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Some regularity properties of the functions obtained from
some algebraic properties

DAN ŞTEFAN MARINESCU and MIHAI MONEA

ABSTRACT. The main result of this note is stated as follows. Let a, b ∈ R, a < b, and a function f : (a, b)→ R.
We consider u, v : (a, b)→ R such that u (x) > 0 and v (x) < 0, for any x ∈ (a, b), and define g, h : (a, b)→ R
by g (x) = u (x) f (x) and h (x) = v (x) f (x) , for any x ∈ (a, b) . The main result we establish is stated as
follows:
Theorem. Let n a positive integer, n ≥ 3. If u, v are (n− 1)-times differentiable on (a, b) and g, h are n-convex
functions then f is (n− 1)-times differentiable on (a, b).

1. INTRODUCTION

The following contest problem, stated here as a Proposition 1.1, has been proposed to
the 2018’s district round of the Romanian National Mathematical Olympiad [7].

Proposition 1.1. Let a, b ∈ R, a < b, and the function f : (a, b) → R, such that the functions
g, h : (a, b)→ R defined by g (x) = (x− a) f (x) and h (x) = (x− b) f (x) , for any x ∈ (a, b) ,
are nondecreasing. Then f is continuous on (a, b) .

We remark that the reverse implication of Proposition 1.1 fails. For example, the function
f : (−1, 1) → R, f (x) = |x| is continuous but the functions g, h : (−1, 1) → R, defined by
g (x) = (x+ 1) f (x) and h (x) = (x− 1) f (x) , for any x ∈ (−1, 1) , are not monotone.

A similar result has been published later by the authors of this note, see [4].

Proposition 1.2. Let a, b ∈ R, a < b, and the function f : (a, b) → R such that the functions
g, h : (a, b)→ R defined by g (x) = (x− a) f (x) and h (x) = (x− b) f (x) , for any x ∈ (a, b) ,
are convex. Then f is differentiable on (a, b).

Starting from these interesting results, the aim of this note is to present some similar
but more general results.

2. ABOUT THE n-CONVEX FUNCTIONS

The concept of n-convex function, where n is a positive integer, is due to Hopf [1]
and Popoviciu [6]. We remind that a function f, defined on the real interval I, is called
n-convex if

f (x0)

(x0 − x1) (x0 − x2) (x0 − xn)
+

f (x1)

(x1 − x0) (x1 − x2) (x1 − xn)
+ ...

+
f (xn)

(xn − x0) (xn − x1) (xn − xn−1)
≥ 0,
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for any distinct x0, x1, ..., xn from the interval I.
It can be easily seen that a 1-convex function is a nondecreasing function while a 2-

convex function is convex in the usual sense.
Some properties of n-convex functions are similar to that of classical convex functions.

Let n a positive integer, n ≥ 3 and I an open interval. If f : I → R is a n-convex function
then f is (n− 2)-times differentiable on I and the derivative f (n−2) is convex. Then, for
any x ∈ I, there exist the finite one-sided (n− 1)-th derivatives f (n−1)

− (x) , f
(n−1)
+ (x) and

f
(n−1)
− (x) ≤ f

(n−1)
+ (x) .

More on this kind of results - which are not trivial - can be found in [2] and [3].
Now, we are in position to state a result that generalize the results from the previous

section. First, let n be a positive integer, n ≥ 3 and a, b ∈ R, a < b.
For any function f : (a, b) → R, we consider g, h : (a, b) → R defined by g (x) =

(x− a) f (x) and h (x) = (x− b) f (x) , for any x ∈ (a, b) .

Proposition 2.1. If g, h are n-convex functions, then f is (n− 1)-times differentiable on (a, b).

In the next section we will present the proof of this proposition as a consequence of a
more general result.

3. MAIN RESULTS

Let a, b ∈ R, a < b, and f : (a.b) → R a function. We consider u, v : (a, b) → R such
that u (x) > 0 and v (x) < 0, for all x ∈ (a, b) and define the functions g, h : (a, b) → R by
g (x) = u (x) f (x) and h (x) = v (x) f (x) , for any x ∈ (a, b) .

Proposition 3.1. If u, v are continuous on (a, b) and g, h are nondecreasing on (a, b) , then f is
continuous on (a, b).

Proof. Let c ∈ (a, b) . We will prove that lim
x↗c

f (x) = lim
x↘c

f (x) = f (c) . First, we observe

that lim
x↗c

f (x) and lim
x↘c

f (x) exist due to the assumptions in the hyphotesis.

Now, for any x ∈ (a, c) , we have g (x) ≤ g (c) , also u (x) f (x) ≤ u (c) f (c) . We obtain
f (x) ≤ u(c)

u(x)f (c) . Hence lim
x↗c

u (x) = u (c) 6= 0, then lim
x↗c

f (x) ≤ f (c) . On the other side,

we have h (x) ≤ h (c) , also v (x) f (x) ≤ v (c) f (c) . We obtain f (x) ≥ v(c)
v(x)f (c) . Hence,

lim
x↗c

v (x) = v (c) 6= 0, then lim
x↗c

f (x) ≥ f (c) . As a consequence, we find lim
x↗c

f (x) = f (c).

In the same way, by starting from x ∈ (c, b) , we obtain lim
x↘c

f (x) = f (c). �

The proof of the following proposition will use some properties of the convex functions,
that can be found, for example, in [5]. We recall that if f : (a, b)→ R is a convex function,
then f is continuous on (a, b) and there exist f ′− (x) and f ′+ (x) , for any x ∈ (a, b) . Moreo-
ver, they are finite and f ′− (x) ≤ f ′+ (x) , for any x ∈ (a, b).

Proposition 3.2. If u, v are differentiale on (a, b) and g, h are convex on (a, b) then f is differen-
tiable on (a, b) .

Proof. Let c ∈ (a, b) . We will prove that f ′− (c) = f ′+ (c) ∈ R. From g (x) = u (x) f (x) , we
obtain f (x) = g(x)

u(x) . Then there exist f ′− (x) and f ′+ (x) . Moreover, for any x ∈ (a, b) , we
have

f ′− (x) =
g′− (x)u (x)− g (x)u′ (x)

u2 (x)
=

g′− (x)

u (x)
− g (x)u′ (x)

u2 (x)
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and

f ′+ (x) =
g′+ (x)

u (x)
− g (x)u′ (x)

u2 (x)
.

Hence g′− (x) ≤ g′+ (x) and u (x) ≥ 0, we obtain f ′− (x) ≤ f ′+ (x) .
In the same way, the equality h (x) = v (x) f (x) lead us to

f ′− (x) =
h′− (x)

v (x)
− h (x) v′ (x)

v2 (x)

and

f ′+ (x) =
h′+ (x)

v (x)
− h (x) v′ (x)

v2 (x)
,

for any x ∈ (a, b) . Hence, h′− (x) ≤ h′+ (x) and v (x) ≤ 0, we obtain f ′− (x) ≥ f ′+ (x) .
We conclude that f ′− (x) = f ′+ (x). �

The main result of this paper is given by the following theorem.

Theorem 3.3. Let n be a positive integer, n ≥ 3. If u, v are (n− 1)-times differentiable on (a, b)
and g, h are n-convex function, then f is (n− 1)-times differentiable on (a, b).

Proof. We will prove that f (n−1)
+ (x) = f

(n−1)
− (x), for any x ∈ (a, b).

From f (x) = g(x)
u(x) , we obtain that f is (n− 1)-times differentiable on (a, b) . Using

Leibniz’s formula for the derivatives of a product, we obtain

g(n−2) (x) = (u (x) f (x))
(n−2)

=

n−3∑
k=0

(
n− 2

k

)
u(n−2−k) (x) f (k) (x) + u (x) f (n−2) (x) ,

for any x ∈ (a, b) . Hence, u(n−2) is differentiable and g(n−2) is convex, then f (n−2) has
one-sided derivatives, for any x ∈ (a, b) . Moreover, for any x ∈ (a, b) , we have

g
(n−1)
− (x) =

n−3∑
k=0

(
n− 2

k

)(
u(n−1−k) (x) f (k) (x) + u(n−2−k) (x) f (k+1)

)
+u′ (x) f (n−2) (x) + u (x) f

(n−1)
− (x) .

In the same way, we obtain

g
(n−1)
+ (x) =

n−3∑
k=0

(
n− 2

k

)(
u(n−1−k) (x) f (k) (x) + u(n−2−k) (x) f (k+1)

)
+u′ (x) f (n−2) (x) + u (x) f

(n−1)
+ (x) .

Then
g
(n−1)
+ (x)− g

(n−1)
− (x) = u (x)

(
f
(n−1)
+ (x)− f

(n−1)
− (x)

)
.

Hence, g(n−2) is convex, then g
(n−1)
+ (x) ≥ g

(n−1)
− (x) . We find

f
(n−1)
+ (x) ≥ f

(n−1)
− (x) ,

for any x ∈ (a, b) .
Starting from equality h (x) = v (x) f (x) , we obtain

h
(n−1)
+ (x)− h

(n−1)
− (x) = v (x)

(
f
(n−1)
+ (x)− f

(n−1)
− (x)

)
.
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Hence h
(n−1)
+ (x) ≥ h

(n−1)
− (x) and since v (x) < 0, we find

f
(n−1)
+ (x) ≤ f

(n−1)
− (x) ,

for any x ∈ (a, b) . Then
f
(n−1)
+ (x) = f

(n−1)
− (x) ,

for any x ∈ (a, b) and the proof is complete. �

Now, if we choose u (x) = x−a and v (x) = x−b, we obtain the proof of the Proposition
2.1.

Finally, since a 1-convex function means that it is nondecreasing and a 2-convex function
means that it is convex, with the convention that 0-time differentiable means continuity,
we can state the following unitary result.
Theorem 3.4. If the functions u, v are (n− 1)-times differentiable and g, h are n-convex, then f
is (n− 1)-times differentiable, for any positive integer n.
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