Warped product pointwise bi-slant submanifolds of trans-Sasakian manifold

SAMPA PAHAN

ABSTRACT. The purpose of this paper is to study pointwise bi-slant submanifolds of trans-Sasakian manifold. Firstly, we obtain a non-trivial example of a pointwise bi-slant submanifolds of an almost contact metric manifold. Next we provide some fundamental results, including a characterization for warped product pointwise bi-slant submanifolds in trans-Sasakian manifold. Then we establish that there does not exist warped product pointwise bi-slant submanifold of trans-Sasakian manifold \tilde{M} under some certain considerations. Next, we consider that M is a proper pointwise bi-slant submanifold of a trans-Sasakian manifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distrbutions $\mathcal{D}_1 \oplus < \xi >$ and \mathcal{D}_2 , then using Hiepko's Theorem, M becomes a locally warped product submanifold of the form $M_1 \times_f M_2$, where M_1 and M_2 are pointwise slant submanifolds with the slant angles θ_1 and θ_2 respectively. Later, we show that pointwise bi-slant submanifolds of trans-Sasakian manifold become Einstein manifolds admitting Ricci soliton and gradient Ricci soliton under some certain conditions.

1. INTRODUCTION

In [9], B. Y. Chen investigated the study of warped product slant submanifolds which are the generalization of both holomorphic and totally real submanifolds of a Kaehler manifold. In 1994, N. Papaghiuc initiated semi-slant submanifolds of a Kaehler manifold [20] as a natural generalization of slant submanifolds. In [14], the notion of slant immersion of a Riemannian manifold into an almost contact metric manifold was established by A. Lota. In [1], P. Alegre studied and proved some important results of slant submanifolds of Lorentzian Sasakian and Para-Sasakian manifolds . In 2000, A. Carriazo introduced the notion of bi-slant submanifolds of an almost Hermitian manifold in [8], as a generalization of semi-slant submanifolds. Many authors have studied different types of submanifold of almost contact manifold in [5], [12] etc.

In [9], Chen constructed the concept of warped product submanifolds. Later, many mathematicians extended the study of warped product submanifolds of almost Hermitian [3] as well as almost contact manifolds in [2], [4], [7], [13], [17], [23] etc.

The concept of warped product plays an important role in differential geometry as well as in physics, particularly in general theory of relativity [18]. The idea of warped product was first introduced by Bishop and O'Neil [6] to provide examples of Riemannian manifolds with negative curvature. Let (B, g_B) and (F, g_F) be two Riemannian manifolds and f > 0 be a differential function on B. Consider the product manifold $B \times F$ with its projections $\pi : B \times F \to B$ and $\sigma : B \times F \to F$. The warped product $B \times_f F$ is the manifold $B \times F$ with the Riemannian structure such that $||X||^2 = ||\pi^*(X)||^2 + f^2(\pi(p))||\sigma^*(X)||^2$, for any vector field X on M. Thus, $g_M = g_B + f^2g_F$ holds on M. Here B is called the base of M and F is called the fiber. The function f is called the warping function of the warped product [18]. Now the following lemma is given in [18].

Received: 09.09.2019. In revised form: 08.09.2020. Accepted: 15.09.2020

²⁰¹⁰ Mathematics Subject Classification. 53C40, 58C35, 53C42, 53C15.

Key words and phrases. Bi-slant submanifolds, pointwise bi-slant submanifolds, warped product, trans-Sasakian manifolds.

Lemma 1.1. Let $M = B \times_f F$ be a warped product, $\nabla, \nabla^B, \nabla^F$ be the Levi-Civita connection on M, B and F respectively. If $X, Y \in \chi(B), U, W \in \chi(F)$, then $(i) \nabla_X Y = \nabla^B_X Y$, $(ii) \nabla_X U = \nabla_U X = (Xlnf)U$

(*iii*) $\nabla_U W = -\frac{g(U,W)}{f} \operatorname{grad}_B f + \nabla_U^F W$, for any $X, Y \in \Gamma(TB)$ and $U, W \in \Gamma(TF)$ where ∇ and ∇^F denote the Levi-Civita connections on M and F, respectively, and grad f is the gradient of f.

The paper is organized as follows: In section 2, some basic definitions and preliminary formulas are stated which will be needful for this paper. In section 3, we observe some fundamental results of warped product pointwise bi-slant submanifolds of trans-Sasakian manifolds. In this section, we construct the necessary and sufficient condition for pointwise bi-slant submanifolds of trans-Sasakian manifolds to be locally warped product under some certain conditions.

2. PRELIMINARIES

A (2n + 1) dimensional Riemannian manifold (\tilde{M}, g) is called an almost contact metric manifold if there exists a (1,1) tensor field ϕ , a unit vector field ξ and a 1-form η on \tilde{M} such that

$$\phi^2(X) = -X + \eta(X)\xi, \eta(\phi X) = 0, \phi\xi = 0, \eta(X) = g(X,\xi),$$
(2.1)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), g(X, \phi Y) + g(Y, \phi X) = 0,$$
(2.2)

for any vector fields X, Y on \tilde{M} . The notion of trans-Sasakian manifold was introduced by Oubina [19] in 1985. Then, J. C. Marrero [15] have studied the local structure of trans-Sasakian manifolds. An almost contact metric manifold \tilde{M} is called a trans-Sasakian manifold if it satisfies the following condition

$$(\tilde{\nabla}_X \phi)(Y) = \alpha \{ g(X, Y)\xi - \eta(Y)X \} + \beta \{ g(\phi X, Y)\xi - \eta(Y)\phi X \},$$
(2.3)

for some smooth functions α , β on \tilde{M} and we say that the trans-Sasakian structure is of type (α, β) . For trans-Sasakian manifold, from (2.3) we have

$$\tilde{\nabla}_X \xi = -\alpha \phi X + \beta (X - \eta (X)\xi), \qquad (2.4)$$

$$(\tilde{\nabla}_X \eta)(Y) = -\alpha g(\phi X, Y) + \beta g(\phi X, \phi Y).$$
(2.5)

For 3-dimensional trans-Sasakian manifold, we have

$$\begin{split} \tilde{R}(X,Y)Z &= [\frac{\tilde{r}}{2} - 2(\alpha^2 - \beta^2 - \xi\beta)][g(Y,Z)X - g(X,Z)Y] \\ &- [\frac{\tilde{r}}{2} - 3(\alpha^2 - \beta^2) + \xi\beta][g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]\xi \\ &+ [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)][\phi \ grad \ \alpha - \ grad \ \beta] \\ &- [\frac{\tilde{r}}{2} - 3(\alpha^2 - \beta^2) + \xi\beta]\eta(Z)[\eta(Y)X - \eta(X)Y] \\ &- [Z\beta + (\phi Z)\alpha]\eta(Z)[\eta(Y)X - \eta(X)Y] \\ &- [Z\beta + (\phi Z)\alpha]\eta(Z)[\eta(Y)X - \eta(Z)Y] \\ &- [X\beta + (\phi X)\alpha][g(Y,Z)\xi - \eta(Z)Y] \\ &- [Y\beta + (\phi Y)\alpha][g(X,Z)\xi - \eta(Z)X], \\ \tilde{S}(X,Y) &= [\frac{\tilde{r}}{2} - (\alpha^2 - \beta^2 - \xi\beta)]g(X,Y) \\ &- [Y\beta + (\phi Y)\alpha]\eta(X) - [X\beta + (\phi X)\alpha]\eta(Y), \end{split}$$

 \tilde{r} being scalar curvature on \tilde{M} .

When α and β are constants, the above equations give

$$\tilde{Q}X = (\frac{\tilde{r}}{2} - (\alpha^2 - \beta^2))X - (\frac{\tilde{r}}{2} - 3(\alpha^2 - \beta^2))\eta(X)\xi,$$
(2.6)

$$\tilde{R}(X,Y)\xi = (\alpha^2 - \beta^2)(\eta(Y)X - \eta(X)Y).$$
(2.7)

In general, trans-Sasakian manifold of type (0,0), $(\alpha,0)$, $(0,\beta)$ are called cosymplectic, α -Sasakian and β -Kenmotsu manifold, respectively.

Let M be a submanifold of an almost contact manifold \tilde{M} with induced metric g. Let ∇ and ∇^{\perp} be the induced connections on the tangent bundle TM and normal bundle $T^{\perp}M$ of M respectively. Let \mathcal{F} denote the algebra of smooth functions on M and $\Gamma(TM)$ denotes the \mathcal{F} -module of smooth sections of TM over M. Then the Gauss and Weingarten formulas are given by

$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \tag{2.8}$$

$$\tilde{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \tag{2.9}$$

for each $X, Y \in \Gamma(TM)$ and $N \in \Gamma(T^{\perp}M)$, where *h* and A_N are the second fundamental form and the shape operator (corresponding to the normal vector field N), respectively, for the immersion of *M* into \tilde{M} . They are related as

$$g(h(X,Y),N) = g(A_N X,Y),$$
 (2.10)

where *g* denotes the Riemannian metric on \tilde{M} as well as the one induced on *M*. The mean curvature *H* of *M* is given by $H = \frac{1}{m} \sum_{i=1}^{m} h(e_i, e_i)$, where *m* is the dimension of *M* and $\{e_1, e_2, \dots, e_m\}$ is a local orthonormal frame of vector fields on *M*.

A submanifold M of an almost contact metric manifold \tilde{M} is said to be totally umbilical if the second fundamental form satisfies h(X, Y) = g(X, Y)H, for all $X, Y \in \Gamma(TM)$.

A submanifold *M* is said to be totally geodesic if h(X, Y) = 0, for all $X, Y \in \Gamma(TM)$ and minimal if H = 0.

A foliation L on a Riemannian manifold \tilde{M} is called totally umbilical, if every leaf L is totally umbilical in \tilde{M} . If the mean curvature of every leaf is parallel in the normal bundle, then L is called a spheric foliation. If every leaf L is a totally geodesic, then L is called totally geodesic foliation, [10].

For any $X \in \Gamma(TM)$,

$$\phi X = PX + FX, \tag{2.11}$$

where *PX* is the tangential component and *FX* is the normal component of ϕX .

$$\phi N = BN + CN, \tag{2.12}$$

where BN is the tangential component and CN is the normal component of ϕN . A submanifold M of an almost contact metric manifold \tilde{M} is said to be invariant if F is identically zero, that is $\phi X \in \Gamma(TM)$ and anti-invariant if P is identically zero, that is $\phi X \in \Gamma(TM)$, for any $X \in \Gamma(TM)$.

There is another class of submanifolds, called the slant submanifold. For each non-zero vector X tangent to M at x, such that X is not proportional to ξ_x . The angle $\theta(X)$ between ϕX and $T_x M$ is constant for all nonzero $X \in T_x M - \langle \xi_x \rangle$ and $x \in M$, then M is said to be a slant submanifold [7] and the angle θ is the slant angle of M. Obviously if $\theta = 0$, M is invariant and if $\theta = \frac{\pi}{2}$, M is an anti-invariant submanifold. A slant submanifold is said to be proper slant if it is neither invariant nor anti-invariant.

We recall the following result which was obtained by Cabreizo et al. [7] for a slant submanifold of an almost contact metric manifold.

Theorem 2.1. Let M be a submanifold of an almost contact metric manifold \tilde{M} , such that $\xi \in TM$. Then, M is slant iff \exists a constant $\lambda \in [0, 1]$ such that

$$P^2 = \lambda(-I + \eta \otimes \xi). \tag{2.13}$$

Sampa Pahan

Again, if θ is slant angle of M, then $\lambda = \cos^2 \theta$.

The following relations are straightforward consequences of (2.13):

$$g(PX, PY) = \cos^2 \theta[g(X, Y) - \eta(X)\eta(Y)], \qquad (2.14)$$

$$g(FX, FY) = \sin^2 \theta[g(X, Y) - \eta(X)\eta(Y)],$$
 (2.15)

for any $X, Y \in \Gamma(TM)$.

For a pointwise slant submanifold of almost Hermitian manifold it is similarly derived in [16]

$$BFX = -X\sin^2\theta, \ CFX = -FPX, \tag{2.16}$$

for all $X \in \Gamma(TM)$.

Now, we explain the brief introduction of pointwise bi-slant submanifold of an almost contact metric manifold \tilde{M} .

Definition 2.1. [7, 8] A submanifold M of an almost contact metric manifold $(\tilde{M}, \phi, \xi, \eta, g)$ is said to be a pointwise bi-slant submanifold if there exists a pair of orthogonal distributions \mathcal{D}_1 and \mathcal{D}_2 on M such that:

(i) *TM* admits the orthogonal direct decomposition i.e. $TM = D_1 \oplus D_2 \oplus \langle \xi \rangle$, where $\langle \xi \rangle$ is the one dimensional distribution spanned by the structure vector field ξ .

(ii) $\phi(\mathcal{D}_1) \perp \mathcal{D}_2$ and $\phi(\mathcal{D}_2) \perp \mathcal{D}_1$ that implies $P(\mathcal{D}_i) \subset \mathcal{D}_i$, i = 1, 2. (iii) The distribution \mathcal{D}_1 and \mathcal{D}_2 are pointwise slant with slant angles θ_1 and θ_2 respectively.

A pointwise bi-slant submanifold is called proper if its bi-slant angles satisfy $\theta_1, \theta_2 \neq 0, \frac{\pi}{2}$ and θ_1, θ_2 are not constants on M.

For a pointwise bi-slant submanifold, we take

$$X = T_1 X + T_2 X, \ \forall X \in TM, \tag{2.17}$$

where T_i is the projection from TM onto D_i . So, T_iX are the components of X in D_i , i = 1, 2.

If we put $P_i = T_i \circ P$, then from the equation (2.17) we get

$$\phi X = P_1 X + P_2 X + F X, \ \forall X \in T M.$$
(2.18)

From Proposition we have

$$P^{2} = \cos^{2} \theta_{i} (-I + \eta \otimes \xi), \ i = 1, 2.$$
(2.19)

Now, we provide the following non-trivial example of a pointwise bi-slant submanifolds of an almost contact metric manifold.

Example 2.1. Let *M* be a submanifold of R^7 with coordinates $(x_1, y_1, x_2, y_2, x_3, y_3, z)$ Let us consider an isometric immersion *x* into R^7 as follows:

$$\psi(u, v, \alpha, \beta, z) = (u, -v, \sqrt{3}\sin\alpha, \cos\alpha, \sin\beta, \cos\beta, z).$$

We can easily to see that the tangent bundle TM is spanned by the tangent vectors $Z_1 = \frac{\partial}{\partial x_1} - \frac{\partial}{\partial y_1}$, $Z_2 = -\sqrt{3}\sin\alpha\frac{\partial}{\partial x_1} + \cos\alpha\frac{\partial}{\partial y_1}$, $Z_3 = \sin\beta\frac{\partial}{\partial x_2} - \cos\beta\frac{\partial}{\partial y_2} + \frac{\partial}{\partial x_3} + \frac{\partial}{\partial y_3}$, $Z_4 = \sin\beta\frac{\partial}{\partial x_2} + \cos\beta\frac{\partial}{\partial y_2} + \cos\alpha\frac{\partial}{\partial x_3} + \sqrt{3}\sin\alpha\frac{\partial}{\partial y_3}$, $Z_5 = \frac{\partial}{\partial z} = \xi$. For any vector field $X = \gamma_i\frac{\partial}{\partial x_i} + \delta_j\frac{\partial}{\partial y_j} + v\frac{\partial}{\partial z} \in \Gamma(TR^7)$, then we have $g(X, X) = \gamma_i^2 + \delta_j^2 + \frac{\partial}{\partial x_1} + \frac{\partial}{\partial y_2} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_2}$

For any vector field $X = \gamma_i \frac{\partial}{\partial x_i} + \delta_j \frac{\partial}{\partial y_j} + v \frac{\partial}{\partial z} \in \Gamma(TR^7)$, then we have $g(X, X) = \gamma_i^2 + \delta_j^2 + v^2$, $g(\phi X, \phi X) = \gamma_i^2 + \delta_j^2$ and $\phi(X) = -\gamma_i \frac{\partial}{\partial x_i} - \delta_j \frac{\partial}{\partial y_j} = -X + \eta(X)\xi$, for any i, j = 1, 2. It is clear that $g(\phi X, \phi X) = g(X, X) - \eta(X)\eta(X)$. Thus (ϕ, ξ, η, g) is an almost contact metric

174

structure on \mathbb{R}^7 .

We define the almost contact structure ϕ of R^7 , by

$$\phi(\frac{\partial}{\partial x_i}) = -\frac{\partial}{\partial y_i}, \phi(\frac{\partial}{\partial y_j}) = \frac{\partial}{\partial x_j}, \frac{\partial}{\partial z} = 0, \ i, j \in \{1, 2, 3\}.$$

By direct calculations, we can infer that $D_1 = span\{Z_1, Z_2\}$ and $D_2 = span\{Z_3, Z_4\}$ are pointwise slant distributions with slant angles $\theta_1 = \cos^{-1}(\frac{\cos \alpha - \sqrt{3} \sin \alpha}{\sqrt{2}\sqrt{\cos^2 \alpha + 2 \sin^2 \alpha}}), \theta_2 =$

 $\cos^{-1}(\frac{-\cos \alpha + \sqrt{3}\sin \alpha + \sin 2\beta}{\sqrt{3}\sqrt{\cos^2 \alpha + 2\sin^2 \alpha + 1}})$, respectively. Thus *M* is a pointwise bi-slant submanifold of R^7 such that $\xi = \frac{\partial}{\partial z}$ is tangent to *M*.

Now, we consider the following lemma for later use.

Lemma 2.2. Let M be a pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distributions $\mathcal{D}_1 \oplus \langle \xi \rangle$ and \mathcal{D}_2 with distinct slant angles θ_1 and θ_2 respectively. Then

$$(\sin^{2}\theta_{1} - \sin^{2}\theta_{2})g(\nabla_{X}Y, Z) = g(A_{FP_{1}Y}Z - A_{FY}P_{2}Z, X) + g(A_{FP_{2}Z}Y - A_{FZ}P_{1}Y, X),$$
(2.20)

where $X, Y \in \Gamma(\mathcal{D}_1 \oplus \langle \xi \rangle)$ and $Z \in \Gamma(\mathcal{D}_2)$ and θ_1 and θ_2 are the slant angles of slant distributions \mathcal{D}_1 and \mathcal{D}_2 respectively.

Proof. Proof is similar to [10].

3. WARPED PRODUCT POINTWISE BI-SLANT SUBMANIFOLD OF TRANS-SASAKIAN MANIFOLD:

In this section we assume that $M = M_1 \times_f M_2$ is a warped product pointwise bi-slant submanifold of trans-Sasakian manifold \tilde{M} with certain condition on unit vector field ξ . Here, we establish that there do not exist warped product pointwise bi-slant submanifold of trans-Sasakian manifold \tilde{M} under some certain considerations. Now we prove the following proposition.

First we prove the following proposition which will be helpful to prove later theorems.

Proposition 3.1. Let $M = M_1 \times_f M_2$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_1 and M_2 are pointwise slant submanifolds with ξ is tangent to M_2 . Then

$$g(h(X,W), FP_2Z) - g(h(X, P_2Z), FW) = X(\theta_2) \sin 2\theta_2(g(Z,W) - \eta(Z)\eta(W)) - X(lnf)\eta(Z)\eta(W),$$
(3.21)

where $X \in \Gamma(TM_1)$ and $Z, W \in \Gamma(TM_2)$ and θ_1 and θ_2 are the slant angles of M_1 and M_2 respectively.

Proof. First we consider ξ is tangent to M_2 . Then for any $X \in \Gamma(TM_1)$ and $Z, W \in \Gamma(TM_2)$, we have

$$g(\tilde{\nabla}_X Z, W) = g(\phi \tilde{\nabla}_X Z, \phi W)$$

= $g(\tilde{\nabla}_X \phi Z, \phi W) - g((\tilde{\nabla}_X \phi) Z, \phi W)$

From the equations (2.1)-(2.5), (2.11), (2.12), (2.14), (2.16) and Lemma 1.1. we obtain

$$g(\tilde{\nabla}_X Z, W) = X(lnf)(\cos^2 \theta_2 + \sin^2 \theta_2)[g(Z, W) - \eta(Z)\eta(W)] + g(h(X, P_2 Z), FW) + \sin 2\theta_2 X(\theta_2)[g(Z, W) - \eta(Z)\eta(W)] - g(h(X, W), FP_2 Z).$$
(3.22)

 \square

On the other hand, we also have from Lemma 1.1.

$$g(\tilde{\nabla}_X Z, W) = g(\nabla_X Z, W) = X(lnf)g(Z, W).$$
(3.23)

From the equations (3.22) and (3.23) Proposition 3.1. is proved.

Theorem 3.2. Let $M = M_1 \times_f M_2$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_1 and M_2 are pointwise slant submanifolds with the slant functions θ_1 and θ_2 respectively and also consider ξ is tangent to M_2 . If M is mixed totally geodesic warped product submanifold and θ =constant, then M is a Riemannian product submanifold of M_1 and M_2 .

Proof. From Proposition 3.1. we can easily see that X ln f = 0 that means f is constant on M.

Proposition 3.2. Let $M = M_1 \times_f M_2$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_1 and M_2 are pointwise slant submanifolds with ξ is tangent to M_1 . Then

a)
$$g(h(X,Z),FW) + g(h(X,W),FZ) = -2\alpha\eta(X)g(Z,W) + 2g(h(Z,W),FX) - 2P_1X(lnf)g(Z,W),$$
 (3.24)

b)
$$g(h(X,Z), FW) - g(h(X,W), FZ) = -2\beta\eta(X)g(\phi Z, W)$$

- $2X(lnf)g(Z, P_2W),$ (3.25)

where $X \in \Gamma(TM_1)$ and $Z, W \in \Gamma(TM_2)$ and θ_1 and θ_2 are the slant angles of M_1 and M_2 respectively.

Proof. Let us assume that ξ be tangent to M_1 . Then for any $X \in \Gamma(TM_1)$ and $Z, W \in \Gamma(TM_2)$, we have

$$g(h(X,Z),FW) = g(\tilde{\nabla}_Z X,FW)$$

= $g((\tilde{\nabla}_Z \phi)X,W) - g(\tilde{\nabla}_Z \phi X,W) - g(\tilde{\nabla}_Z X,P_2W).$

Taking the equations (2.3), (2.11) and Lemma 1.1 we can write

$$g(h(X,Z),FW) = -\alpha \eta(X)g(Z,W) - \beta \eta(X)g(\phi Z,W) - P_1X(lnf)g(Z,W) - X(lnf)g(Z,P_2W) + g(h(Z,W),FX).$$
(3.26)

Now interchanging Z and W the above equation gives

$$g(h(X,W), FZ) = -\alpha \eta(X)g(Z,W) - \beta \eta(X)g(\phi W, Z) - P_1 X(lnf)g(Z,W) - X(lnf)g(P_2 Z, W) + g(h(Z,W), FX).$$
(3.27)

Adding the equations (3.26) and (3.27) we get

$$g(h(X,Z),FW) + g(h(X,W),FZ) = -2\alpha\eta(X)g(Z,W) + 2g(h(Z,W),FX) - 2P_1X(lnf)g(Z,W).$$
(3.28)

Substracting (3.27) from (3.26) we obtain

$$g(h(X,Z),FW) - g(h(X,W),FZ) = -2\beta\eta(X)g(\phi Z,W) - 2X(lnf)g(Z,P_2W).$$
(3.29)

This completes the proof.

176

 \square

Theorem 3.3. Let $M = M_1 \times_f M_2$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_1 and M_2 are pointwise slant submanifolds with the slant functions θ_1 and θ_2 respectively and also consider ξ is tangent to M_1 . Then

i) If $\alpha \eta(X)Z = \tilde{\nabla}_Z FX$, then *M* is a Riemannian product submanifold of M_1 and M_2 . *ii)* If *M* is mixed totally geodesic warped product submanifold and $\beta = 0$, then *M* is a Riemannian product submanifold of M_1 and M_2 .

Proof. From Proposition 3.2 (a) and (b) we see that Xlnf = 0 which shows that f is constant on M.

Proposition 3.3. Let $M = M_1 \times_f M_2$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_1 and M_2 are pointwise slant submanifolds with the slant functions θ_1 and θ_2 respectively and also consider ξ is tangent to M_1 . Then

$$[\sin 2\theta_2 X(\theta_2) + (2\beta\eta(X) - 2X(lnf))\cos^2\theta_2]g(Z,W) = 2\beta\eta(X)g(Z,FP_2W),$$

where $X \in \Gamma(TM_1)$. In particular, if $\beta = 0$, $X ln f = \tan \theta_2 X(\theta_2)$.

Proof. For the equation (3.29) we have

$$g(h(X,Z),FW) - g(h(X,W),FZ) = -2\beta\eta(X)g(\phi Z,W) - 2X(lnf)g(Z,P_2W),$$
(3.30)

for any $X \in \Gamma(TM_1)$ and $Z, W \in \Gamma(TM_2)$.

Putting $W = P_2 W$ in the equation (3.30) and then using the equations (2.11), (2.13) and (2.14) we derive

$$g(h(X,Z), FP_2W) - g(h(X,P_2W), FZ) = 2\beta\eta(X)[-\cos^2\theta_2 g(Z,W) - g(Z,FP_2W)] + 2X(lnf)\cos^2\theta_2 g(Z,W).$$
(3.31)

On the other hand, we have

$$g(\tilde{\nabla}_X W, Z) = g(\phi \tilde{\nabla}_X W, \phi Z)$$

= $g(\tilde{\nabla}_X \phi W, \phi Z) - g((\tilde{\nabla}_X \phi) W, \phi Z)$ (3.32)

Using the equations (2.11), (2.13), (2.14) and (2.16), the equation (3.32) reduces to

$$g(h(X,Z), FP_2W) - g(h(X, P_2W), FZ) = \sin(2\theta_2)X(\theta_2)g(Z,W).$$
(3.33)

From the equations (3.31) and (3.33) give

$$[\sin 2\theta_2 X(\theta_2) + (2\beta\eta(X) - 2X(lnf))\cos^2\theta_2]g(Z,W) = 2\beta\eta(X)g(Z,FP_2W).$$

In particular, if $\beta = 0$, $X ln f = \tan \theta_2 X(\theta_2)$.

Corollary 3.1. Let $M = M_1 \times_f M_2$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_1 and M_2 are pointwise slant submanifolds with the slant functions θ_1 and θ_2 respectively and also consider ξ is tangent to M_1 . If $(\cos^2 \theta)W = FP_2W$ and θ_2 =constant,then M is a Riemannian product submanifold of M_1 and M_2 .

Now, we prove the following lemmas for later use.

Lemma 3.3. Let M be a pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distributions $\mathcal{D}_1 \oplus \langle \xi \rangle$ and \mathcal{D}_2 with distinct slant angles θ_1 and θ_2 respectively.

Then

$$(\sin^{2}\theta_{2} - \sin^{2}\theta_{1})g(\nabla_{Z}W, X) = g(A_{FP_{1}X}W - A_{FX}P_{2}W, Z) + g(A_{FP_{2}W}X - A_{FW}P_{1}X, Z) + \beta\eta(X)\cos^{2}\theta_{2}g(Z, W) - \alpha\eta(P_{1}X)g(Z, W) - \beta\eta(X)g(Z, FP_{2}W) + \alpha\eta(X)\sin^{2}\theta_{1}g(Z, \phi W) + \beta\eta(P_{1}X)g(Z, \phi W) + \beta\eta(X)\sin^{2}\theta_{1}g(Z, W) + \alpha\eta(X)g(Z, P_{2}W).$$
(3.34)

where $X \in \Gamma(\mathcal{D}_1 \oplus \langle \xi \rangle)$ and $Z, W \in \Gamma(\mathcal{D}_2)$ and θ_1 and θ_2 are the slant angles of slant distributions \mathcal{D}_1 and \mathcal{D}_2 respectively.

Proof. For any $X \in \Gamma(\mathcal{D}_1 \oplus \langle \xi \rangle)$ and $Z, W \in \Gamma(\mathcal{D}_2)$, we have

$$g(\nabla_Z W, X) = g(\tilde{\nabla}_Z W, X) = g(\phi \tilde{\nabla}_Z W, \phi X)$$

= $g(\tilde{\nabla}_X \phi Z, \phi W) - g((\tilde{\nabla}_Z \phi) W, \phi X)$ (3.35)

Using the equations (2.1)-(2.5), (2.11)-(2.14), (2.16) we get (3.34).

Lemma 3.4. Let $M = M_1 \times_f M_2$ be a warped product pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} such that M_1 and M_2 are pointwise slant submanifolds with the slant functions θ_1 and θ_2 respectively and also consider ξ is tangent to M_1 . Then

$$(i) g(h(X,Y), FW) = g(h(X,W), FY).$$
(3.36)

 \square

$$(ii) \ g(A_{FP_1X}W - A_{FX}P_2W, Z) + g(A_{FP_2W}X - A_{FW}P_1X, Z) = (\sin^2\theta_1 \\ - \sin^2\theta_2)X(lnf)g(Z, W) - \alpha\eta(P_1X)g(Z, W) \\ - \eta(P_1X)g(\phi Z, W) + \alpha\sin^2\theta_1\eta(X)g(Z, \phi W) \\ + \beta\sin^2\theta_1\eta(X)g(Z, W) - \alpha g(Z, FW)\eta(X) \\ + \beta\eta(X)g(Z, \phi FW),$$
(3.37)

 $X \in \Gamma(TM_1)$ and $Z, W \in \Gamma(TM_2)$.

Proof. Let us consider ξ be tangent to M_1 . Then for any $X \in \Gamma(TM_1)$ and $Z, W \in \Gamma(TM_2)$, we have

$$g(h(X,Y),FW) = g(\tilde{\nabla}_X Y,FW)$$

= $g(\tilde{\nabla}_X Y,\phi W) - g(\tilde{\nabla}_X Y,P_2 W).$ (3.38)

Using the equations (2.3), (2.8) and Lemma 1.1. we obtain

g(h(X,Y),FW) = g(h(X,W),FY).

Hence Lemma 3.4. (i) is proved. Now, we have

$$g(\tilde{\nabla}_Z X, W) = g(\phi \tilde{\nabla}_Z X, \phi W)$$

= $g(\tilde{\nabla}_Z \phi X, \phi W) - g((\tilde{\nabla}_Z \phi) X, \phi W)$ (3.39)

Using the equations (2.3), (2.10)-(2.12), we obtain

$$g(\nabla_Z X, W) = -\alpha \eta(P_1 X)g(Z, W) - \beta \eta(P_1 X)g(\phi Z, W) - g(\nabla_Z P_1^2 X, W) - g(\nabla_Z F P_1 X, W) - g(A_{FX} Z, P_2 W) + g(\phi(\nabla_Z F W), X) + g(\nabla_Z F W, P_1 X) + \alpha \eta(X)g(Z, \phi W) + \beta \eta(X)g(\phi Z, \phi W).$$

178

Again, from the equations (2.1)-(2.5), (2.11)-(2.14), (2.16), Lemma 1.1. and the orthogonality of vector fields and symmetry of the shape operator it follows that

$$g(A_{FP_1X}W - A_{FX}P_2W, Z) + g(A_{FP_2W}X - A_{FW}P_1X, Z) = (\sin^2\theta_1 \\ - \sin^2\theta_2)X(lnf)g(Z, W) - \alpha\eta(P_1X)g(Z, W) \\ - \eta(P_1X)g(\phi Z, W) + \alpha\sin^2\theta_1\eta(X)g(Z, \phi W) \\ + \beta\sin^2\theta_1\eta(X)g(Z, W) - \alpha g(Z, FW)\eta(X) \\ + \beta\eta(X)g(Z, \phi FW).$$

This completes the proof of the Lemma 3.4. (ii).

Theorem 3.4. Let M be a proper pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distributions $\mathcal{D}_1 \oplus \langle \xi \rangle$ and \mathcal{D}_2 . If M is locally a warped product submanifold of the form $M_1 \times_f M_2$, where M_1 and M_2 are pointwise slant submanifolds with the slant functions θ_1 and θ_2 respectively with ξ tangent to M_1 , then the shape operator A satisfies

$$A_{FP_{1}X}W - A_{FX}P_{2}W + A_{FP_{2}W}X - A_{FW}P_{1}X = (\sin^{2}\theta_{1} \\ - \sin^{2}\theta_{2})X(\mu)W - \alpha\eta(P_{1}X)W \\ + \beta\eta(P_{1}X)\phi W + \alpha\sin^{2}\theta_{1}\eta(X)\phi W \\ + \beta\sin^{2}\theta_{1}\eta(X)W - \alpha FW\eta(X) \\ + \beta\eta(X)\phi FW,$$
(3.40)

with $\mu = lnf$.

Proof. Using Lemma 3.4. (i) and Lemma 3.4. (ii) we obtain the equation (3.40) with $\mu = lnf$.

The next theorem shows a characterization result for pointwise bi-slant submanifold of a trans-Sasakian manifold. First we state the following theorem [11] according to S. Hiepko.

Hiepko's Theorem : Let \mathcal{D}_1 and \mathcal{D}_2 be two orthogonal distributions on a Riemannian manifold M. Suppose that both \mathcal{D}_1 and \mathcal{D}_2 are involutive such that \mathcal{D}_1 is a totally geodesic foliation and \mathcal{D}_2 is a spherical foliation. Then M is a locally isometric to a non-trivial warped product $M_1 \times_f M_2$, where M_1 and M_2 are integral manifolds of \mathcal{D}_1 and \mathcal{D}_2 respectively.

Theorem 3.5. Let M be a proper pointwise bi-slant submanifold of a trans-Sasakian manifold \hat{M} with pointwise slant distrbutions $\mathcal{D}_1 \oplus \langle \xi \rangle$ and \mathcal{D}_2 . If

$$A_{FP_{1}X}W - A_{FX}P_{2}W + A_{FP_{2}W}X - A_{FW}P_{1}X = (\sin^{2}\theta_{1} \\ - \sin^{2}\theta_{2})X(\mu)W - \alpha\eta(P_{1}X)W \\ + \beta\eta(P_{1}X)\phi W + \alpha\sin^{2}\theta_{1}\eta(X)\phi W \\ + \beta\sin^{2}\theta_{1}\eta(X)W - \alpha FW\eta(X) \\ + \beta\eta(X)\phi FW,$$
(3.41)

and

$$2\alpha\eta(P_1X)W - 2\beta\eta(P_1X)W + \beta\eta(X)W - 2\alpha\sin^2\theta_1\eta(X)\phi W - 2\beta\sin^2\theta_1\eta(X)W - \alpha\phi W\eta(X) + 2\alpha\eta(X)FW - 2\beta\eta(X)\phi FW.$$
(3.42)

 \square

holds, then, M is locally a warped product submanifold of the form $M_1 \times_f M_2$, where M_1 and M_2 are pointwise slant submanifolds with the slant functions θ_1 and θ_2 respectively, where μ is a function on M satisfying $W\mu = 0$, for any $W \in D_2$.

Proof. Let *M* be a proper pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distrbutions $\mathcal{D}_1 \oplus \langle \xi \rangle$ and \mathcal{D}_2 . From Lemma 2.2., we have

$$(\sin^{2}\theta_{1} - \sin^{2}\theta_{2})g(\nabla_{Y}X, Z) = g(A_{FP_{1}X}Z - A_{FX}P_{2}Z, Y) + g(A_{FP_{2}Z}X - A_{FZ}P_{1}X, Y),$$
(3.43)

where $X, Y \in \Gamma(\mathcal{D}_1 \oplus \langle \xi \rangle)$ and $Z \in \Gamma(\mathcal{D}_2)$. Now taking inner product with *Y* in the equation (3.40) and then using equation (3.42) we obtain

$$g(\nabla_Y X, Z) = X(\mu)g(Y, W) = 0.$$

Hence the leaves of the distributions are totally geodesic in M. From Lemma 3.3., we have

$$(\sin^{2}\theta_{2} - \sin^{2}\theta_{1})g(\nabla_{Z}W, X) = g(A_{FP_{1}X}W - A_{FX}P_{2}W, Z) + g(A_{FP_{2}W}X - A_{FW}P_{1}X, Z) + \alpha\eta(X)g(Z, P_{2}W) + \beta\eta(X)\cos^{2}\theta_{2}g(Z, W) - \alpha\eta(P_{1}X)g(Z, W) - \beta\eta(X)g(Z, FP_{2}W) + \alpha\eta(X)\sin^{2}\theta_{1}g(Z, \phi W) + \beta\eta(P_{1}X)g(Z, \phi W) + \beta\eta(X)\sin^{2}\theta_{1}g(Z, W).$$
(3.44)

Also, we have

$$g(\nabla_Z W, X) = -X(\mu)g(Z, W). \tag{3.45}$$

Interchanging W and Z and then using the definition of Lie bracket we obtain

$$g([Z, W], X) = 0. (3.46)$$

Hence \mathcal{D}_2 is integrable.

Let us assume h_2 be the second fundamental form of a leaf M_2 of \mathcal{D}_2 in M. Then for any $X \in \Gamma(\mathcal{D}_1 \oplus \langle \xi \rangle)$ and $Z, W \in \Gamma(\mathcal{D}_2)$ we have

$$g(h_2(Z, W), X) = g(\nabla_Z W, X).$$
 (3.47)

From the equation (3.45) we can write

$$g(h_2(Z, W), X) = -X(\mu)g(Z, W).$$
(3.48)

From the definition of gradient it can be written as

$$g(h_2(Z, W), X) = -\nabla \mu g(Z, W).$$
 (3.49)

It follows that the leaf M_2 is totally umbilical in M with mean curvature vector $H_2 = -\nabla \mu$. Then for any $Y \in \Gamma(\mathcal{D}_1 \oplus \langle \xi \rangle)$ and $W \in \Gamma(\mathcal{D}_2)$ we have

$$g(\mathcal{D}_{2}^{W}H_{2},Y) = -g(\mathcal{D}_{2}^{W}\nabla\mu,Y),$$

$$= -g(\nabla_{W}\nabla\mu,Y),$$

$$= -Wg(\nabla\mu,Y) + g(\nabla\mu,\nabla_{W}Y),$$

$$= -W(Y\mu) - g(\nabla\mu,\nabla_{Y}W), \because [W,Y] = 0$$

$$= -Y(W\mu) + g(\nabla_{Y}\nabla\mu,W) = 0.$$
(3.50)

Since $W\mu = 0$, for any $W \in \mathcal{D}_2$ and so $\nabla_Y \nabla \mu \in \Gamma(\mathcal{D}_1 \oplus \langle \xi \rangle)$. This shows that the mean curvature of M_2 is parallel. Therefore, \mathcal{D}_2 is a spherical foliation. Hence by Hiepko's

Theorem, *M* is a locally warped product $M_1 \times_f M_2$, where M_1 and M_2 are pointwise slant submanifolds with the slant functions θ_1 and θ_2 respectively, where μ is a function on *M*.

Conclusion We have established that there do not exist warped product pointwise bislant submanifold of trans-Sasakian manifold \tilde{M} under some certain considerations. Next, we have proved that M is a proper pointwise bi-slant submanifold of a trans-Sasakian manifold \tilde{M} with pointwise slant distributions $\mathcal{D}_1 \oplus \langle \xi \rangle$ and \mathcal{D}_2 , then using Hiepko's Theorem, M is a locally warped product submanifold of the form $M_1 \times_f M_2$.

Acknowledgments. The author wish to express their sincere thanks and gratitude to the referee for valuable suggestions towards the improvement of the paper.

REFERENCES

- Alegre, P., Slant submanifolds of Lorentzian Sasakian and para Sasakian manifolds, Taiwanese J. Math., 17 (2013), No. 3, 897–910
- [2] Ali, A. and Ozel, C., Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications, Int. J. Geom. Methods Mod. Phys., 14 (2017), No. 3, 1750042
- [3] Al-Solamy, F. R., Khan, V. A., and Uddin, S., Geometry of Warped Product Semi-Slant Submanifolds of Nearly Kaehler Manifolds, Results Math., 71 (2017), No. 3, 783–799
- [4] Atceken, M., Warped Product Semi-Slant Submanifolds of Nearly Kenmotsu Manifolds, Turk. J. Math., 36 (2012), No. 3, 319–330
- [5] Bhattacharyya, A. and Das, B., Contact CR-Submanifolds of an Indefinite Trans-Sasakian Manifold, Int. J. Contemp. Math. Sciences, 6 (2011), No. 26, 1271–1282
- [6] Bishop, R. L. and O'Neil, B., Manifolds of negative curvature, Trans. Am. Math. Soc., 145 (1969), 1-9
- [7] Cabrerizo, J. L., Carriazo, A., Fernandez, L. M. and Fernandez, M., Semi-slant submanifolds of a Sasakian manifold, Geom. Dedic., 78 (1999), No. 2, 183–199
- [8] Carriazo, A., Bi-slant immersions, ICRAMS 2000, Kharagpur, India, 88–97, 2000
- Chen, B. Y., Geometry of warped product CR-submanifold in Kaehler manifolds, Monatshefte Math., 133 (2001), No. 3, 177–195
- [10] Chen, B. Y. and Uddin, S., Warped Product Pointwise Bi-Slant Submanifolds of Kaehler Manifolds, Publicationes mathematicae, 92 (2018), 183–199
- [11] Hiepko, S., Eine inner kennzeichungder verzerrten produkte, Math. Ann., 241 (1979), No. 3, 209–215
- [12] Laha, B. and Bhattacharyya, A., Totally umbilical hemislant submanifolds of LP-Sasakian manifold, Lobachevskii J. Math., 36 (2015), No. 2, 127–131
- [13] Lonea, M. A., Loneb, M. S. and Shahid, M. H., Hemi-Slant Submanifolds Of Cosymplectic Manifolds, Cogent Mathematics, 3 (2016), No. 2, 1204143
- [14] Lotta, A., Slant submanifolds in contact geometry, Bull. Math. Soc. Roum., 39 (1996), 183–198
- [15] Marrero, J. C., The local structure of trans-Sasakian manifolds, Ann. Mat. Pura. Appl., 162 (1992), No. 1, 77-86
- [16] Mihai, I., Uddin, S. and Mihai, A., Warped product pointwise semi-slant submanifolds of Sasakian manifolds, Kragujevac J. Math., 45 (2021), No. 5, 721–738
- [17] Pahan S. and Dey S., Warped products semi-slant and pointwise semi-slant submanifolds on Kaehler manifolds, J. Geom. Phys., 155 (2020), 103760
- [18] O'Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic press, 1983
- [19] Oubina, J. A., New classes of almost contact metric structures, Publication Math. Debrecen, 32 (1985), 187–193
- [20] Papaghiuc, N., Semi-slant submanifolds of Kahlerian manifold, An. Ştiinţ. Univ. AL I. Cuza. Iaşi. Inform. (N.S.), 9 (1994), 55–61
- [21] Perelman, G., *The entropy formula for the Ricci flow and its geometric applications*, Preprint, http://arXiv.org/abs/math.DG/0211159, 2002
- [22] Sinha, B. B. and Sharma, R., On Para-A-Einstein manifolds, Publications De L'Institut Mathematique, 34 (1983), No. 48, 211–215
- [23] Uddin, S., Geometry of Warped Product Semi-Slant Submanifolds of Nearly Kenmotsu Manifolds, Bull. Math. Sci., 8 (2018), No. 3, 435–451

DEPARTMENT OF MATHEMATICS MRINALINI DATTA MAHAVIDYAPITH KOLKATA-700051, INDIA *E-mail address*: sampapahan25@gmail.com