\right\}$ as a complex sequence we deduce the following result.
Corollary 2.2. Let $\lim _{n} \frac{\lambda_{n+1}}{\lambda_{n}}=1$. If $A_{\lambda}-\lim \sigma_{n}^{i}(s)=\ell$ and slowly oscillating of $\left\{z_{n}\right\}$, then $\lim s_{n}=\ell$.

The proof of Lemma 1.1 in [1] can be modified to show that if $\left\{z_{n}\right\}$ is strongly slowly decreasing, then $\lim \inf \left(\frac{t_{n}}{n}\right) \geq 0$. In view of this, the proof of Theorem 2.3 can be adapted to yield the following result:
Theorem 2.4. Let $\frac{\lambda_{n+1}}{\lambda_{n}}=O(1)$. If $A_{\lambda}-\lim \sigma_{n}^{i}(s)=\ell$ and $\left\{z_{n}\right\}$ is the strongly slowly decreasing, then $\lim s_{n}=\ell$.

It follows that for a complex sequence $\left\{\sigma_{n}^{i}(s)\right\}$ the strongly slowly oscillating of $\left\{z_{n}\right\}$ is a Tauberian condition for A_{λ} when $\frac{\lambda_{n+1}}{\lambda_{n}}=O(1)$.

Theorem 2.4 is a generalization of the Theorem 7 in [1]. The strongly slowly decreasing of $\left\{z_{n}\right\}$ does not imply the strongly slowly decreasing of $\left\{s_{n}\right\}$. As an example, if we take $s_{n}=\sum_{j=1}^{n} \frac{1}{j^{\frac{1}{2}}}+\sum_{k=1}^{n} \frac{1}{k} \sum_{j=1}^{n} \frac{1}{j^{\frac{1}{2}}}$, we see that $z_{n}=\sum_{j=1}^{n} \frac{1}{j^{\frac{1}{2}}}$ is slowly decreasing but clearly, $\left\{s_{n}\right\}$ is not slowly decreasing.
Next theorem extends the classical Tauberian theorems of Hardy and Littlewood in [7] and [10] respectively.
Theorem 2.5. Let $\lim _{n \rightarrow \infty} \frac{\lambda_{n+1}}{\lambda_{n}}=1$ and $\lambda_{n}=n^{\beta}$, for some $\beta \geq 1$. If Abel- $-\lim \left(A_{\lambda} \sigma_{n}^{i}(s)\right)_{k}=\ell$ and $n \Delta s_{n} \geq-c$, then $\lim s_{n}=\ell$.

Proof. By the proof of Theorem 2.5 of in [6], $n \Delta s_{n} \geq-c$ for a positive number c implies $n \Delta \sigma_{n}^{i}(s) \geq-c$. Hence, by Lemma 2.2, we see that $\left(A_{\lambda} \sigma_{n}^{i}(s)\right)_{k}$ obeys the one-sided Tauberian condition. From Abel- $\lim \left(A_{\lambda} \sigma_{n}^{i}(s)\right)_{k}=\ell$, we have $\lim A_{\lambda} \sigma_{n}^{i}(s)=\ell$, by above (1) in Theorem 1.2. Now by Theorem 1.1 implies that $\sigma_{n}^{i}(s)$ is Abel summable to ℓ. Since $n \Delta \sigma_{n}^{i}(s) \geq-c, \lim \sigma_{n}^{i}(s)=\ell$. By the fact that every sequence ($\mathrm{C}, 1$) limitable is Abel limitable, we have Abel $-\lim \sigma_{n}^{i-1}(s)=\ell$. Since Abel $-\lim \sigma_{n}^{i-1}(s)=\ell$ and $n \Delta \sigma_{n}^{i-1}(s) \geq-c$, we obtain that $\lim \sigma_{n}^{i-1}(s)=\ell$. If we continue in that way, we obtain, Abel $-\lim s_{n}=\ell$. By (1) in Theorem 1.2, $\lim s_{n}=\ell$.

Remark 2.1. The following result, which is analogous to Theorem 2.5, may be proved for the slow decrease condition by using the Tauberian theorems results provided in [11] and Lemma 2.4. This then extends the classical Tauberian theorem of Schmidt [11].

Theorem 2.6. Let $\lim _{n \rightarrow \infty} \frac{\lambda_{n+1}}{\lambda_{n}}=1$. If Abel- $\lim \left(A_{\lambda} \sigma_{n}^{i}(s)\right)_{k}=\ell$ and the $\left\{s_{n}\right\}$ is slowly decreasing then $\lim s_{n}=\ell$.

Final theorem is a Abel extension of Hardy and Littlewood's Tauberian theorem in [8] for Borel summability.

Theorem 2.7. If Abel- $\lim \left(B \sigma_{n}^{i}(s)\right)_{k}=\ell$ and $\left\{s_{n}\right\}$ is slowly oscillating then $\lim s_{n}=\ell$.
Proof. By Lemma 2.3, slowly oscillating of $\left\{s_{n}\right\}$ implies both slowly oscillating of $\left\{\sigma_{n}^{i}(s)\right\}$ and $\Delta \sigma_{n}^{i}(s)=o(1)$. By Lemma 2.6, we conclude that $\left(B \sigma_{n}^{i}(s)\right)_{k}$ is slowly oscillating. This allows us to apply (2) in Theorem 1.2 that $\lim \left(B \sigma_{n}^{i}(s)\right)_{k}=\ell$. Now (3) in Theorem 1.2 gives $\lim \sigma_{n}^{i+1}(s)=\ell$. By the fact that every sequence (C,1) limitable is Abel limitable, we have Abel $-\lim \sigma_{n}^{i}(s)=\ell$. Since Abel $-\lim \sigma_{n}^{i}(s)=\ell$ and $\left\{\sigma_{n}^{i}(s)\right\}$ is slowly decreasing, we obtain $\lim \sigma_{n}^{i}(s)=\ell$. If we continue in that way, we obtain Abel $-\lim s_{n}=\ell$. Again by (2) in Theorem 1.2, we get $\lim s_{n}=\ell$.

Acknowledgements. The authors want to thank the anonymous referee for the valuable comments.

References

[1] Armitage, H. D and Maddox, J. I., Discrete Abel means, Analysis, 10 (1990), 177-186
[2] Çanak, ІІ., An extended Tauberian theorem for the ($C, 1$) summability method, Appl. Math. Lett., 21 (2008), No. 1, 74-80
[3] Dik, M., Tauberian theorems for sequences with moderately oscillatory control moduli, Mathematica Moravica, 5 (2001), 57-94
[4] Fridy, A. J and Khan, M. K., Statistical extension of some classical Tauberian theorems, Proc. Amer. Math. Soc., 18 (2000), 2347-2355
[5] Gül, E. and Albayrak, M., On Abel convergent series of functions.,Journal of Advances in Mathematics. 11 (2016), No. 9, 5639-5644
[6] Gül, E. and Albayrak, M., Tauberian Theorems for Statistical Convergence. Tamkang Journal of Mathematics 11 (2017), No. 4, 321-330
[7] Hardy, H. G. and Littlewood, J. E., Tauberian theorems concerning power series and Dirichlet's series whose coecients are positive, Proc. London Math. Soc., 13 (1914), No. 2, 174-191
[8] Hardy, H. G and Littlewood, J. E., Theorems concerning the summability of series by Borel's exponential method, Rend. Circ. Mat. Palermo., 41 (1910), No. 2, 36-53
[9] Landau, E., Über die Bedeutung einiger neuen Grenzwertsätze der Herren Hardy und Axer, Prace Mat.-Fiz., 21 (1910), 97-177
[10] Littlewood, J. E., The converse of Abel's theorems on power series, P. Lond. Math. Soc., 9 (1910), No. 2, 434-448
[11] Schmidt, R., Über divergente Folgen und lineare Mittelbildungen, Math. Z., 22 (1925), 89-152

Department of Mathematics
Yildiz Technical University
Esenler, 34210, Istanbul, Turkey
E-mail address: gul@yildiz.edu.tr
E-mail address: mehmetalbayrak12@gmail.com

[^0]: Received: 14.09.2018. In revised form: 10.04.2019. Accepted: 17.04.2019
 2010 Mathematics Subject Classification. 40G05, 40G10.
 Key words and phrases. Abel convergence, discrete Abel convergence, Tauberian theorems, Slowly oscillating.
 Corresponding author: Erdal Gül; gul@yildiz.edu.tr

