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Ball convergence theorem for inexact Newton methods in
Banach space

IOANNIS K. ARGYROS and SANTHOSH GEORGE

ABSTRACT. We present a local convergence analysis for inexact Newton methods in order to approximate a
solution of a nonlinear equation in a Banach space. Our sufficient convergence conditions involve only hypot-
heses on the first Fréchet-derivative of the operator involved. Numerical examples are also provided in this
study.

1. INTRODUCTION

Many problems in computational sciences and other disciplines can be brought in the
form of the nonlinear equation

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a subset D of a Banach space
X with values in a Banach space Y. In this study we are concerned with the problem
of approximating a solution x∗ of equation (1.1). In Numerical Functional Analysis, for
finding solution of (1.1) is essentially connected to Newton-like methods [1]- [27]. The
Newton-like methods are usually studied based on: semi-local and local convergence.
The semi-local convergence matter is, based on the information around an initial point, to
give conditions ensuring the convergence of the iterative procedure; while the local one is,
based on the information around a solution, to find estimates of the radii of convergence
balls. There exist many studies which deal with the local and semi-local convergence
analysis of Newton-like methods such as [1]- [27].

We present a local convergence analysis for inexact Newton method defined for each
n = 0, 1, 2, · · · by

yn = xn − αF ′(xn)−1F (xn),

xn+1 = xn − zn (1.2)

where x0 is an initial point, α is a parameter and {zn} ⊂ X is a given sequence. Many
iterative methods are special cases of method (1.2).
Newton’s method [3–7, 26, 27]: Choose α = 1 and zn = xn − yn, then, we get

xn+1 = xn − F ′(xn)−1F (xn). (1.3)

Two-step Newton’s method I [3–7, 26, 27]: Choose α = 1 and zn = F ′(xn)−1F (yn), then,
we get

yn = xn − F ′(xn)−1F (xn),

xn+1 = xn − F ′(xn)−1F (yn). (1.4)
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Two-step Newton’s method II [3–7,26,27]: Chooseα = 1 and zn = xn−yn+F ′(xn)−1F (yn),
then, we get

yn = xn − F ′(xn)−1F (xn),

xn+1 = yn − F ′(yn)−1F (yn). (1.5)

Weerakoon-Fernando method I [24]: Choose α = 1 and
zn = [I +A−1n Bn]F ′(xn)−1F (xn), then, we get

yn = xn − F ′(xn)−1F (xn),

xn+1 = xn − [I +A−1n Bn]F ′(xn)−1F (xn). (1.6)

where An = F ′(xn) + F ′(yn) and Bn = F ′(xn)− F ′(yn).
King and Ostrowski method [27]: For X = Y = S, S = R or S = C

α =
2

3
, zn =

1

2
(1 +

1

1 + 3
2 (F ′(yn)

F ′(xn)
− 1)

)F ′(xn)1F (xn) (1.7)

or

α = 1, zn = xn − yn −
F (yn)

F ′(xn)

F (xn)

F (xn)− 2F (yn)
. (1.8)

Amat et all method (scalar case) [3]: Choose zn = xn − yn + αF ′(xn)−1F (yn) to obtain

yn = xn − αF ′(xn)−1F (xn),

xn+1 = yn − αF ′(xn)−1F (yn). (1.9)

The last two methods require the existence of the fourth derivative. Many other choices
for α or zn are possible [1]– [27]. In general the convergence of these methods requires
the existence of second, fourth or even higher order derivatives although only the first
derivative appears in these methods [11, 12, 20, 21, 25].

Moreover, in the proof Taylor series expansions are used for methods (1.5)-(1.9) or other
specializations of method (1.2) requiring the existence of such high order derivatives.

These assumptions however are very restrictive. As a motivational example, let us
define function f on D = [− 1

2 ,
5
2 ] by

f(x) =

{
x3 lnx2 + x5 − x4, x 6= 0
0, x = 0

Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, obviously, function f ′′′ is unbounded on D. Hence, the results e.g. in method, (1.5)-
(1.9) cannot be used. In the present paper we only use hypotheses on the first Fréchet
derivative (see conditions (2.16)-(2.19)). This way, we expand the applicability of method
(1.2).

Our idea so far has been used on methods (1.3)-(1.9) and some others [1–8] (with the
exception of (2.10) and (2.21) not needed for special cases). But it is obvious from the
above that a unified approach for studing these methods is needed. Here is where the
motivation and the novelty of our paper lies, since method (1.2) generalizes so many
methods. Moreover, we have not done this before at this generalization.

The rest of the paper is organized as follows. The local convergence of method (1.2)
is given in Section 2, whereas the numerical examples are given in Section 3. Some com-
ments are given in the concluding section 4.
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2. LOCAL CONVERGENCE ANALYSIS

We present the local convergence analysis of method (1.2) in this section. LetU(v, ρ), Ū(v, ρ)
stand, respectively, for the open and closed balls inX with center v ∈ X and radius ρ > 0.
Let L0 > 0, L > 0,M > 0, p ∈ [0, 1] and α ∈ S ( S = R or S = C) be given parameters.
Suppose that there exists a continuous nondecreasing function ψ : [0, 1

L0
)→ [0,+∞) such

that

ψ(t)→ +∞ or ψ(t)→ a ≥ 0 as t→ 1

L0

−
. (2.10)

It is convenient for the local convergence analysis of method (1.2) that follows to define
functions g1, g2 and h2 on the interval [0, 1

L0
) by

g1(t) =
1

2(1− L0t)
[Lt+ 2M |1− α|],

g2(t) =

{
Lt

2(1−L0t)
+ ψ(t), p = 0

Lt
2(1−L0t)

+ ψ(t)tp, p 6= 0

and
h2(t) = g2(t)− 1.

Moreover, define parameters

r1 =
2(1−M |1− α|)

2L0 + L

and

rA =
2

2L0 + L
.

Suppose that
M |1− α| < 1. (2.11)

Then, we have that g1(r1) = 1,

0 < r1 < rA <
1

L0

and
0 ≤ g1(t) < 1 for each t ∈ [0, r1).

We also get that

h2(0) =

{
ψ(0)− 1, p = 0
−1, p 6= 0

Suppose that
ψ(0) < 1, if p = 0. (2.12)

Then h2(0) < 0 for each p ∈ [0, 1] and h2(rA) =

{
ψ(rA) > 0, p = 0
ψ(rA)rpA > 0, p 6= 0

. If follows from

the intermediate value theorem that function h2 has zeros in the interval (0, rA). Denote
by r2 the smallest such zero

r = min{r1, r2} < rA. (2.13)
Then, we have that for each t ∈ [0, r)

0 ≤ g1(t) < 1 (2.14)

0 ≤ g2(t) < 1. (2.15)
Next, we present the local convergence analysis of method (1.2) using the preceding

notation.
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Theorem 2.1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator. Suppose that there exist
x∗ ∈ D, parameters L0 > 0, L > 0,M > 0 and α ∈ S and a function ψ satisfying (2.10), (2.12)
(if p = 0), (2.11)

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X), (2.16)

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖, for each x ∈ D (2.17)

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖, for each x, y ∈ D0 = D ∩ U(x∗,
1

L0
) (2.18)

‖F ′(x∗)−1F ′(x)‖ ≤M for each x ∈ D0 (2.19)

Ū(x∗, r) ⊆ D0, (2.20)

and there exists z : D ⊆ X → X such that for each x ∈ D0, F
′(x)−1 ∈ L(Y,X) and for some

p ∈ [0, 1]

‖F ′(x)−1F (x)− z(x)‖ ≤ ψ(‖x− x∗‖)‖x− x∗‖1+p. (2.21)

Then, the sequence {xn} generated by method (1.2) for x0 ∈ U(x∗, r2) is well defined, remains in
U(x∗, r) for each n = 0, 1, 2, · · · and converges to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (2.22)

and
‖xn+1 − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.23)

where the ”g” functions are defined previously. Furthermore, for T ∈ [r, 2
L0

) the limit point x∗ is
the only solution of equation F (x) = 0 in D1 = D ∩ Ū(x∗, T ).

Proof. We shall show estimates (2.22) and (2.23) using mathematical induction. By hypot-
hesis x0 ∈ U(x∗, r), the definition of r and (2.17), we get that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (2.24)

Then, by the the Banach Lemma on invertible operators [4, 5], we get that

‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖
. (2.25)

Using the first substep in method (1.2) for n = 0, (2.14), (2.18), (2.19) and (2.25), we get in
turn that

‖y0 − x∗‖ ≤ ‖x0 − x∗ − F ′(x0)−1F ′(x0)‖+ |1− α|‖F ′(x0)−1F (x∗)‖

×‖
∫ 1

0

F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ‖

≤ ‖F ′(x0)−1F ′(x0)‖‖
∫ 1

0

F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
+
|1− α|M |‖x0 − x∗‖

1− L0‖x0 − x∗‖
= g1(‖x0 − x∗‖)‖x0 − x∗‖
< ‖x0 − x∗‖ < r, (2.26)
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which shows (2.22) for n = 0 and y0 ∈ U(x∗, r). Then, using the second substep of method
(1.2) for n = 0, (2.15), (2.21) and (2.26) we get for z(x0) = z0 that

‖x1 − x∗‖ ≤ ‖x0 − x∗ − F ′(x0)−1F (x0)‖+ ‖F ′(x0)−1F (x0)− z0‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
+ ψ(‖x0 − x∗‖)‖x0 − x∗‖1+p

= g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.23) and x1 ∈ U(x∗, r). By simply replacing x0, y0, z0, x1 by xk, yk, zk, xk+1

in the preceding estimates we arrive at estimate (2.22) and (2.23). It then follows from the
estimate ‖xk+1−x∗‖ ≤ c‖xk −x∗‖ < r, c = g2(‖x0−x∗‖) ∈ [0, 1) that xk+1 ∈ U(x∗, r) and
limk→∞ xk = x∗.

Finally, to show the uniqueness part, let y∗ ∈ D1 be such that F (y∗) = 0. Set Q =∫ 1

0
F ′(y∗ + t(x∗ − y∗)dt. Then using (2.17), we get that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤
∫ 1

0

L0‖y∗ + t(x∗ − y∗)− x∗‖dt

≤
∫ 1

0

(1− t)‖x∗ − y∗‖dt ≤ L0

2
T < 1, (2.27)

it follows from (2.27) that Q−1 ∈ L(Y,X). Then, from the identity 0 = F (x∗) − F (y∗) =
Q(x∗ − y∗), we deduce that x∗ = y∗. �

Remark 2.1. 1. In view of (2.17) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + L0‖x− x∗‖

condition (2.19) can be dropped and M can be replaced by

M(t) = 1 + L0t.

2. The results obtained here can be used for operators F satisfying autonomous dif-
ferential equations [4] of the form

F ′(x) = P (F (x))

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0), we can
apply the results without actually knowing x∗. For example, let F (x) = ex − 1.
Then, we can choose: P (x) = x+ 1.

3. Suppose that there exists L1 > 0 such that for each x, y ∈ D
‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L1‖x− y‖. (2.28)

Set r̄A = 2
2L0+L1

. Then, we have

L0 ≤ L1, and L ≤ L1, (2.29)

so r̄A ≤ rA and if L < L1, then r̄A < rA. The radius r̄A was shown by us to be the
convergence radius of Newton’s method [2, 4, 5]

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, · · · (2.30)

under the conditions (2.17) and (2.18). It follows from the definition of r (see 2.13))
that the convergence radius r of the method (1.2) cannot be larger than the conver-
gence radius r̄A (or rA) of the second order Newton’s method (2.30). As already
noted in [4,5] r̄A is at least as large as the convergence ball given by Rheinboldt [26]

rR =
2

3L1
. (2.31)
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In particular, for L0 < L1 we have that

rR < r̄A

and
rR
r̄A
→ 1

3
as

L0

L1
→ 0.

That is our convergence ball r̄A is at most three times larger than Rheinboldt’s.
The same value for rR was given by Traub [27].

4. It is worth noticing that method (1.2) is not changing when we use the conditions
of Theorem 2.1 instead of the stronger conditions used in earlier studies. Moreo-
ver, we can compute the computational order of convergence (COC) defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence in a way that avoids the
bounds involving estimates using estimates higher than the first Fréchet deriva-
tive of operator F.

5. Let us choose zn = F ′(xn)−1F (yn) for each n = 0, 1, 2, · · · and

ψ(t) =
|α|M2

(1− L0t)2
(2.32)

for each t ∈ [0, rA]. Then, condition (2.21) is satisfied for p = 0. Indeed, we have
that

‖F ′(xn)−1F (xn)− zn‖ = ‖F ′(xn)−1F (xn)− F ′(xn)−1F (yn)‖

≤ ‖F ′(xn)−1F (x∗)‖‖
∫ 1

0

F ′(x∗)−1F ′(yn + θ(xn − yn))(xn−)dθ‖

≤ M‖yn − xn‖
1− L0‖xn − x∗‖

≤ M |α|‖F ′(xn)−1F ′(x∗)‖‖F ′(x∗)−1F (xn)‖
1− L0‖xn − x∗‖

≤ M2|α|‖xn − x∗‖
(1− L0‖xn − x∗‖)2

= ψ(‖xn − x∗‖)‖xn − x∗‖.

Then, condition (2.12) becomes

|α|M2 < 1 (2.33)

and we can set

a =
|α|M2

(1− L0rA)2
,

so that (2.10) is also satisfied.
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3. NUMERICAL EXAMPLES

We present numerical examples in this section in the case when ψ(t) is given by (2.32).

Example 3.1. Let X = Y = R3, D = Ū(0, 1). Define F on D for v = (x, y, z)T by

F (v) = (ex − 1,
ex − 1

2
y2 + y, z))T . (3.34)

Then, the Fréchet derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that x∗ = (0, 0, 0)T , F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, so L0 = e − 1 < L1 =

e, L = M = e
1

L0 . Then, we have for α = 0.7206,

r̄A = 0.3249, rA = 0.3827, r1 = 0.1913 = r, r2 = 0.2230.

Example 3.2. Returning back to the motivational example at the introduction of this study,
we have L0 = L1 = L = 96.6629073, M = 1.0631. Then we have for α = 0.5297,

r̄A = rA = 0.0069, r1 = 0.0034 = r, r2 = 0069.

Example 3.3. Let X = Y = C[0, 1], the space of continuous functions defined on [0, 1] and
be equipped with the max norm. Let D = U(0, 1). Define function F on D by

F (ψ)(x) = ψ(x)− 5

∫ 1

0

xθψ(θ)3dθ. (3.35)

We have that

F ′(ψ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθψ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L = L1 = 15 = M,α = 0.9333 and

r̄A = rA = 0.0889, r1 = 0.0444, r2 = 0.0232 = r.

4. CONCLUSION

We present a local convergence analysis of inexact Newton method in order to approx-
imate a solution of an equation in a Banach space setting. Earlier convergence analysis
is based on hypotheses on higher than the first Fréchet-derivative. In this paper the local
convergence analysis is based only on Lipschitz hypotheses of the first Fréchet-derivative.
Hence, the applicability of these methods is expanded.
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