Warped product pointwise bi-slant submanifolds of trans-Sasakian manifold

SAMPA PAHAN

Abstract

The purpose of this paper is to study pointwise bi-slant submanifolds of trans-Sasakian manifold. Firstly, we obtain a non-trivial example of a pointwise bi-slant submanifolds of an almost contact metric manifold. Next we provide some fundamental results, including a characterization for warped product pointwise bi-slant submanifolds in trans-Sasakian manifold. Then we establish that there does not exist warped product pointwise bi-slant submanifold of trans-Sasakian manifold \tilde{M} under some certain considerations. Next, we consider that M is a proper pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distrbutions $\mathcal{D}_{1} \oplus<\xi>$ and \mathcal{D}_{2}, then using Hiepko's Theorem, M becomes a locally warped product submanifold of the form $M_{1} \times{ }_{f} M_{2}$, where M_{1} and M_{2} are pointwise slant submanifolds with the slant angles θ_{1} and θ_{2} respectively. Later, we show that pointwise bi-slant submanifolds of trans-Sasakian manifold become Einstein manifolds admitting Ricci soliton and gradient Ricci soliton under some certain conditions..

1. Introduction

In [9], B. Y. Chen investigated the study of warped product slant submanifolds which are the generalization of both holomorphic and totally real submanifolds of a Kaehler manifold. In 1994, N. Papaghiuc initiated semi-slant submanifolds of a Kaehler manifold [20] as a natural generalization of slant submanifolds. In [14], the notion of slant immersion of a Riemannian manifold into an almost contact metric manifold was established by A. Lota. In [1], P. Alegre studied and proved some important results of slant submanifolds of Lorentzian Sasakian and Para-Sasakian manifolds . In 2000, A. Carriazo introduced the notion of bi-slant submanifolds of an almost Hermitian manifold in [8], as a generalization of semi-slant submanifolds. Many authors have studied different types of submanifold of almost contact manifolds in [5], [12] etc.
In [9], Chen constructed the concept of warped product submanifolds. Later, many mathematicians extended the study of warped product submanifolds of almost Hermitian [3] as well as almost contact manifolds in [2], [4], [7], [13], [17], [23] etc.

The concept of warped product plays an important role in differential geometry as well as in physics, particularly in general theory of relativity [18]. The idea of warped product was first introduced by Bishop and O^{\prime} Neil [6] to provide examples of Riemannian manifolds with negative curvature. Let $\left(B, g_{B}\right)$ and $\left(F, g_{F}\right)$ be two Riemannian manifolds and $f>0$ be a differential function on B. Consider the product manifold $B \times F$ with its projections $\pi: B \times F \rightarrow B$ and $\sigma: B \times F \rightarrow F$. The warped product $B \times_{f} F$ is the manifold $B \times F$ with the Riemannian structure such that $\|X\|^{2}=\left\|\pi^{*}(X)\right\|^{2}+f^{2}(\pi(p))\left\|\sigma^{*}(X)\right\|^{2}$, for any vector field X on M. Thus, $g_{M}=g_{B}+f^{2} g_{F}$ holds on M. Here B is called the base of M and F is called the fiber. The function f is called the warping function of the warped product [18]. Now the following lemma is given in [18].

[^0]Lemma 1.1. Let $M=B \times_{f} F$ be a warped product, $\nabla, \nabla^{B}, \nabla^{F}$ be the Levi-Civita connection on M, B and F respectively. If $X, Y \in \chi(B), U, W \in \chi(F)$, then
(i) $\nabla_{X} Y=\nabla_{X}^{B} Y$,
(ii) $\nabla_{X} U=\nabla_{U} X=(X \ln f) U$
(iii) $\nabla_{U} W=-\frac{g(U, W)}{f} \operatorname{grad}_{B} f+\nabla_{U}^{F} W$,
for any $X, Y \in \Gamma(T B)$ and $U, W \in \Gamma(T F)$ where ∇ and ∇^{F} denote the Levi-Civita connections on M and F, respectively, and gradf is the gradient of f.

The paper is organized as follows: In section 2, some basic definitions and preliminary formulas are stated which will be needful for this paper. In section 3, we observe some fundamental results of warped product pointwise bi-slant submanifolds of transSasakian manifolds. In this section, we construct the necessary and sufficient condition for pointwise bi-slant submanifolds of trans-Sasakian manifolds to be locally warped product under some certain conditions.

2. Preliminaries

A $(2 n+1)$ dimensional Riemannian manifold (\tilde{M}, g) is called an almost contact metric manifold if there exists a $(1,1)$ tensor field ϕ, a unit vector field ξ and a 1-form η on \tilde{M} such that

$$
\begin{gather*}
\phi^{2}(X)=-X+\eta(X) \xi, \eta(\phi X)=0, \phi \xi=0, \eta(X)=g(X, \xi), \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), g(X, \phi Y)+g(Y, \phi X)=0, \tag{2.2}
\end{gather*}
$$

for any vector fields X, Y on \tilde{M}. The notion of trans-Sasakian manifold was introduced by Oubina [19] in 1985. Then, J. C. Marrero [15] have studied the local structure of trans-Sasakian manifolds. An almost contact metric manifold \tilde{M} is called a trans-Sasakian manifold if it satisfies the following condition

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \phi\right)(Y)=\alpha\{g(X, Y) \xi-\eta(Y) X\}+\beta\{g(\phi X, Y) \xi-\eta(Y) \phi X\} \tag{2.3}
\end{equation*}
$$

for some smooth functions α, β on \tilde{M} and we say that the trans-Sasakian structure is of type (α, β). For trans-Sasakian manifold, from (2.3) we have

$$
\begin{gather*}
\tilde{\nabla}_{X} \xi=-\alpha \phi X+\beta(X-\eta(X) \xi) \tag{2.4}\\
\left(\tilde{\nabla}_{X} \eta\right)(Y)=-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) . \tag{2.5}
\end{gather*}
$$

For 3-dimensional trans-Sasakian manifold, we have

$$
\begin{aligned}
\tilde{R}(X, Y) Z & =\left[\frac{\tilde{r}}{2}-2\left(\alpha^{2}-\beta^{2}-\xi \beta\right)\right][g(Y, Z) X-g(X, Z) Y] \\
& -\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta\right][g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \xi \\
& +[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)][\phi \operatorname{grad} \alpha-\operatorname{grad} \beta] \\
& -\left[2-3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta\right] \eta(Z)[\eta(Y) X-\eta(X) Y] \\
& -[Z \beta+(\phi Z) \alpha] \eta(Z)[\eta(Y) X-\eta(X) Y] \\
& -[X \beta+(\phi X) \alpha][g(Y, Z) \xi-\eta(Z) Y] \\
& -[Y \beta+(\phi Y) \alpha][g(X, Z) \xi-\eta(Z) X], \\
\tilde{S}(X, Y) & =\left[\frac{\tilde{r}}{2}-\left(\alpha^{2}-\beta^{2}-\xi \beta\right)\right] g(X, Y) \\
& -\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta\right] \eta(X) \eta(Y) \\
& -[Y \beta+(\phi Y) \alpha] \eta(X)-[X \beta+(\phi X) \alpha] \eta(Y),
\end{aligned}
$$

\tilde{r} being scalar curvature on \tilde{M}.
When α and β are constants, the above equations give

$$
\begin{gather*}
\tilde{Q} X=\left(\frac{\tilde{r}}{2}-\left(\alpha^{2}-\beta^{2}\right)\right) X-\left(\frac{\tilde{r}}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi, \tag{2.6}\\
\tilde{R}(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y) . \tag{2.7}
\end{gather*}
$$

In general, trans-Sasakian manifold of type $(0,0),(\alpha, 0),(0, \beta)$ are called cosymplectic, α-Sasakian and β-Kenmotsu manifold, respectively.
Let M be a submanifold of an almost contact manifold \tilde{M} with induced metric g. Let ∇ and ∇^{\perp} be the induced connections on the tangent bundle $T M$ and normal bundle $T^{\perp} M$ of M respectively. Let \mathcal{F} denote the algebra of smooth functions on M and $\Gamma(T M)$ denotes the \mathcal{F}-module of smooth sections of $T M$ over M. Then the Gauss and Weingarten formulas are given by

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \tag{2.8}\\
& \tilde{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N, \tag{2.9}
\end{align*}
$$

for each $X, Y \in \Gamma(T M)$ and $N \in \Gamma\left(T^{\perp} M\right)$, where h and A_{N} are the second fundamental form and the shape operator (corresponding to the normal vector field N), respectively, for the immersion of M into \tilde{M}. They are related as

$$
\begin{equation*}
g(h(X, Y), N)=g\left(A_{N} X, Y\right), \tag{2.10}
\end{equation*}
$$

where g denotes the Riemannian metric on \tilde{M} as well as the one induced on M. The mean curvature H of M is given by $H=\frac{1}{m} \sum_{i=1}^{m} h\left(e_{i}, e_{i}\right)$, where m is the dimension of M and $\left\{e_{1}, e_{2} \ldots \ldots, e_{m}\right\}$ is a local orthonormal frame of vector fields on M.
A submanifold M of an almost contact metric manifold \tilde{M} is said to be totally umbilical if the second fundamental form satisfies $h(X, Y)=g(X, Y) H$, for all $X, Y \in \Gamma(T M)$.
A submanifold M is said to be totally geodesic if $h(X, Y)=0$, for all $X, Y \in \Gamma(T M)$ and minimal if $H=0$.
A foliation L on a Riemannian manifold \tilde{M} is called totally umbilical, if every leaf L is totally umbilical in \tilde{M}. If the mean curvature of every leaf is parallel in the normal bundle, then L is called a spheric foliation. If every leaf L is a totally geodesic, then L is called totally geodesic foliation, [10].
For any $X \in \Gamma(T M)$,

$$
\begin{equation*}
\phi X=P X+F X, \tag{2.11}
\end{equation*}
$$

where $P X$ is the tangential component and $F X$ is the normal component of ϕX.

$$
\begin{equation*}
\phi N=B N+C N, \tag{2.12}
\end{equation*}
$$

where $B N$ is the tangential component and $C N$ is the normal component of ϕN. A submanifold M of an almost contact metric manifold \tilde{M} is said to be invariant if F is identically zero, that is $\phi X \in \Gamma(T M)$ and anti-invariant if P is identically zero, that is $\phi X \in \Gamma\left(T^{\perp} M\right)$, for any $X \in \Gamma(T M)$.
There is another class of submanifolds, called the slant submanifold. For each non-zero vector X tangent to M at x, such that X is not proportional to ξ_{x}. The angle $\theta(X)$ between ϕX and $T_{x} M$ is constant for all nonzero $X \in T_{x} M-<\xi_{x}>$ and $x \in M$, then M is said to be a slant submanifold [7] and the angle θ is the slant angle of M. Obviously if $\theta=0, M$ is invariant and if $\theta=\frac{\pi}{2}, M$ is an anti-invariant submanifold. A slant submanifold is said to be proper slant if it is neither invariant nor anti-invariant.
We recall the following result which was obtained by Cabreizo et al. [7] for a slant submanifold of an almost contact metric manifold.

Theorem 2.1. Let M be a submanifold of an almost contact metric manifold \tilde{M}, such that $\xi \in$ $T M$. Then, M is slant iff \exists a constant $\lambda \in[0,1]$ such that

$$
\begin{equation*}
P^{2}=\lambda(-I+\eta \otimes \xi) \tag{2.13}
\end{equation*}
$$

Again, if θ is slant angle of M, then $\lambda=\cos ^{2} \theta$.
The following relations are straightforward consequences of (2.13):

$$
\begin{align*}
& g(P X, P Y)=\cos ^{2} \theta[g(X, Y)-\eta(X) \eta(Y)] \tag{2.14}\\
& g(F X, F Y)=\sin ^{2} \theta[g(X, Y)-\eta(X) \eta(Y)] \tag{2.15}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$.
For a pointwise slant submanifold of almost Hermitian manifold it is similarly derived in [16]

$$
\begin{equation*}
B F X=-X \sin ^{2} \theta, C F X=-F P X \tag{2.16}
\end{equation*}
$$

for all $X \in \Gamma(T M)$.
Now, we explain the brief introduction of pointwise bi-slant submanifold of an almost contact metric manifold \tilde{M}.

Definition 2.1. [7, 8] A submanifold M of an almost contact metric manifold ($\tilde{M}, \phi, \xi, \eta, g$) is said to be a pointwise bi-slant submanifold if there exists a pair of orthogonal distributions \mathcal{D}_{1} and \mathcal{D}_{2} on M such that:
(i) $T M$ admits the orthogonal direct decomposition i.e. $T M=\mathcal{D}_{1} \oplus \mathcal{D}_{2} \oplus<\xi>$, where $<\xi>$ is the one dimensional distribution spanned by the structure vector field ξ.
(ii) $\phi\left(\mathcal{D}_{1}\right) \perp \mathcal{D}_{2}$ and $\phi\left(\mathcal{D}_{2}\right) \perp \mathcal{D}_{1}$ that implies $P\left(\mathcal{D}_{i}\right) \subset \mathcal{D}_{i}, i=1$, 2. (iii) The distribution \mathcal{D}_{1} and \mathcal{D}_{2} are pointwise slant with slant angles θ_{1} and θ_{2} respectively.

A pointwise bi-slant submanifold is called proper if its bi-slant angles satisfy $\theta_{1}, \theta_{2} \neq$ $0, \frac{\pi}{2}$ and θ_{1}, θ_{2} are not constants on M.
For a pointwise bi-slant submanifold, we take

$$
\begin{equation*}
X=T_{1} X+T_{2} X, \forall X \in T M \tag{2.17}
\end{equation*}
$$

where T_{i} is the projection from $T M$ onto D_{i}. So, $T_{i} X$ are the components of X in D_{i}, $i=1,2$.
If we put $P_{i}=T_{i} \circ P$, then from the equation (2.17) we get

$$
\begin{equation*}
\phi X=P_{1} X+P_{2} X+F X, \forall X \in T M \tag{2.18}
\end{equation*}
$$

From Proposition we have

$$
\begin{equation*}
P^{2}=\cos ^{2} \theta_{i}(-I+\eta \otimes \xi), i=1,2 \tag{2.19}
\end{equation*}
$$

Now, we provide the following non-trivial example of a pointwise bi-slant submanifolds of an almost contact metric manifold.

Example 2.1. Let M be a submanifold of R^{7} with coordinates $\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, z\right)$ Let us consider an isometric immersion x into R^{7} as follows:

$$
\psi(u, v, \alpha, \beta, z)=(u,-v, \sqrt{3} \sin \alpha, \cos \alpha, \sin \beta, \cos \beta, z)
$$

We can easily to see that the tangent bundle $T M$ is spanned by the tangent vectors $Z_{1}=$ $\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial y_{1}}, Z_{2}=-\sqrt{3} \sin \alpha \frac{\partial}{\partial x_{1}}+\cos \alpha \frac{\partial}{\partial y_{1}}, Z_{3}=\sin \beta \frac{\partial}{\partial x_{2}}-\cos \beta \frac{\partial}{\partial y_{2}}+\frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial y_{3}}, Z_{4}=$ $\sin \beta \frac{\partial}{\partial x_{2}}+\cos \beta \frac{\partial}{\partial y_{2}}+\cos \alpha \frac{\partial}{\partial x_{3}}+\sqrt{3} \sin \alpha \frac{\partial}{\partial y_{3}}, Z_{5}=\frac{\partial}{\partial z}=\xi$.
For any vector field $X=\gamma_{i} \frac{\partial}{\partial x_{i}}+\delta_{j} \frac{\partial}{\partial y_{j}}+v \frac{\partial}{\partial z} \in \Gamma\left(T R^{7}\right)$, then we have $g(X, X)=\gamma_{i}^{2}+\delta_{j}^{2}+$ $v^{2}, g(\phi X, \phi X)=\gamma_{i}^{2}+\delta_{j}^{2}$ and $\phi(X)=-\gamma_{i} \frac{\partial}{\partial x_{i}}-\delta_{j} \frac{\partial}{\partial y_{j}}=-X+\eta(X) \xi$, for any $i, j=1,2$. It is clear that $g(\phi X, \phi X)=g(X, X)-\eta(X) \eta(X)$. Thus (ϕ, ξ, η, g) is an almost contact metric
structure on R^{7}.
We define the almost contact structure ϕ of R^{7}, by

$$
\phi\left(\frac{\partial}{\partial x_{i}}\right)=-\frac{\partial}{\partial y_{i}}, \phi\left(\frac{\partial}{\partial y_{j}}\right)=\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial z}=0, i, j \in\{1,2,3\} .
$$

By direct calculations, we can infer that $D_{1}=\operatorname{span}\left\{Z_{1}, Z_{2}\right\}$ and $D_{2}=\operatorname{span}\left\{Z_{3}, Z_{4}\right\}$ are pointwise slant distributions with slant angles $\theta_{1}=\cos ^{-1}\left(\frac{\cos \alpha-\sqrt{3} \sin \alpha}{\sqrt{2} \sqrt{\cos ^{2} \alpha+2 \sin ^{2} \alpha}}\right), \theta_{2}=$ $\cos ^{-1}\left(\frac{-\cos \alpha+\sqrt{3} \sin \alpha+\sin 2 \beta}{\sqrt{3} \sqrt{\cos ^{2} \alpha+2 \sin ^{2} \alpha+1}}\right)$, respectively. Thus M is a pointwise bi-slant submanifold of R^{7} such that $\xi=\frac{\partial}{\partial z}$ is tangent to M.

Now, we consider the following lemma for later use.
Lemma 2.2. Let M be a pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distributions $\mathcal{D}_{1} \oplus<\xi>$ and \mathcal{D}_{2} with distinct slant angles θ_{1} and θ_{2} respectively. Then

$$
\begin{align*}
\left(\sin ^{2} \theta_{1}-\sin ^{2} \theta_{2}\right) g\left(\nabla_{X} Y, Z\right) & =g\left(A_{F P_{1} Y} Z-A_{F Y} P_{2} Z, X\right) \\
& +g\left(A_{F P_{2} Z} Y-A_{F Z} P_{1} Y, X\right), \tag{2.20}
\end{align*}
$$

where $X, Y \in \Gamma\left(\mathcal{D}_{1} \oplus<\xi>\right)$ and $Z \in \Gamma\left(\mathcal{D}_{2}\right)$ and θ_{1} and θ_{2} are the slant angles of slant distributions \mathcal{D}_{1} and \mathcal{D}_{2} respectively.

Proof. Proof is similar to [10].

3. Warped Product Pointwise Bi-Slant Submanifold of trans-Sasakian MANIFOLD:

In this section we assume that $M=M_{1} \times_{f} M_{2}$ is a warped product pointwise bi-slant submanifold of trans-Sasakian manifold \tilde{M} with certain condition on unit vector field ξ. Here, we establish that there do not exist warped product pointwise bi-slant submanifold of trans-Sasakian manifold \tilde{M} under some certain considerations. Now we prove the following proposition.
First we prove the following proposition which will be helpful to prove later theorems.
Proposition 3.1. Let $M=M_{1} \times{ }_{f} M_{2}$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_{1} and M_{2} are pointwise slant submanifolds with ξ is tangent to M_{2}. Then

$$
\begin{align*}
g\left(h(X, W), F P_{2} Z\right)-g\left(h\left(X, P_{2} Z\right), F W\right) & =X\left(\theta_{2}\right) \sin 2 \theta_{2}(g(Z, W)-\eta(Z) \eta(W)) \\
& -X(\ln f) \eta(Z) \eta(W), \tag{3.21}
\end{align*}
$$

where $X \in \Gamma\left(T M_{1}\right)$ and $Z, W \in \Gamma\left(T M_{2}\right)$ and θ_{1} and θ_{2} are the slant angles of M_{1} and M_{2} respectively.

Proof. First we consider ξ is tangent to M_{2}. Then for any $X \in \Gamma\left(T M_{1}\right)$ and $Z, W \in$ $\Gamma\left(T M_{2}\right)$, we have

$$
\begin{aligned}
g\left(\tilde{\nabla}_{X} Z, W\right) & =g\left(\phi \tilde{\nabla}_{X} Z, \phi W\right) \\
& =g\left(\tilde{\nabla}_{X} \phi Z, \phi W\right)-g\left(\left(\tilde{\nabla}_{X} \phi\right) Z, \phi W\right)
\end{aligned}
$$

From the equations (2.1)-(2.5), (2.11), (2.12), (2.14), (2.16) and Lemma 1.1. we obtain

$$
\begin{align*}
g\left(\tilde{\nabla}_{X} Z, W\right) & =X(\ln f)\left(\cos ^{2} \theta_{2}+\sin ^{2} \theta_{2}\right)[g(Z, W)-\eta(Z) \eta(W)]+g\left(h\left(X, P_{2} Z\right), F W\right) \\
& +\sin 2 \theta_{2} X\left(\theta_{2}\right)[g(Z, W)-\eta(Z) \eta(W)]-g\left(h(X, W), F P_{2} Z\right) . \tag{3.22}
\end{align*}
$$

On the other hand, we also have from Lemma 1.1.

$$
\begin{equation*}
g\left(\tilde{\nabla}_{X} Z, W\right)=g\left(\nabla_{X} Z, W\right)=X(\ln f) g(Z, W) . \tag{3.23}
\end{equation*}
$$

From the equations (3.22) and (3.23) Proposition 3.1. is proved.
Theorem 3.2. Let $M=M_{1} \times{ }_{f} M_{2}$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_{1} and M_{2} are pointwise slant submanifolds with the slant functions θ_{1} and θ_{2} respectively and also consider ξ is tangent to M_{2}. If M is mixed totally geodesic warped product submanifold and $\theta=$ constant, then M is a Riemannian product submanifold of M_{1} and M_{2}.

Proof. From Proposition 3.1. we can easily see that $X \ln f=0$ that means f is constant on M.

Proposition 3.2. Let $M=M_{1} \times{ }_{f} M_{2}$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_{1} and M_{2} are pointwise slant submanifolds with ξ is tangent to M_{1}. Then
a) $\begin{aligned} g(h(X, Z), F W)+g(h(X, W), F Z) & =-2 \alpha \eta(X) g(Z, W)+2 g(h(Z, W), F X) \\ & -2 P_{1} X(\ln f) g(Z, W),\end{aligned}$

$$
\begin{equation*}
-\quad 2 P_{1} X(\ln f) g(Z, W) \tag{3.24}
\end{equation*}
$$

b) $g(h(X, Z), F W)-g(h(X, W), F Z)=-2 \beta \eta(X) g(\phi Z, W)$

- $2 X(\ln f) g\left(Z, P_{2} W\right)$,
where $X \in \Gamma\left(T M_{1}\right)$ and $Z, W \in \Gamma\left(T M_{2}\right)$ and θ_{1} and θ_{2} are the slant angles of M_{1} and M_{2} respectively.
Proof. Let us assume that ξ be tangent to M_{1}. Then for any $X \in \Gamma\left(T M_{1}\right)$ and $Z, W \in$ $\Gamma\left(T M_{2}\right)$, we have

$$
\begin{aligned}
g(h(X, Z), F W) & =g\left(\tilde{\nabla}_{Z} X, F W\right) \\
& =g\left(\left(\tilde{\nabla}_{Z} \phi\right) X, W\right)-g\left(\tilde{\nabla}_{Z} \phi X, W\right)-g\left(\tilde{\nabla}_{Z} X, P_{2} W\right)
\end{aligned}
$$

Taking the equations (2.3), (2.11) and Lemma 1.1 we can write

$$
\begin{align*}
g(h(X, Z), F W) & =-\alpha \eta(X) g(Z, W)-\beta \eta(X) g(\phi Z, W) \\
& -P_{1} X(\ln f) g(Z, W)-X(\ln f) g\left(Z, P_{2} W\right) \\
& +g(h(Z, W), F X) \tag{3.26}
\end{align*}
$$

Now interchanging Z and W the above equation gives

$$
\begin{align*}
g(h(X, W), F Z) & =-\alpha \eta(X) g(Z, W)-\beta \eta(X) g(\phi W, Z) \\
& -P_{1} X(\ln f) g(Z, W)-X(\ln f) g\left(P_{2} Z, W\right) \\
& +g(h(Z, W), F X) \tag{3.27}
\end{align*}
$$

Adding the equations (3.26) and (3.27) we get

$$
\begin{align*}
g(h(X, Z), F W)+g(h(X, W), F Z) & =-2 \alpha \eta(X) g(Z, W)+2 g(h(Z, W), F X) \\
& -2 P_{1} X(\ln f) g(Z, W) \tag{3.28}
\end{align*}
$$

Substracting (3.27) from (3.26) we obtain

$$
\begin{align*}
g(h(X, Z), F W)-g(h(X, W), F Z) & =-2 \beta \eta(X) g(\phi Z, W) \\
& -2 X(\ln f) g\left(Z, P_{2} W\right) . \tag{3.29}
\end{align*}
$$

This completes the proof.

Theorem 3.3. Let $M=M_{1} \times_{f} M_{2}$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_{1} and M_{2} are pointwise slant submanifolds with the slant functions θ_{1} and θ_{2} respectively and also consider ξ is tangent to M_{1}. Then
i) If $\alpha \eta(X) Z=\tilde{\nabla}_{Z} F X$, then M is a Riemannian product submanifold of M_{1} and M_{2}.
ii) If M is mixed totally geodesic warped product submanifold and $\beta=0$, then M is a Riemannian product submanifold of M_{1} and M_{2}.

Proof. From Proposition 3.2 (a) and (b) we see that $X \ln f=0$ which shows that f is constant on M.

Proposition 3.3. Let $M=M_{1} \times_{f} M_{2}$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_{1} and M_{2} are pointwise slant submanifolds with the slant functions θ_{1} and θ_{2} respectively and also consider ξ is tangent to M_{1}.Then

$$
\left[\sin 2 \theta_{2} X\left(\theta_{2}\right)+(2 \beta \eta(X)-2 X(\ln f)) \cos ^{2} \theta_{2}\right] g(Z, W)=2 \beta \eta(X) g\left(Z, F P_{2} W\right)
$$

where $X \in \Gamma\left(T M_{1}\right)$. In particular, if $\beta=0, X \ln f=\tan \theta_{2} X\left(\theta_{2}\right)$.
Proof. For the equation (3.29) we have

$$
\begin{align*}
g(h(X, Z), F W)-g(h(X, W), F Z) & =-2 \beta \eta(X) g(\phi Z, W) \\
& -2 X(\ln f) g\left(Z, P_{2} W\right) \tag{3.30}
\end{align*}
$$

for any $X \in \Gamma\left(T M_{1}\right)$ and $Z, W \in \Gamma\left(T M_{2}\right)$.
Putting $W=P_{2} W$ in the equation (3.30) and then using the equations (2.11), (2.13) and (2.14) we derive

$$
\begin{align*}
g\left(h(X, Z), F P_{2} W\right)-g\left(h\left(X, P_{2} W\right), F Z\right) & =2 \beta \eta(X)\left[-\cos ^{2} \theta_{2} g(Z, W)-g\left(Z, F P_{2} W\right)\right] \\
& +2 X(\ln f) \cos ^{2} \theta_{2} g(Z, W) . \tag{3.31}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
g\left(\tilde{\nabla}_{X} W, Z\right) & =g\left(\phi \tilde{\nabla}_{X} W, \phi Z\right) \\
& =g\left(\tilde{\nabla}_{X} \phi W, \phi Z\right)-g\left(\left(\tilde{\nabla}_{X} \phi\right) W, \phi Z\right) \tag{3.32}
\end{align*}
$$

Using the equations (2.11), (2.13), (2.14) and (2.16), the equation (3.32) reduces to

$$
\begin{equation*}
g\left(h(X, Z), F P_{2} W\right)-g\left(h\left(X, P_{2} W\right), F Z\right)=\sin \left(2 \theta_{2}\right) X\left(\theta_{2}\right) g(Z, W) \tag{3.33}
\end{equation*}
$$

From the equations (3.31) and (3.33) give

$$
\left[\sin 2 \theta_{2} X\left(\theta_{2}\right)+(2 \beta \eta(X)-2 X(\ln f)) \cos ^{2} \theta_{2}\right] g(Z, W)=2 \beta \eta(X) g\left(Z, F P_{2} W\right)
$$

In particular, if $\beta=0, X \ln f=\tan \theta_{2} X\left(\theta_{2}\right)$.
Corollary 3.1. Let $M=M_{1} \times{ }_{f} M_{2}$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_{1} and M_{2} are pointwise slant submanifolds with the slant functions θ_{1} and θ_{2} respectively and also consider ξ is tangent to M_{1}. If $\left(\cos ^{2} \theta\right) W=F P_{2} W$ and $\theta_{2}=$ constant,then M is a Riemannian product submanifold of M_{1} and M_{2}.

Now, we prove the following lemmas for later use.

Lemma 3.3. Let M be a pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distributions $\mathcal{D}_{1} \oplus<\xi>$ and \mathcal{D}_{2} with distinct slant angles θ_{1} and θ_{2} respectively.

Then

$$
\begin{align*}
\left(\sin ^{2} \theta_{2}-\sin ^{2} \theta_{1}\right) g\left(\nabla_{Z} W, X\right) & =g\left(A_{F P_{1} X} W-A_{F X} P_{2} W, Z\right) \\
& +g\left(A_{F P_{2} W} X-A_{F W} P_{1} X, Z\right) \\
& +\beta \eta(X) \cos ^{2} \theta_{2} g(Z, W)-\alpha \eta\left(P_{1} X\right) g(Z, W) \\
& -\beta \eta(X) g\left(Z, F P_{2} W\right)+\alpha \eta(X) \sin ^{2} \theta_{1} g(Z, \phi W) \\
& +\beta \eta\left(P_{1} X\right) g(Z, \phi W)+\beta \eta(X) \sin ^{2} \theta_{1} g(Z, W) \\
& +\alpha \eta(X) g\left(Z, P_{2} W\right) . \tag{3.34}
\end{align*}
$$

where $X \in \Gamma\left(\mathcal{D}_{1} \oplus<\xi>\right)$ and $Z, W \in \Gamma\left(\mathcal{D}_{2}\right)$ and θ_{1} and θ_{2} are the slant angles of slant distributions \mathcal{D}_{1} and \mathcal{D}_{2} respectively.

Proof. For any $X \in \Gamma\left(\mathcal{D}_{1} \oplus<\xi>\right)$ and $Z, W \in \Gamma\left(\mathcal{D}_{2}\right)$,we have

$$
\begin{align*}
g\left(\nabla_{Z} W, X\right)=g\left(\tilde{\nabla}_{Z} W, X\right) & =g\left(\phi \tilde{\nabla}_{Z} W, \phi X\right) \\
& =g\left(\tilde{\nabla}_{X} \phi Z, \phi W\right)-g\left(\left(\tilde{\nabla}_{Z} \phi\right) W, \phi X\right) \tag{3.35}
\end{align*}
$$

Using the equations (2.1)-(2.5), (2.11)-(2.14), (2.16) we get (3.34).
Lemma 3.4. Let $M=M_{1} \times{ }_{f} M_{2}$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_{1} and M_{2} are pointwise slant submanifolds with the slant functions θ_{1} and θ_{2} respectively and also consider ξ is tangent to M_{1}. Then

$$
\begin{equation*}
\text { (i) } g(h(X, Y), F W)=g(h(X, W), F Y) . \tag{3.36}
\end{equation*}
$$

(ii) $g\left(A_{F P_{1} X} W-A_{F X} P_{2} W, Z\right)+g\left(A_{F P_{2} W} X-A_{F W} P_{1} X, Z\right)=\left(\sin ^{2} \theta_{1}\right.$

$$
\begin{align*}
& \left.-\sin ^{2} \theta_{2}\right) X(l n f) g(Z, W)-\alpha \eta\left(P_{1} X\right) g(Z, W) \\
& -\quad \eta\left(P_{1} X\right) g(\phi Z, W)+\alpha \sin ^{2} \theta_{1} \eta(X) g(Z, \phi W) \\
& +\quad \beta \sin ^{2} \theta_{1} \eta(X) g(Z, W)-\alpha g(Z, F W) \eta(X) \\
& +\quad \beta \eta(X) g(Z, \phi F W), \tag{3.37}
\end{align*}
$$

$X \in \Gamma\left(T M_{1}\right)$ and $Z, W \in \Gamma\left(T M_{2}\right)$.
Proof. Let us consider ξ be tangent to M_{1}. Then for any $X \in \Gamma\left(T M_{1}\right)$ and $Z, W \in$ $\Gamma\left(T M_{2}\right)$, we have

$$
\begin{align*}
g(h(X, Y), F W) & =g\left(\tilde{\nabla}_{X} Y, F W\right) \\
& =g\left(\tilde{\nabla}_{X} Y, \phi W\right)-g\left(\tilde{\nabla}_{X} Y, P_{2} W\right) \tag{3.38}
\end{align*}
$$

Using the equations (2.3), (2.8) and Lemma 1.1. we obtain

$$
g(h(X, Y), F W)=g(h(X, W), F Y) .
$$

Hence Lemma 3.4. (i) is proved.
Now, we have

$$
\begin{align*}
g\left(\tilde{\nabla}_{Z} X, W\right) & =g\left(\phi \tilde{\nabla}_{Z} X, \phi W\right) \\
& =g\left(\tilde{\nabla}_{Z} \phi X, \phi W\right)-g\left(\left(\tilde{\nabla}_{Z} \phi\right) X, \phi W\right) \tag{3.39}
\end{align*}
$$

Using the equations (2.3), (2.10)-(2.12), we obtain

$$
\begin{aligned}
g\left(\tilde{\nabla}_{Z} X, W\right) & =-\alpha \eta\left(P_{1} X\right) g(Z, W)-\beta \eta\left(P_{1} X\right) g(\phi Z, W)-g\left(\tilde{\nabla}_{Z} P_{1}^{2} X, W\right) \\
& -g\left(\tilde{\nabla}_{Z} F P_{1} X, W\right)-g\left(A_{F X} Z, P_{2} W\right)+g\left(\phi\left(\tilde{\nabla}_{Z} F W\right), X\right) \\
& +g\left(\tilde{\nabla}_{Z} F W, P_{1} X\right)+\alpha \eta(X) g(Z, \phi W) \\
& +\beta \eta(X) g(\phi Z, \phi W) .
\end{aligned}
$$

Again, from the equations (2.1)-(2.5), (2.11)-(2.14), (2.16), Lemma 1.1. and the orthogonality of vector fields and symmetry of the shape operator it follows that

$$
\begin{aligned}
g\left(A_{F P_{1} X} W-A_{F X} P_{2} W, Z\right) & +g\left(A_{F P_{2} W} X-A_{F W} P_{1} X, Z\right)=\left(\sin ^{2} \theta_{1}\right. \\
& \left.-\sin ^{2} \theta_{2}\right) X(\ln f) g(Z, W)-\alpha \eta\left(P_{1} X\right) g(Z, W) \\
& -\eta\left(P_{1} X\right) g(\phi Z, W)+\alpha \sin ^{2} \theta_{1} \eta(X) g(Z, \phi W) \\
& +\beta \sin ^{2} \theta_{1} \eta(X) g(Z, W)-\alpha g(Z, F W) \eta(X) \\
& +\beta \eta(X) g(Z, \phi F W) .
\end{aligned}
$$

This completes the proof of the Lemma 3.4. (ii).
Theorem 3.4. Let M be a proper pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distrbutions $\mathcal{D}_{1} \oplus<\xi>$ and \mathcal{D}_{2}. If M is locally a warped product submanifold of the form $M_{1} \times{ }_{f} M_{2}$, where M_{1} and M_{2} are pointwise slant submanifolds with the slant functions θ_{1} and θ_{2} respectively with ξ tangent to M_{1}, then the shape operator A satisfies

$$
\begin{align*}
A_{F P_{1} X} W-A_{F X} P_{2} W & +A_{F P_{2} W} X-A_{F W} P_{1} X=\left(\sin ^{2} \theta_{1}\right. \\
& \left.-\sin ^{2} \theta_{2}\right) X(\mu) W-\alpha \eta\left(P_{1} X\right) W \\
& +\beta \eta\left(P_{1} X\right) \phi W+\alpha \sin ^{2} \theta_{1} \eta(X) \phi W \\
& +\beta \sin ^{2} \theta_{1} \eta(X) W-\alpha F W \eta(X) \\
& +\beta \eta(X) \phi F W, \tag{3.40}
\end{align*}
$$

with $\mu=\ln f$.
Proof. Using Lemma 3.4. (i) and Lemma 3.4. (ii) we obtain the equation (3.40) with $\mu=$ $\ln f$.

The next theorem shows a characterization result for pointwise bi-slant submanifold of a trans-Sasakian manifold. First we state the following theorem [11] according to S. Hiepko.
Hiepko's Theorem : Let \mathcal{D}_{1} and \mathcal{D}_{2} be two orthogonal distributions on a Riemannian manifold M. Suppose that both \mathcal{D}_{1} and \mathcal{D}_{2} are involutive such that \mathcal{D}_{1} is a totally geodesic foliation and \mathcal{D}_{2} is a spherical foliation. Then M is a locally isometric to a non-trivial warped product $M_{1} \times f M_{2}$, where M_{1} and M_{2} are integral manifolds of \mathcal{D}_{1} and \mathcal{D}_{2} respectively.

Theorem 3.5. Let M be a proper pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distrbutions $\mathcal{D}_{1} \oplus<\xi>$ and \mathcal{D}_{2}. If

$$
\begin{align*}
A_{F P_{1} X} W-A_{F X} P_{2} W & +A_{F P_{2} W} X-A_{F W} P_{1} X=\left(\sin ^{2} \theta_{1}\right. \\
& \left.-\sin ^{2} \theta_{2}\right) X(\mu) W-\alpha \eta\left(P_{1} X\right) W \\
& +\beta \eta\left(P_{1} X\right) \phi W+\alpha \sin ^{2} \theta_{1} \eta(X) \phi W \\
& +\beta \sin ^{2} \theta_{1} \eta(X) W-\alpha F W \eta(X) \\
& +\beta \eta(X) \phi F W \tag{3.41}
\end{align*}
$$

and

$$
\begin{align*}
2 \alpha \eta\left(P_{1} X\right) W-2 \beta \eta\left(P_{1} X\right) W & +\beta \eta(X) W-2 \alpha \sin ^{2} \theta_{1} \eta(X) \phi W \\
& -2 \beta \sin ^{2} \theta_{1} \eta(X) W-\alpha \phi W \eta(X) \\
& +2 \alpha \eta(X) F W-2 \beta \eta(X) \phi F W . \tag{3.42}
\end{align*}
$$

holds, then, M is locally a warped product submanifold of the form $M_{1} \times_{f} M_{2}$, where M_{1} and M_{2} are pointwise slant submanifolds with the slant functions θ_{1} and θ_{2} respectively, where μ is a function on M satisfying $W \mu=0$, for any $W \in \mathcal{D}_{2}$.
Proof. Let M be a proper pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distrbutions $\mathcal{D}_{1} \oplus<\xi>$ and \mathcal{D}_{2}. From Lemma 2.2., we have

$$
\begin{align*}
\left(\sin ^{2} \theta_{1}-\sin ^{2} \theta_{2}\right) g\left(\nabla_{Y} X, Z\right) & =g\left(A_{F P_{1} X} Z-A_{F X} P_{2} Z, Y\right) \\
& +g\left(A_{F P_{2} Z} X-A_{F Z} P_{1} X, Y\right), \tag{3.43}
\end{align*}
$$

where $X, Y \in \Gamma\left(\mathcal{D}_{1} \oplus<\xi>\right)$ and $Z \in \Gamma\left(\mathcal{D}_{2}\right)$. Now taking inner product with Y in the equation (3.40) and then using equation (3.42) we obtain

$$
g\left(\nabla_{Y} X, Z\right)=X(\mu) g(Y, W)=0
$$

Hence the leaves of the distributions are totally geodesic in M.
From Lemma 3.3., we have

$$
\begin{align*}
\left(\sin ^{2} \theta_{2}-\sin ^{2} \theta_{1}\right) g\left(\nabla_{Z} W, X\right) & =g\left(A_{F P_{1} X} W-A_{F X} P_{2} W, Z\right) \\
& +g\left(A_{F P_{2} W} X-A_{F W} P_{1} X, Z\right)+\alpha \eta(X) g\left(Z, P_{2} W\right) \\
& +\beta \eta(X) \cos ^{2} \theta_{2} g(Z, W)-\alpha \eta\left(P_{1} X\right) g(Z, W) \\
& -\beta \eta(X) g\left(Z, F P_{2} W\right)+\alpha \eta(X) \sin ^{2} \theta_{1} g(Z, \phi W) \\
& +\beta \eta\left(P_{1} X\right) g(Z, \phi W) \\
& +\beta \eta(X) \sin ^{2} \theta_{1} g(Z, W) . \tag{3.44}
\end{align*}
$$

Also, we have

$$
\begin{equation*}
g\left(\nabla_{Z} W, X\right)=-X(\mu) g(Z, W) \tag{3.45}
\end{equation*}
$$

Interchanging W and Z and then using the definition of Lie bracket we obtain

$$
\begin{equation*}
g([Z, W], X)=0 \tag{3.46}
\end{equation*}
$$

Hence \mathcal{D}_{2} is integrable.
Let us assume h_{2} be the second fundamental form of a leaf M_{2} of \mathcal{D}_{2} in M. Then for any $X \in \Gamma\left(\mathcal{D}_{1} \oplus<\xi>\right)$ and $Z, W \in \Gamma\left(\mathcal{D}_{2}\right)$ we have

$$
\begin{equation*}
g\left(h_{2}(Z, W), X\right)=g\left(\nabla_{Z} W, X\right) \tag{3.47}
\end{equation*}
$$

From the equation (3.45) we can write

$$
\begin{equation*}
g\left(h_{2}(Z, W), X\right)=-X(\mu) g(Z, W) \tag{3.48}
\end{equation*}
$$

From the definition of gradient it can be written as

$$
\begin{equation*}
g\left(h_{2}(Z, W), X\right)=-\nabla \mu g(Z, W) \tag{3.49}
\end{equation*}
$$

It follows that the leaf M_{2} is totally umbilical in M with mean curvature vector $H_{2}=-\nabla \mu$. Then for any $Y \in \Gamma\left(\mathcal{D}_{1} \oplus<\xi>\right)$ and $W \in \Gamma\left(\mathcal{D}_{2}\right)$ we have

$$
\begin{align*}
g\left(\mathcal{D}_{2}^{W} H_{2}, Y\right) & =-g\left(\mathcal{D}_{2}^{W} \nabla \mu, Y\right), \\
& =-g\left(\nabla_{W} \nabla \mu, Y\right), \\
& =-W g(\nabla \mu, Y)+g\left(\nabla \mu, \nabla_{W} Y\right), \\
& =-W(Y \mu)-g\left(\nabla^{\prime}, \nabla_{Y} W\right), \because[W, Y]=0 \\
& =-Y(W \mu)+g\left(\nabla_{Y} \nabla \mu, W\right)=0 . \tag{3.50}
\end{align*}
$$

Since $W \mu=0$, for any $W \in \mathcal{D}_{2}$ and so $\nabla_{Y} \nabla \mu \in \Gamma\left(\mathcal{D}_{1} \oplus<\xi>\right)$. This shows that the mean curvature of M_{2} is parallel. Therefore, \mathcal{D}_{2} is a spherical foliation. Hence by Hiepko's

Theorem, M is a locally warped product $M_{1} \times_{f} M_{2}$, where M_{1} and M_{2} are pointwise slant submanifolds with the slant functions θ_{1} and θ_{2} respectively, where μ is a function on M.

Conclusion We have established that there do not exist warped product pointwise bislant submanifold of trans-Sasakian manifold \tilde{M} under some certain considerations. Next, we have proved that M is a proper pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distrbutions $\mathcal{D}_{1} \oplus<\xi>$ and \mathcal{D}_{2}, then using Hiepko's Theorem, M is a locally warped product submanifold of the form $M_{1} \times{ }_{f} M_{2}$.

Acknowledgments. The author wish to express their sincere thanks and gratitude to the referee for valuable suggestions towards the improvement of the paper.

References

[1] Alegre, P., Slant submanifolds of Lorentzian Sasakian and para Sasakian manifolds, Taiwanese J. Math., 17 (2013), No. 3, 897-910
[2] Ali, A. and Ozel, C., Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications, Int. J. Geom. Methods Mod. Phys., 14 (2017), No. 3, 1750042
[3] Al-Solamy, F. R., Khan, V. A., and Uddin, S., Geometry of Warped Product Semi-Slant Submanifolds of Nearly Kaehler Manifolds, Results Math., 71 (2017), No. 3, 783-799
[4] Atceken, M., Warped Product Semi-Slant Submanifolds of Nearly Kenmotsu Manifolds, Turk. J. Math., 36 (2012), No. 3, 319-330
[5] Bhattacharyya, A. and Das, B., Contact CR-Submanifolds of an Indefinite Trans-Sasakian Manifold, Int. J. Contemp. Math. Sciences, 6 (2011), No. 26, 1271-1282
[6] Bishop, R. L. and O'Neil, B., Manifolds of negative curvature, Trans. Am. Math. Soc., 145 (1969), 1-9
[7] Cabrerizo, J. L., Carriazo, A., Fernandez, L. M. and Fernandez, M., Semi-slant submanifolds of a Sasakian manifold, Geom. Dedic., 78 (1999), No. 2, 183-199
[8] Carriazo, A., Bi-slant immersions, ICRAMS 2000, Kharagpur, India, 88-97, 2000
[9] Chen, B. Y., Geometry of warped product CR-submanifold in Kaehler manifolds, Monatshefte Math., 133 (2001), No. 3, 177-195
[10] Chen, B. Y. and Uddin, S., Warped Product Pointwise Bi-Slant Submanifolds of Kaehler Manifolds, Publicationes mathematicae, 92 (2018), 183-199
[11] Hiepko, S., Eine inner kennzeichungder verzerrten produkte, Math. Ann., 241 (1979), No. 3, 209-215
[12] Laha, B. and Bhattacharyya, A., Totally umbilical hemislant submanifolds of LP-Sasakian manifold, Lobachevskii J. Math., 36 (2015), No. 2, 127-131
[13] Lonea, M. A., Loneb, M. S. and Shahid, M. H., Hemi-Slant Submanifolds Of Cosymplectic Manifolds, Cogent Mathematics, 3 (2016), No. 2, 1204143
[14] Lotta, A., Slant submanifolds in contact geometry, Bull. Math. Soc. Roum., 39 (1996), 183-198
[15] Marrero, J. C., The local structure of trans-Sasakian manifolds, Ann. Mat. Pura. Appl., 162 (1992), No. 1, 77-86
[16] Mihai, I., Uddin, S. and Mihai, A., Warped product pointwise semi-slant submanifolds of Sasakian manifolds, Kragujevac J. Math., 45 (2021), No. 5, 721-738
[17] Pahan S. and Dey S., Warped products semi-slant and pointwise semi-slant submanifolds on Kaehler manifolds, J. Geom. Phys., 155 (2020), 103760
[18] O'Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic press, 1983
[19] Oubina, J. A., New classes of almost contact metric structures, Publication Math. Debrecen, 32 (1985), 187-193
[20] Papaghiuc, N., Semi-slant submanifolds of Kahlerian manifold, An. Ştiinţ. Univ. AL I. Cuza. Iaşi. Inform. (N.S.), 9 (1994), 55-61
[21] Perelman, G., The entropy formula for the Ricci flow and its geometric applications, Preprint, http://arXiv.org/abs/math.DG/0211159, 2002
[22] Sinha, B. B. and Sharma, R., On Para-A-Einstein manifolds, Publications De L'Institut Mathematique, 34 (1983), No. 48, 211-215
[23] Uddin, S., Geometry of Warped Product Semi-Slant Submanifolds of Nearly Kenmotsu Manifolds, Bull. Math. Sci., 8 (2018), No. 3, 435-451

Department of Mathematics
Mrinalini Datta Mahavidyapith
Kolkata-700051, India
E-mail address: sampapahan25@gmail.com

[^0]: Received: 09.09.2019. In revised form: 08.09.2020. Accepted: 15.09.2020
 2010 Mathematics Subject Classification. 53C40, 58C35, 53C42, 53C15.
 Key words and phrases. Bi-slant submanifolds, pointwise bi-slant submanifolds, warped product, trans-Sasakian manifolds.

