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Distance based topological descriptors for two classes of
graphs

K. PATTABIRAMAN

ABSTRACT. In this paper, the exact formula for the generalized product degree distance, reciprocal product
degree distance and product degree distance of Mycielskian graph and its complement are obtained. In addition,
we compute the above indices for non-commuting graph.

1. INTRODUCTION

For vertices u, v ∈ V (G), the distance between u and v in G, denoted by dG(u, v), is the
length of a shortest (u, v)-path in G and let dG(v) be the degree of a vertex v ∈ V (G). The
diameter of the graph G is max{dG(u, v)|u, v ∈ V (G)}. The neighbor of the vertex u ∈ V (G)
is NG(u) = {v|uv ∈ E(G)}. A topological index of a graph is a real number related to the
graph; it does not depend on labeling or pictorial representation of a graph. In theoretical
chemistry, molecular structure descriptors (also called topological indices) are used for
modeling physicochemical, pharmacologic, toxicologic, biological and other properties of
chemical compounds [12]. There exist several types of such indices, especially those based
on vertex and edge distances. One of the most intensively studied topological indices is
the Wiener index.

Let G be a connected graph. Then Wiener index of G is defined as
W (G) = 1

2

∑
u, v ∈V (G)

dG(u, v) with the summation going over all pairs of distinct verti-

ces of G. This definition can be further generalized in the following way: Wλ(G) =
1
2

∑
u, v ∈V (G)

dλG(u, v), where dλG(u, v) = (dG(u, v))λ and λ is a real number [13, 14]. If

λ = −1, then W−1(G) = H(G), where H(G) is Harary index of G. In the chemical li-
terature also W 1

2
[35] as well as the general case Wλ were examined [9, 15].

Dobrynin and Kochetova [5] and Gutman [11] independently proposed a vertex-degree-
weighted version of Wiener index called degree distance, which is defined for a connected
graph G as DD(G) = 1

2

∑
u,v∈V (G)

(dG(u) + dG(v))dG(u, v). The additively weighted Harary

index(HA) or reciprocal degree distance(RDD) is defined in [1] as HA(G) = RDD(G) =
1
2

∑
u,v∈V (G)

(dG(u)+dG(v))
dG(u,v) . Hua and Zhang [18] have obtained lower and upper bounds for

the reciprocal degree distance of graph in terms of other graph invariants. The chemi-
cal applications and mathematical properties of the reciprocal degree distance are well
studied in [1, 22, 31].

The generalized degree distance, denoted byHλ(G), is defined asHλ(G) = 1
2

∑
u,v∈V (G)

(dG(u)+

dG(v))dλG(u, v), where λ is a any real number. If λ = 1, then Hλ(G) = DD(G) and if
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λ = −1, then Hλ(G) = RDD(G). The generalized degree distance of unicyclic and bi-
cyclic graphs are studied by Hamzeh et. al [16, 17]. Also they are given the generalized
degree distance of Cartesian product, join, symmetric difference, composition and dis-
junction of two graphs. The generalized degree distance of the strong and tensor product
of graphs are obtained in [27, 28]. In this sequence, the generalized product degree distance,
denoted by H∗λ(G), is defined as H∗λ(G) = 1

2

∑
u,v∈V (G)

dG(u)dG(v)dλG(u, v). If λ = 1, then

H∗λ(G) = DD∗(G) and if λ = −1, then Hλ(G) = RDD∗(G). Therefore the study of the
above topological indices are important and we try to obtain the results related to this
index. In this paper, the exact formulae for the generalized product degree distance, reci-
procal product degree distance and product degree distance of Mycielskian graph and its
complement are obtained. In addition, we compute the above indices for non-commuting
graph.

The first Zagreb index is defined as M1(G) =
∑

u∈V (G)

dG(u)2 and the second Zagreb in-

dex is defined as M2(G) =
∑

uv∈E(G)

dG(u)dG(v). In fact, one can rewrite the first Zag-

reb index as M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)). Similarly, the first Zagreb coindex is de-

fined as M1(G) =
∑

uv/∈E(G)

(dG(u) + dG(v)) and the second Zagreb coindex is defined as

M2(G) =
∑

uv∈E(G)

dG(u)dG(v). The Zagreb indices are found to have applications in QSPR

and QSAR studies as well, see [7].

2. DISTANCE BASED TOPOLOGICAL INDEX

In this section, we obtain the exact formulae for some distance based topological indi-
ces, such as generalized product degree distance, product degree distance and reciprocal
product degree distance of Mycielskian graph and its complement. The maximum and
minimum degree of the graph G are denoted by ∆ and δ, respectively.

2.1. Bounds forRDD∗. For a complete graphKn,we haveRDD∗(Kn) > RDD(Kn) and
for a star graph Sn, RDD∗(Sn) < RDD(Sn). Now we obtain the sharp lower and upper
bounds for RDD∗(G).

Theorem 2.1. LetG be a connected graph on n vertices. ThenRDD(G)−H(G) ≤ RDD∗(G) ≤
RDD(G) + ∆(∆ − 2)H(G), with equality holds for both lower and upper bounds if and only if
G is isomorphic to a star graph Sn and G is a regular graph, respectively.

Proof. One can observe that

RDD∗(G)−RDD(G) =
∑

u,v∈V (G)

(dG(u)dG(v)− dG(u)− dG(v)

dG(u, v)

)
=

∑
u,v∈V (G)

( (dG(u)− 1)(dG(v)− 1)− 1

dG(u, v)

)
For each vertex x ∈ V (G), we have δ(x) ≤ ∆. Hence

RDD∗(G)−RDD(G) ≤
∑

u,v∈V (G)

(∆− 1)2 − 1

dG(u, v)
= ∆(∆− 2)H(G).

Thus RDD∗(G) ≤ RDD(G) + ∆(∆− 2)H(G).
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Similarly, by the definitions of RDD∗(G) and RDD(G), we have

RDD∗(G)−RDD(G) =
∑

u,v∈V (G)

( (dG(u)− 1)(dG(v)− 1)− 1

dG(u, v)

)
=

∑
u,v∈V (G), dG(u)=1

( (dG(u)− 1)(dG(v)− 1)− 1

dG(u, v)

)
+

∑
u,v∈V (G), dG(u)≥2, dG(v)≥2

( (dG(u)− 1)(dG(v)− 1)− 1

dG(u, v)

)
≥

∑
u,v∈V (G), dG(u)=1

( (dG(u)− 1)(dG(v)− 1)− 1

dG(u, v)

)
= −

∑
u,v∈V (G), dG(u)=1

1

dG(u, v)
(2.1)

H(G) =
∑

u,v∈V (G), dG(u)=1

1

dG(u, v)
+

∑
u,v∈V (G), dG(u)≥2, dG(v)≥2

1

dG(u, v)

≤
∑

u,v∈V (G), dG(u)=1

1

dG(u, v)
. (2.2)

From (2.1) and (2.2), we have RDD∗(G) ≥ RDD(G)−H(G).
The equality holds for lower bound (resp. upper bound) if and only if G ∼= Sn(resp. G

is regular).
Using above theorem, we have the following corollary. �

Corollary 2.1. Let G be connected graph on n vertices. Then RDD∗(G) ≤ RDD(G) + (n −
1)(n− 3)H(G), with equality if and only if G ∼= Kn.

2.2. Mycielskian graph. In a search for triangle-free graphs with arbitrarily large chro-
matic number, Mycielski [25] developed an interesting graph transformation as follows.
Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn}. The Mycielskian
graphµ(G) of G contains G itself as an isomorphic subgraph, together with n + 1 addi-
tional vertices: a vertex ui corresponding to each vertex vi of G, and another vertex w.
Each vertex ui is connected by an edge to w, so that these vertices form a subgraph in
the form of a star K1,n. The Mycielskian and generalized Mycielskians have fascinated
graph theorists a great deal. This has resulted in studying several graph parameters of
these graphs, see [10]. In recent times, there has been an increasing interest in the study of
Mycielskian graph [6, 4, 21]. The generalized degree distance of the Mycielskian is obtai-
ned in [29]. In this section, generalized product degree distance of Mycielskian graph is
obtained.

The following lemmas are follows from the structure of the Mycielskian of the given
graph.

Remark 2.1. Let G be a graph with V (G) = {v1, v2, . . . , vn}. Then there are n − 1 two
element subsets in V (G). Therefore∑

{vi,vj}⊆V (G)

(
dG(vi) + dG(vj)

)
=

n∑
i=1

(n− 1)dG(vi) = 2(n− 1)m.



154 K. Pattabiraman

Remark 2.2. Let G be a graph n vertices and m edges. Then

(2m)2 =
( n∑
i=1

dG(vi)
)2

=

n∑
i=1

d2
G(vi) + 2

∑
{vi,vj}⊆V (G)

dG(vi)dG(vj)

= M1(G) + 2
∑

{vi,vj}⊆V (G)

dG(vi)dG(vj).

Thus
∑

{vi,vj}⊆V (G)

dG(vi)dG(vj) = 2m2 − M1(G)
2 .

Lemma 2.1. Let G be a connected graph. Then the distances between the vertices of the
Mycielskian graph µ(G) of G are given as follows. For each x, y ∈ V (µ(G)),

(i) dλµ(G)(x, y) =


2λ if x = ui, y = uj

dλG(vi, vj) if x = vi, y = vj , dG(vi, vj) ≤ 3

4λ if x = vi, y = vj , dG(vi, vj) ≥ 4.

(ii) dλµ(G)(x, y) =


2λ if x = vi, y = uj , i = j

dλG(vi, vj) if u = vi, v = xj , i 6= j, dG(vi, vj) ≤ 2

3λ if x = vi, y = uj , i 6= j, dG(vi, vj) ≥ 3.

(iii) dλµ(G)(x, y) =

{
1 if x = ui, y = w

2λ if x = vi, y = w.

Lemma 2.2. Let G be a graph with n vertices. Then the degree of the vertex x ∈ µ(G) is

dµ(G)(x) =


n if x = w

1 + dG(vi) if x = ui

2dG(vi) if x = vi.

Theorem 2.2. Let G be a graph on n vertices and m edges with diameter 2. Then H∗λ(µ(G)) =

8H∗λ(G) + 2Hλ(G) + (n2 + 2mn) + 2λ
(

3M1(G)
2 + n(n−1)

2 + 2m(m+ 3n+ 1)
)
.

Proof. From the structure of the Mycielskian graph, we consider the following cases of
adjacent and nonadjacent pairs of vertices in µ(G) to compute Hλ(µ(G)).
• If {x, y} ⊆ U, then ∑

{ui,uj}⊆U

dµ(G)(ui)dµ(G)(uj)d
λ
µ(G)(ui, uj)

=
∑

{ui,uj}⊆U

(1 + dG(vi))(1 + dG(vj))2
λ,

by Lemmas 2.1 and 2.2

= 2λ
∑

{i,j}⊆[n]

(
1 + (dG(vi) + dG(vj)) + dG(vi)dG(vj)

)
By Remarks 2.1 and 2.2, we have∑
{ui,uj}⊆U

dµ(G)(ui)dµ(G)(uj)d
λ
µ(G)(ui, uj) = 2λ

(n(n− 1)

2
+ 2m(n− 1) + 2m2 − M1(G)

2

)
.
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• If {x, y} ⊆ V (G), then dµ(G)(vi, vj) = dG(vi, vj) for each vi, vj ∈ V (G). Hence∑
{vi,vj}⊆V (G)

dµ(G)(vi)dµ(G)(vj)d
λ
µ(G)(vi, vj) =

∑
{vi,vj}⊆V (G)

4dG(vi)dG(vj)d
λ
G(vi, vj),

by Lemmas 2.1 and 2.2
= 4H∗λ(G).

• If x = vi and y = ui, 1 ≤ i ≤ n, then
n∑
i=1

dµ(G)(vi)dµ(G)(ui)d
λ
µ(G)(vi, ui) =

n∑
i=1

2dG(vi)(1 + dG(vi))2
λ, by Lemmas 2.1 and 2.2

= 2λ
(

4m+ 2M1(G)
)
.

• If x = vi and y = uj , i 6= j, then∑
{vi,uj}⊆V (µ(G)), i 6=j

dµ(G)(vi)dµ(G)(uj)d
λ
µ(G)(vi, uj)

=
∑

{vi,uj}⊆V (µ(G)), i 6=j

2dG(vi)(1 + dG(vj))d
λ
µ(G)(vi, uj), by Lemma 2.2

= 2
∑

{vi,uj}⊆V (µ(G)), i 6=j

dG(vi)d
λ
µ(G)(vi, uj)

+2
∑

{vi,uj}⊆V (µ(G)), i 6=j

dG(vi)dG(vj)d
λ
µ(G)(vi, uj)

= S1 + S2, where S1 and S2 are the sums in order. (2.3)

Now we obtain S1 and S2 are separately.

S1 = 2
∑

{vi,uj}⊆V (µ(G)), i 6=j

dG(vi)d
λ
µ(G)(vi, uj),

since dλµ(G)(vi, uj) = dλµ(G)(vj , ui) and by Lemma 2.1

= 2
∑

{vi,uj}⊆V (µ(G))

dG(vi)d
λ
µ(G)(vi, vj)

= 2
∑

{i,j}⊆[n]

(dG(vi) + dG(vj))d
λ
G(vi, vj)

= 2Hλ(G). (2.4)

S2 = 2
∑

{vi,uj}⊆V (µ(G))

dG(vi)dG(vj)d
λ
µ(G)(vi, uj)

= 4
∑

{i,j}⊆[n]

dG(vi)dG(vj)d
λ
G(vi, vj)

= 4H∗λ(G). (2.5)

Using (2.4) and (2.5) in (2.3), we have∑
{vi,uj}⊆V (µ(G)), i 6=j

dµ(G)(vi)dµ(G)(uj)d
λ
µ(G)(vi, uj) = 2Hλ(G) + 4H∗λ(G).
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• If x = w and y ∈ U, then
n∑
i=1

dµ(G)(w)dµ(G)(ui)d
λ
µ(G)(w, ui) =

n∑
i=1

n(dG(vi) + 1), by Lemmas 2.1 and 2.2

= n2 + 2mn.

• If x = w and y ∈ V (G), then
n∑
i=1

dµ(G)(w)dµ(G)(vi)d
λ
µ(G)(x, vi) =

n∑
i=1

2ndG(vi) 2λ, by Lemmas 2.1 and 2.2

= 2λ(4mn).

�

Summarizing the total contributions of above cases of adjacent and nonadjacent pairs
of vertices in µ(G), we can obtain the desired result. This completes the proof.

Using λ = 1 in Theorem 2.2, we obtain the product degree distance of the Mycielskian
graph.

Corollary 2.2. Let G be a graph on n vertices and m edges with diameter 2. Then DD∗(µ(G)) =
8DD∗(G) + 2DD(G) + 3M1(G) + n(2n− 1) + 2m(m+ 7n+ 2).

Using λ = −1 in Theorem 2.2, we obtain the reciprocal product degree distance of the
Mycielskian graph.

Corollary 2.3. LetG be a graph on n vertices andm edges with diameter 2. ThenRDD∗(µ(G)) =

8RDD∗(G) + 2RDD(G) + 3M1(G)
4 + n(5n−4)

4 +m(m+ 5n+ 1).

2.3. Complement of the Mycielskian graph. The following lemmas are follows from the
structure of the complement of the Mycielskian graph.

Lemma 2.3. Let G be a connected graph. Then the distances between the vertices of the Myciel-
skian graph µ(G) of G are given as follows. For each x, y ∈ V (µ(G)),

(i) dλµ(G)(x, y) =


1 if x = ui, y = uj

1 if x = vi, y = vj , dG(vi, vj) > 1

2λ if x = vi, y = vj , dG(vi, vj) = 1.

(ii) dλµ(G)(x, y) =


1 if x = vi, y = uj , i = j

1 if x = vi, y = uj , i 6= j, dG(vi, vj) > 1

2λ if x = vi, y = uj , i 6= j, dG(vi, vj) = 1.

(iii) dλµ(G)(x, y) =

{
2λ if x = ui, y = w

1 if x = vi, y = w.

Lemma 2.4. Let G be a graph on n vertices. Then the degree of the vertex x ∈ µ(G) is

dµ(G)(x) =


n if x = w

2n− 1− dG(vi) if x = ui

2n− 2dG(vi) if x = vi.
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Theorem 2.3. Let G be a graph on n vertices and m edges with diameter 2. Then H∗λ(µ(G)) =

2λ
(

4M2(G) − 2nM1(G)(2n + 3) + 2n3 + (12m − 1)n2 + 8m2 − 6mn
)
− 5M1(G)

2 +
(

8n4 −

6n3 + 5n2

2 + 18m2 + 14nm− 24n2m− 2m− n
2

)
.

Proof. From the structure of the complement of Mycielskian graph, we consider the follo-
wing cases of adjacent and nonadjacent pairs of vertices in µ(G) to compute Hλ(µ(G)).
• If {x, y} ⊆ U, then∑

{ui,uj}⊆U

dµ(G)(ui)dµ(G)(uj)d
λ
µ(G)(ui, uj)

=
∑

{ui,uj}⊆U

(
2n− 1− dG(vi))(2n− 1− dG(vj)),

by Lemmas 2.3 and 2.4

=
∑

{i,j}⊆[n]

(
(2n− 1)2 − (2n− 1)(dG(vi) + dG(vj)) + dG(vi)dG(vj)

)
By Remarks 2.1 and 2.2, we have

=
n(n− 1)(2n− 1)2

2
− 2m(2n− 1)(n− 1) + 2m2 − M1(G)

2

=
(n− 1)(2n− 1)

2
(2n2 − n− 4m) + 2m2 − M1(G)

2
.

• If {x, y} ⊆ V (G), then dλµ(G)(vi, vj) = 1 for each vivj /∈ E(G) and dλµ(G)(vi, vj) = 2λ

otherwise. Moreover {{vi, vj} ⊆ V (G) : i 6= j, vivj /∈ E(G)} = {{vi, vj} ⊆ V (G) : i 6=
j} \ {{vi, vj} ⊆ V (G) : vivj ∈ E(G)}.∑

{vi,vj}⊆V (G)

dµ(G)(vi)dµ(G)(vj)d
λ
µ(G)(vi, vj)

=
∑

vivj /∈E(G)

(2n− 2dG(vi))(2n− 2dG(vj))

+
∑

vivj∈E(G)

(2n− 2dG(vi))(2n− 2dG(vj))2
λ,

by Lemmas 2.3 and 2.4

=
∑

{vi,vj}⊆V (G)

(
4n2 − 4n(dG(vi) + dG(vj)) + 4dG(vi)dG(vj)

)
+

∑
vivj∈E(G)

(
4n2 − 4n(dG(vi) + dG(vj)) + 4dG(vi)dG(vj)

)
2λ

By Remarks 2.1 and 2.2, we have

= 4n2
(n(n− 1)

2

)
− 8mn(n− 1) + 4(2m2 − M1(G)

2
)

+2λ
(

4mn2 − 4nM1(G) + 4M2(G)
)

= 2n(n− 1)(n2 − 4m) + 8m2 − 2M1(G)

+2λ
(

4mn2 − 4nM1(G) + 4M2(G)
)
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• If x = vi and y = ui, 1 ≤ i ≤ n, then

n∑
i=1

dµ(G)(vi)dµ(G)(ui)d
λ
µ(G)(vi, ui) =

n∑
i=1

(2n− 2dG(vi))(2n− 1− dG(vi)),

by Lemmas 2.3 and 2.4

= 2n2(2n− 1)− 2m(6n− 2) + 2M1(G).

• If x = vi and y = uj , i 6= j, then {(vi, vj) : i 6= j, vivj /∈ E(G)} = {(vi, vj) : i 6=
j} \ {(vi, vj) : vivj ∈ E(G)}. Thus∑

{vi,uj}⊆V (µ(G)), i 6=j

dµ(G)(vi)dµ(G)(uj)d
λ
µ(G)(vi, uj)

=
∑

(vi,vj), vivj /∈E(G)

(2n− 2dG(vi))(2n− 1− dG(vj))

+
∑

(vi,vj), vivj∈E(G)

(2n− 2dG(vi))(2n− 1− dG(vj))2
λ, by Lemmas 2.3 and 2.4

=
∑

(vi,vj),i6=j

(2n− 2dG(vi))(2n− 1− dG(vj))

+2λ
∑

(vi,vj), vivj∈E(G)

(2n− 2dG(vi))(2n− 1− dG(vj))

Each vj can be paired with n − 1 vertices vi as (vi, vj), i 6= j,
∑

(vi,vj)

dG(vj) =

(n − 1)
n∑
j=1

dG(vj) = 2m(n − 1). Moreover,
∑

(vi,vj)

dG(vi)dG(vj) = 2
∑
{vi,vj}

dG(vi)dG(vj).

Since |{(vi, vj) : i 6= j}| = n(n− 1), then by Remarks 2.1 and 2.2, we have∑
(vi,vj),i6=j

(2n− 2dG(vi))(2n− 1− dG(vj)) = 2n(2n− 1)n(n− 1)− 2n(n− 1)2m

− 2(2n− 1)(n− 1)2m+ 4

(
2m2 − M1(G)

2

)
= (2n2 − 4m)(2n− 1)(n− 1)− 4n(n− 1)m

+ 8m2 − 2M1(G). (2.6)

One can observe that |{(vi, vj) : vivj ∈ E(G)}| = 2m and
∑

(vi,vj), vivj∈E(G)

dG(vi) =

n∑
i=1

(dG(vi))
2, since each vi has dG(vi) neighbors and appears dG(vi) times. Then by

Remarks 2.1 and 2.2, we have

2λ
∑

(vi,vj), vivj∈E(G)

(2n− 2dG(vi))(2n− 1− dG(vj))

= 2λ
(

2n(2n− 1)2m− 2nM1(G)− 2(2n− 1)M1(G)

+4(2m2 − M1(G)

2
)
)

= 2λ(4n(2n− 1)m+ 8m2 − 6nM1(G)). (2.7)
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From (2.6) and (2.7) we have∑
{vi,uj}⊆V (µ(G)), i 6=j

dµ(G)(vi)dµ(G)(uj)d
λ
µ(G)(vi, uj)

= (2n2 − 4m)(2n− 1)(n− 1)− 4n(n− 1)m+ 8m2

−2M1(G) + 2λ(4n(2n− 1)m+ 8m2 − 6nM1(G)).

• If x = w and y ∈ U, then

n∑
i=1

dµ(G)(w)dµ(G)(ui)d
λ
µ(G)(w, ui) =

n∑
i=1

n(2n− 1− dG(vi))2
λ, by Lemmas 2.3 and 2.4

= 2λ
(
n2(2n− 1)− 2mn

)
.

• If x = w and y ∈ V (G), then

n∑
i=1

dµ(G)(w)dµ(G)(vi)d
λ
µ(G)(w, vi) =

n∑
i=1

n(2n− 2dG(vi)), by Lemmas 2.3 and 2.4

= 2n3 − 4mn.

�

Summarizing the total contributions of above cases of adjacent and nonadjacent pairs
of vertices in µ(G), we can obtain the desired result. This completes the proof.

Using λ = 1 in Theorem 2.3, we obtain the product degree distance of the complement
of the Mycielskian graph.

Corollary 2.4. Let G be a graph on n vertices and m edges with diameter 2. Then DD∗(µ(G)) =

8M2(G)− (16n2 + 24n+ 5)M1(G)
2 +

(
8n4 − 2n3 + n2

2 + 34m2 + 2mn− 2m− n
2

)
.

Using λ = −1 in Theorem 2.3, we obtain the reciprocal product degree distance of the
complement of the Mycielskian graph.

Corollary 2.5. LetG be a graph on n vertices andm edges with diameter 2. ThenRDD∗(µ(G)) =

2M2(G)− (4n2 + 6n+ 5)M1(G)
2 +

(
8n4 − 5n3 + 2n2 + 22m2 − 11mn− 2m− 18n2m− n

2

)
.

3. NON-COMMUTING GRAPH

Let G be a non-abelian group and let Z(G) be the center of G. The non-commuting graph
Γ(G) is a graph obtained from the group G with V (Γ(G)) = G \ Z(G) and E(Γ(G)) =
{uv|uv 6= vu}. This concept was introduced by Neumann [26] in 1976. The graph Γ(G)

has exactly |G|−|Z(G)| vertices and |G|2 (|G|−k(G)) edges, where k(G) denotes the number
of conjugacy classes of G. The complement of a graph Γ is a graph Γ on the same vertices
such that two vertices of Γ are adjacent if and only if they are not adjacent in Γ. The
complement graph Γ(G) is called the commuting graph of G. For more details, see [2, 3,
23, 24].

Theorem 3.4. Let G be a non-abelian finite group. Then Hλ(Γ(G)) = 2λ+1(|G| − |Z(G)| −
1) |E(Γ(G))| − (2λ − 1)M1(Γ(G)).
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Proof. Let Γ(G) be a non-commutating graph of G with exactly n vertices. By the defini-
tion of Hλ,

Hλ(Γ(G)) =
∑

{u,v}⊆V (Γ(G))

(dΓ(G)(u) + dΓ(G)(v))dλΓ(G)(u, v)

=
∑

uv∈E(Γ(G))

(dΓ(G)(u) + dΓ(G)(v)) + 2λ
∑

uv∈E(Γ(G))

(dΓ(G)(u) + dΓ(G)(v)).

For any vertex u ∈ Γ(G), the degree of u is dΓ(G)(u) = |G| − |Z(G)| − 1 − dΓ(G)(u). From
the definition of first Zagreb index, we have

Hλ(Γ(G)) = M1(Γ(G)) + 2λ
∑

uv∈E(Γ(G))

(
2(|G| − |Z(G)| − 1)− (dΓ(G)(u) + dΓ(G)(v))

)
= M1(Γ(G)) + 2λ+1

∣∣E(Γ(G))
∣∣ (|G| − |Z(G)| − 1)− 2λ

∑
u∈V (Γ(G))

(dΓ(G)(u))2

= M1(Γ(G)) + 2λ+1
∣∣E(Γ(G))

∣∣ (|G| − |Z(G)| − 1)

−2λ
∑

u∈V (Γ(G))

(|G| − |Z(G)| − 1− dΓ(G)(u))2

= M1(Γ(G)) + 2λ+1
∣∣E(Γ(G))

∣∣ (|G| − |Z(G)| − 1)

−2λ
∑

u∈V (Γ(G))

(
(|G| − |Z(G)| − 1)2 + (dΓ(G)(u))2 − 2(|G| − |Z(G)| − 1)dΓ(G)(u)

)
= M1(Γ(G)) + 2λ+1

∣∣E(Γ(G))
∣∣ (|G| − |Z(G)| − 1)

−2λ
(

(|V (G)|− |Z(G)|− 1)2((|G|− |Z(G)|)+ M1(Γ(G))− 4(|G|− |Z(G)|− 1)
∣∣E(Γ(G))

∣∣ )
= (1− 2λ)M1(Γ(G)) + 2λ+1

∣∣E(Γ(G))
∣∣ (|G| − |Z(G)| − 1)

−2λ(|G| − |Z(G)| − 1)2(|G| − |Z(G)|) + 2λ+2(|G| − |Z(G)| − 1) |E(Γ(G))| .

Since
∣∣E(Γ(G))

∣∣ = (|G|−|Z(G)|)(|G|−|Z(G)|−1)
2 − |E(Γ(G))| , we obtain

Hλ(Γ(G)) = 2λ+1(|G| − |Z(G)| − 1) |E(Γ(G))| − (2λ − 1)M1(Γ(G)).

By using λ = 1 in Theorem 3.4, we obtain the degree distance of the graph Γ(G). �

Corollary 3.6. Let G be a non-abelian finite group. Then DD(Γ(G)) = 4 |E(Γ(G))| (|G| −
|Z(G)| − 1)−M1(Γ(G)).

By using λ = −1 in Theorem 3.4, we obtain the reciprocal degree distance of the graph
Γ(G).

Corollary 3.7. Let G be a non-abelian finite group. Then RDD(Γ(G)) = |E(Γ(G))| (|G| −
|Z(G)| − 1) + M1(Γ(G))

2 .

Theorem 3.5. Let G be a non-abelian finite group. Then H∗λ(Γ(G)) = 2λ+1 |E(Γ(G))|2 −
2λ−1M1(Γ(G))− (2λ − 1)M2(Γ(G)).
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Proof. It follows from that M2(Γ(G)) =
∑

uv∈E(Γ(G))

dΓ(G)(u)dΓ(G)(v) and M2(Γ(G)) =

2 |E(Γ(G))|2 −M2(Γ(G))− M1(Γ(G))
2 . From the definition of H∗λ,

H∗λ(Γ(G)) =
∑

{u,v}⊆V (Γ(G))

dΓ(G)(u)dΓ(G)(v)dλΓ(G)(u, v)

=
∑

uv∈E(Γ(G))

dΓ(G)(u)dΓ(G)(v) + 2λ
∑

uv∈E(Γ(G))

dΓ(G)(u)dΓ(G)(v)

= M2(Γ(G)) + 2λM2(Γ(G))

= M2(Γ(G)) + 2λ
(

2
∣∣E(Γ(G))

∣∣2 −M2(Γ(G))− M1(Γ(G))

2

)
= 2λ+1 |E(Γ(G))|2 − 2λ−1M1(Γ(G))− (2λ − 1)M2(Γ(G)).

By using λ = 1 in Theorem 3.4, we obtain the product degree distance of the graph
Γ(G). �

Corollary 3.8. Let G be a non-abelian finite group. Then DD∗(Γ(G)) = 4 |E(Γ(G))|2 −
M1(Γ(G))−M2(Γ(G)).

By using λ = −1 in Theorem 3.4, we obtain the reciprocal product degree distance of
the graph Γ(G).

Corollary 3.9. Let G be a non-abelian finite group. Then RDD∗(Γ(G)) = |E(Γ(G))|2 −
M1(Γ(G))

4 + M2(Γ(G))
2 .
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