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Denumerably many positive solutions for fractional order
boundary value problems

K. RAJENDRA PRASAD, MAHAMMAD KHUDDUSH and M. RASHMITA

ABSTRACT. The sufficient conditions are derived for the existence of denumerably many positive solutions
for fractional order boundary value problem

Dε
0+

[
φ
[
Dη

0+
ω(t)

]]
+ f(ω(t)) = 0, 0 < t < 1,

ω(0) = ω′(0) = Dη
0+
ω(0) = 0,

Dε
0+
ω(1) = Iδ

0+
ω(1)

where Dε
0+
, Dη

0+
denote fractional derivatives of Riemann-Liouville type with 0 < ε < 1, 2 < η ≤ 3, Iδ

0+

(δ ∈ R) denotes Riemann-Liouville fractional integral, φ : R → R is an increasing homeomorphism and
positive homomorphism operator (IHPHO), by applying Hölder’s inequality and Krasnoselskii’s cone fixed
point theorem in a Banach space.

1. INTRODUCTION

The fractional derivatives are used for a better description of considered material pro-
perties, mathematical modelling based on enhanced rheological models naturally leads to
differential equations of fractional order and to the necessity of the formulation of initial
conditions to such equations. Applied problems require definitions of fractional deriva-
tives allowing the utilization of physically interpretable initial conditions. It should be
noted that most papers and books on fractional calculus are devoted to the solvability of
linear initial fractional differential equations in terms of special functions. Recently, the
researchers are shown a great deal of interest in establishing existence and multiplicity
of solutions (or positive solutions) of nonlinear initial fractional differential equations by
the use of techniques of nonlinear analysis, see [7, 12, 36] and reference therein. In fact,
boundary conditions have the same requirements. However, few papers have considered
the boundary value problems of fractional differential equations, see [25, 15, 16].

In [30], Y. Tian and Z. Bai considered the p-Laplacian fractional order boundary value
problem

Dβ
0+

(
φp
(
Dα

0+ω(t)
))

= f(t,ω(t)), t ∈ (0, 1)

ω(0) = ω′(0) = 0,ω′(1) = aω′(ξ)

Dα
0+ω(0) = 0,Dα

0+ω(1) = bDα
0+ω(η),

and established existence of positive solutions by applying monotone iterative method
and the fixed point index theory on cones. In [9], Ege and Topal considered the fractional
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boundary value problem with IHPHO,
CDq

(
φ(CDrω(t))

)
+ f

(
t,ω(t)

)
= 0,

α1ω(0)− β1ω′(0) = −γ1ω(ξ1), α2x(1) + β2ω
′(1) = −γ2ω(ξ2)

CDrω(0) = 0, 0 < q ≤ 1 < r ≤ 2, 0 < t < 1

and established existence of positive solutions by utilizing Krasnoselskii’s and Legget–
Williams cone fixed point.

Inspired by the works mentioned above, in this paper we consider Riemann-Liouville
fractional order boundary value problem with IHPHO,

Dε
0+

[
φ
[
Dη

0+ω(t)
]]

+ f(ω(t)) = 0, 0 < t < 1,

ω(0) = ω′(0) = Dη
0+ω(0) = 0,

Dε
0+ω(1) = Iδ0+ω(1)

(1.1)

where Dε
0+ , D

η
0+ denote fractional derivatives of Riemann-Liouville type with 0 < ε < 1,

2 < η ≤ 3, Iδ0+(δ ∈ R+) denotes Riemann-Liouville fractional integral and establish the
existence of denumerably many positive solutions.

We assume that the following conditions are satisfied throughout the paper:
(H1) f : [0,+∞)→ [0,+∞) is continuous,
(H2) For 0 ≤ τ ≤ 1, 0 < ψ(τ) <∞, where

ψ(τ) = φ−1
(

τε

Γ(ε+ 1)

)
, 0 < ε ≤ 1.

2. KERNEL AND IT’S BOUNDS

In this section, the basic definitions and lemmas which are useful for our later discussions
are stated and constructed kernel for the boundary value problem (1.1) later we estimated
bounds for the kernel.

Definition 2.1. [14] The Riemann-Liouville(RL) fractional integral of order δ of a function
T : (0,∞)→ R is defined by

Iδ0+T(s) =

∫ s

0

(s− x)δ−1

Γ(δ)
T(x)dx, δ > 0.

Lemma 2.1. [14, 26] The general solution to Dγ
0+T(t) = 0 with γ ∈ (m − 1,m] and m > 1 is

the function

T(t) =

m∑
`=1

d`t
γ−`,

where d` is a real number.

Lemma 2.2. [14, 26] Let γ > 0. Then for any function T : (0,∞)→ R, we have

D−γ0+ Dγ
0+T(t) = T(t) +

m∑
`=1

d`t
γ−`,

where d` is a real number and m ∈ Z is the smallest integer greater that or equal to γ.

Lemma 2.3. Suppose (H1) and (H2) hold. Let η ∈ (1, 2] and g ∈ C2[0, 1]. The boundary value
problem

Dη
0+ω(t) + g(t) = 0, t ∈ (0, 1), (2.2)

ω(0) = ω′(0) = 0, Dε
0+ω(1) = Iδ0+ω(1), (2.3)
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has a unique solution,

ω(t) =

∫ 1

0

χ(t, τ)g(τ)dτ +

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, s)g(s)dsdτ,

where

χ(t, τ) =
1

Γ(η)

{
tη−1(1− τ)η−ε−1 − (t− τ)η−1, τ ≤ t,
tη−1(1− τ)η−ε−1, t ≤ τ,

H(t, τ) =
Γ(η − ε)Γ(η + δ)

[Γ(η + δ)− Γ(η − ε)] Γ(η)Γ(δ)
tη−1(1− τ)δ−1.

Proof. The equivalent fractional integral equation to the equation (2.2) is given by

ω(t) = c1t
η−1 + c2t

η−2 + c3t
η−3 −

∫ t

0

(t− τ)η−1

Γ(η)
g(τ)dτ,

where c1, c2 and c3 are constants. Applying boundary conditions 2.3 into the above equa-
tion, one can obtain c2 = c3 = 0 and

c1 =

∫ 1

0

(1− τ)η−ε−1

Γ(η)
g(τ)dτ +

Γ(η − ε)
Γ(η)

Iδ0+ω(1).

Therefore,

ω(t) =

∫ 1

0

χ(t, τ)g(τ)dτ +
Γ(η − ε)

Γ(η)
tη−1Iδ0+ω(1). (2.4)

By simple calculations, we get

Iδ0+ω(1) =
Γ(η + δ)

Γ(η + δ)− Γ(η − ε)

[ ∫ 1

0

(1− τ)δ−1

Γ(δ)

×
∫ 1

0

χ(τ, s)g(s)dsdτ

]
.

Hence,

ω(t) =

∫ 1

0

χ(t, τ)g(τ)dτ +

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, s)g(s)dsdτ.

�

Lemma 2.4. The kernel χ(t, τ) have the following properties:
(i) χ(t, τ) ≥ 0 and continuous on [0, 1]× [0, 1],

(ii) χ(t, τ) ≤ χ(1, τ) for t, τ ∈ [0, 1],
(iii) there exists % ∈ (0, 12 ) such that %η−1χ(1, τ) ≤ χ(t, τ) for t ∈ [%, 1− %], τ ∈ [0, 1].

Proof. By simple calculations, (i) and (ii) can be established easily. We prove (iii). For
0 ≤ τ ≤ t ≤ 1, let

F (t, τ) =
tη−1(1− τ)η−ε−1

Γ(η)
− (t− τ)η−1

Γ(η)
.

Then for % ∈ (0, 12 ), we have

F (t, τ) ≥ tη−1
[

(1− τ)η−ε−1

Γ(η)
− (1− τ)η−1

Γ(η)

]
≥ %η−1

[
(1− τ)η−ε−1

Γ(η)
− (1− τ)η−1

Γ(η)

]
≥ %η−1χ(1, τ).

�
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Lemma 2.5. Suppose Γ(η + δ) > Γ(η − ε) and % ∈ (0, 12 ]. Then

min
t∈[%,1−%]

H(t, τ) ≥ %η−1 max
t∈[0,1]

H(t, τ).

Proof. From Lemma 2.2,

mint∈[%,1−%]H(t, τ)

maxt∈[0,1]H(t, τ)
=
%η−1(1− τ)δ−1

(1− τ)δ−1
= %η−1.

�

Lemma 2.6. Suppose (H1) and (H2) hold, then the unique solution of (1.1) is given by

ω(t) =

∫ 1

0

χ(t, τ)φ−1
(
Iε0+
(
f(ω(τ))

))
dτ

+

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, s)φ−1
(
Iε0+
(
f(ω(s))

))
dsdτ.

Proof. The problem (1.1) can be written as

Dε
0+v(t) + f(ω(t)) = 0,

v(0) = 0,

by letting Dη
0+ω(t) = u(t) and v = φ(u) with the condition Dη

0+ω(0) = 0. The solution of
the problem is given by

v(t) = ctε−1 − Iε0+
(
f(ω(t))

)
.

By the condition v(0) = 0, we get

v(t) = −Iε0+
(
f(ω(t))

)
.

Hence, from the Lemma 2.4, the problem
Dη

0+ω(t) = −φ−1
(
Iε0+(f(ω(t)))

)
,

Dε
0+ω(1) = Ia0+ω(1),

ω(0) = ω′(0) = 0,

(2.5)

has a unique solution given by

ω(t) =

∫ 1

0

χ(t, τ)φ−1
(
Iε0+
(
f(ω(τ))

))
dτ

+

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, s)φ−1
(
Iε0+
(
f(ω(s))

))
dsdτ.

�

We denote the Banach space C4([0, 1],R) by X with the norm

‖ω‖ = max
t∈[0,1]

|ω(t)|.

For % ∈ (0, 1/2), the cone P% ⊂ X is defined by

P% =
{
ω ∈ X : ω(t) ≥ 0, min

t∈[%, 1−%]
ω(t) ≥ %η−1‖ω(t)‖

}
,

For anyω ∈ P%, define an operator A : P% → X by

(Aω)(t) =

∫ 1

0

χ(t, τ)φ−1
(
Iε0+
(
f(ω(τ))

))
dτ

+

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, s)φ−1
(
Iε0+
(
f(ω(s))

))
dsdτ.
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Lemma 2.7. Assume that (H1) and (H2) hold. Then for each % ∈ (0, 1/2), A(P%) ⊂ P% and
A : P% → P% is completely continuous.

Proof. Let % ∈ (0, 1/2). Since f(ω(τ)) is nonnegative for τ ∈ [0, 1], ω ∈ P%.
Since χ(t, τ) is nonnegative for all t, τ ∈ [0, 1], it follows that A(ω(t)) ≥ 0 for all t ∈
[0, 1], ω ∈ P%. Now, by Lemma 2.5, we have

min
t∈[%,1−%]

(Aω)(t) = min
t∈[%,1−%]

{∫ 1

0

χ(t, τ)φ−1
(
Iε0+
(
f(ω(τ))

))
dτ

+

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, x)φ−1
(
Iε0+
(
f(ω(x))

))
dxdτ

}

≥
∫ 1

0

χ(1, τ)φ−1
(
I%0+
(
f(ω(τ))

))
dτ

+ max
t∈[0,1]

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, x)φ−1
(
Iε0+
(
f(ω(x))

))
dxdτ

≥ %η−1 max
t∈[0,1]

{∫ 1

0

χ(t, τ)φ−1
(
Iε0+
(
f(ω(τ))

))
dτ

+

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, x)φ−1
(
Iε0+
(
f(ω(x))

))
dxdτ

}
≥ %η−1 max

t∈[0,1]
|Aω(t)|.

Thus A(P%) ⊂ P%. Therefore, the operator A is completely continuous by standard met-
hods and by the Arzela-Ascoli theorem. �

3. DENUMERABLY INFINITELY MANY POSITIVE SOLUTIONS

In this section, we establish the existence of denumerably many positive solutions for
bvp (1.1) by applying Krasnoselskii’s fixed point theorem and Hölder’s inequality. Firstly,
we state fixed point theorem

Theorem 3.1 (Krasnoselskii’s). [13] Let E be a cone in a Banach space X and Ω1, Ω2 are open
sets with 0 ∈ Ω1,Ω1 ⊂ Ω2. Let A : E ∩ (Ω2\Ω1) → E be a completely continuous operator such
that

(a) ‖Az‖ ≤ ‖z‖, z ∈ E ∩ ∂Ω1, and ‖Az‖ ≥ ‖z‖, z ∈ E ∩ ∂Ω2, or
(b) ‖Az‖ ≥ ‖z‖, z ∈ E ∩ ∂Ω1, and ‖Az‖ ≤ ‖z‖, z ∈ E ∩ ∂Ω2.

Then A has a fixed point in E ∩ (Ω2\Ω1).

Theorem 3.2. (Hölder’s) Let h ∈ Lp[0, 1] and g ∈ Lq[0, 1],where p > 1, q > 1,with 1
p+ 1

q = 1.

Then hg ∈ L1[0, 1] and ‖hg‖1 ≤ ‖h‖p‖g‖q. Further, if h ∈ L1[0, 1] and g ∈ L∞[0, 1]. Then
hg ∈ L1[0, 1] and ‖hg‖1 ≤ ‖h‖1‖g‖∞.

We establish the denumerably many positive solutions for the following three possible
case forω ∈ Lp[0, 1] : 0 < p < 1, p = 1, p =∞.

Theorem 3.3. Suppose (H1) and (H2) hold, let {%k}∞k=1 be a sequence with tk+1 < %k < tk. Let
{Ek}∞k=1 and {Ok}∞k=1 be such that

Ek+1 < %η−1k Ok < βOk < Ek, k ∈ N,
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where

β = max

{
1

%η−11 σ(%1)
∫ 1−%1
%1

χ(1, s)ψ(s)ds
, 1

}
, σ(%1) = max

t∈[0,1]

{
1 +

∫ 1−%1

%1

H(t, τ)dτ

}
.

Assume that

λ = max
t∈[0,1]

{∫ 1

0

H(t, τ)dτ

}
<∞

and f satisfies
(A1) f(ω(t)) ≤ φ(K1Ek) for all t ∈ [0, 1], 0 ≤ ω ≤ Ek,

where K1 <
1

(1 + λ)‖χ(1, s)‖q‖ψ‖p
,

(A2) f(ω(t)) ≥ φ(βOk) for all t ∈ [%k, 1− %k], %η−1k Ok ≤ ω ≤ Ok.
Then the bvp (1.1) has denumerably many positive solutions {ωk}∞k=1 such that Ok ≤ ‖ωk‖ ≤
Ek for k = 1, 2, 3 · · · .

Proof. Let Ω1,k = {ω ∈ X : ‖ω‖ < Ek}, Ω2,k = {ω ∈ X : ‖ω‖ < Ok} be open subsets of
X . Let {%k}∞k=1 be given in the hypothesis and we note that t∗ < tk+1 < %k < tk <

1
2 , for

all k ∈ N.
For each k ∈ N, we define the cone P%k by

P%k =
{
ω ∈ X : ω(t) ≥ 0, min

t∈[%k, 1−%k]
ω(t) ≥ %η−1k ‖ω(t)‖

}
.

Letω ∈ P%k ∩ ∂Ω1,k. Then,ω(s) ≤ Ek = ‖ω‖ for all s ∈ [0, 1]. By (A1),

‖Aω‖ = max
t∈[0,1]

{∫ 1

0

χ(t, τ)φ−1
(
Iε0+
(
f(ω(τ))

))
dτ

+

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, s)φ−1
(
Iε0+
(
f(ω(s))

))
dsdτ

}

≤ max
t∈[0,1]

{
K1Ek

∫ 1

0

χ(1, τ)ψ(τ)dτ

+K1Ek

∫ 1

0

H(t, τ)

∫ 1

0

χ(1, s)ψ(s)dsdτ

}

≤ K1Ek max
t∈[0,1]

{
1 +

∫ 1

0

H(t, τ)dτ

}∫ 1

0

χ(1, τ)ψ(τ)dτ

≤ (1 + λ)K1Ek

∫ 1

0

χ(1, τ)ψ(τ)dτ

≤ (1 + λ)K1Ek‖χ(1, τ)‖q‖ψ‖p
≤ Ek.

Since Ek = ‖ω‖ forω ∈ P%k ∩ ∂Ω1,k, we get

‖Aω‖ ≤ ‖ω‖. (3.6)

Let t ∈ [%k, 1− %k]. Then,

Ok = ‖ω‖ ≥ ω(t) ≥ min
t∈[%k, 1−%k]

ω(t) ≥ %η−1k ‖ω‖ ≥ %η−1k Ok.
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By (A2),

‖Aω‖ = max
t∈[0,1]

{∫ 1

0

χ(t, τ)φ−1
(
Iε0+
(
f(ω(τ))

))
dτ

+

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, x)φ−1
(
Iε0+
(
f(ω(x))

))
dxdτ

}

≥ max
t∈[0,1]

{∫ 1−%k

%k

χ(t, τ)φ−1
(
Iε0+(f(ω(τ)))

)
dτ

+

∫ 1−%k

%k

H(t, τ)

∫ 1−%k

%k

χ(τ, x)φ−1
(
Iε0+
(
f(ω(x))

))
dxdτ

}
That is,

‖Az‖ ≥ max
t∈[0,1]

{∫ 1−%1

%1

χ(t, τ)φ−1
(
Iε0+(f(ω(τ)))

)
dτ

+

∫ 1−%1

%1

H(t, τ)

∫ 1−%1

%1

χ(τ, x)φ−1
(
Iε0+
(
f(ω(x))

))
dxdτ

}

≥ max
t∈[0,1]

{
βOk%

η−1
1

∫ 1−%1

%1

χ(1, τ)ψ(τ)

+ βOk%
η−1
1

∫ 1−%1

%1

H(t, τ)

∫ 1−%1

%1

χ(1, x)ψ(x)dxdτ

}

≥βOk%η−11 max
t∈[0,1]

{
1 +

∫ 1−%1

%1

H(t, τ)dτ

}∫ 1−%1

%1

χ(1, x)ψ(x)dx

≥βOk%η−11 σ(%1)

∫ 1−%1

%1

χ(1, x)ψ(x)dx

≥Ok = ‖ω‖.

Thus, ifω ∈ P% ∩ ∂Ω2,k, then
‖Aω‖ ≥ ‖ω‖. (3.7)

It is evident that 0 ∈ Ω2,k ⊂ Ω̄2,k ⊂ Ω1,k. From (3.6),(3.7), it follows from Theorem 3.1 that
the operator F has a fixed point ωk ∈ P%k ∩

(
Ω̄1,k\Ω2,k

)
3 Ok ≤ ‖ωk‖ ≤ Ek. The proof is

completed. �

For p = 1, we have the following theorem.

Theorem 3.4. Suppose (H1) and (H2) hold, let {%k}∞k=1 be a sequence with tk+1 < %k < tk. Let
{Ek}∞k=1 and {Ok}∞k=1 be such that

Ek+1 < %η−1k Ok < αOk < Ek, k ∈ N,

Assume that f satisfies
(B1) f(ω(t)) ≤ φ(K2Ek) for all t ∈ [0, 1], 0 ≤ ω ≤ Ek, where

K2 < min

{
1

(1 + λ)‖χ(1, τ)‖∞‖ψ‖1
, β

}
and (A2). Then the bvp (1.1) has denumerably many positive solutions {ωk}∞k=1. Furthermore,
Ok ≤ ‖ωk‖ ≤ Ek for each k ∈ N.
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Proof. For a fixed k, let Ω1,k be as in the proof of Theorem 3.3 and let ω ∈ P%k ∩ ∂Ω2,k.
Again

ω(s) ≤ Ek = ‖ω‖,

for all s ∈ [0, 1]. By (B1) and Theorem 3.3,

‖Aω‖ = max
t∈[0,1]

{∫ 1

0

χ(t, τ)φ−1
(
Iε0+
(
f(ω(τ))

))
dτ

+

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, x)φ−1
(
Iε0+
(
f(ω(x))

))
dxdτ

}

≤ max
t∈[0,1]

{
K2Ek

∫ 1

0

χ(1, τ)ψ(τ)dτ

+K2Ek

∫ 1

0

H(t, τ)

∫ 1

0

χ(1, x)ψ(x)dxdτ

}

≤ K2Ek max
t∈[0,1]

{
1 +

∫ 1

0

χ(t, τ)dτ

}∫ 1

0

χ(1, τ)ψ(τ)dτ

≤ (1 + λ)K2Ek

∫ 1

0

χ(1, τ)ψ(τ)dτ

≤ (1 + λ)K2Ek‖χ(1, τ)‖∞‖ψ‖1
≤ Ek.

Thus,

‖Aω‖ ≤ ‖ω‖,

for ω ∈ P%k ∩ ∂Ω1,k. Now define Ω2,k = {ω ∈ X : ‖ω‖ < Ok}. Let ω ∈ P%k ∩ ∂Ω2,k and
let s ∈ [%k, 1 − %k]. Then, the argument leading to (3.7) can be done to the present case.
Hence, the theorem. �

Lastly, the case p =∞.

Theorem 3.5. Assume that (H1) and (H2) hold. Let {Ek}∞k=1 and {Ok}∞k=1 be such that

Ek+1 < %η−1k Ok < βOk < Ek, k ∈ N,

Assume that f satisfies
(E1) f(ω(t)) ≤ φ(K3Ek) for all t ∈ [0, 1], 0 ≤ ω ≤ Ek, where

M3 < min

{
1

(1 + λ)‖χ(1, τ)‖1‖ψ‖∞
, β

}
and (A2). Then the bvp (1.1) has denumerably many positive solutions {ωk}∞k=1 such that Ok ≤
‖ωk‖ ≤ Ek for k = 1, 2, 3, · · ·.
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Proof. By (E1),

‖Aω‖ = max
t∈[0,1]

{∫ 1

0

χ(t, τ)φ−1
(
Iε0+
(
f(ω(τ))

))
dτ

+

∫ 1

0

H(t, τ)

∫ 1

0

χ(τ, x)φ−1
(
Iε0+
(
f(ω(x))

))
dxdτ

}

≤ max
t∈[0,1]

{
K2Ek

∫ 1

0

χ(1, τ)ψ(τ)dτ

+K2Ek

∫ 1

0

H(t, τ)

∫ 1

0

χ(1, x)ψ(x)dxdτ

}

≤ K2Ek max
t∈[0,1]

{
1 +

∫ 1

0

χ(t, τ)dτ

}∫ 1

0

χ(1, τ)ψ(τ)dτ

≤ (1 + λ)K2Ek

∫ 1

0

χ(1, τ)ψ(τ)dτ

≤ (1 + λ)K2Ek‖χ(1, τ)‖1‖ψ‖∞
≤ Ek.

This shows that ifω ∈ P%k ∩ ∂Ω1,k, where Ω1,k = {ω ∈ X : ‖ω‖ < Ek}, Then,

‖Aω‖ ≤ ‖ω‖.

Define Ω2,k = {ω ∈ X : ‖ω‖ < Ok} and let z ∈ P%k ∩ ∂Ω2,k. Then, the argument worked
in the proof of Theorem 3.3 can be applied directly to get

‖Aω‖ ≥ ‖ω‖.

This completes proof of the present theorem. �

4. EXAMPLES

In this section, we present an example to check validity of our main results.
Example 4.1. Consider the following fractional order boundary value problem,

D
3/4
0+

(
φ(D

5/2
0+ ω(t))

)
+ f(ω(t)) = 0, t ∈ (0, 1),

ω(0) = D
5/2
0+ ω(0) = 0,ω′(0) = 0,D

3/4
0+ ω(1) = I20+ω(1),

}
(4.8)

where

φ(ω) =


ω3

1 +ω2
, ω ≤ 0,

ω2, ω > 0,
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f(ω) =



K2
1E

2
1 , ω > E1,

β2O2
k +

K2
1E

2
k−β

2O2
k

Ek−OK (ω−Ok), Ok ≤ ω ≤ Ek, k ∈ N,

β2O2
k, τα−1k Ok < ω < Ek, k ∈ N,

K2
1E

2
k+1 +

β2O2
k−K

2
1E

2
k+1

τα−1
k Ok−Ek+1

(ω− Ek+1), Ek+1 < ω ≤ τα−1k Ok, k ∈ N,
0, ω = 0,

tk =
31

64
−

k∑
j=1

1

4(j + 1)4
, k = 1, 2, 3, · · · .

Let

p = q = 2, tk =
31

64
−

k∑
j=1

1

4(j + 1)4
, for k = 1, 2, 3, · · · , %k =

1

2
(tk + tk+1),

then

%1 =
15

32
− 1

648
<

15

32
, %k >

1

5

and
tk+1 < %k < tk.

Therefore,

%η−1k >
1

53/2
, k = 1, 2, 3, · · · .

It is easy to see

t1 =
15

32
<

1

2
, for k = 1, 2, 3, · · · , tk − tk+1 =

1

4(k + 2)4
.

Since
∞∑
k=1

1

k2
=
π2

6
and

∞∑
k=1

1

k4
=
π4

90
, it follows that

t∗ = lim
k→∞

tk =
31

64
−
∞∑
j=1

1

4(j + 1)4

=
47

64
− π4

360
>

1

5
,

and ‖ψ‖2 =

[ ∫ 1

0

[
φ−1

(
sε

Γ(ε+ 1)

)]2
ds

]1/2
=

[ ∫ 1

0

[
sε

Γ(ε+ 1)

]4
ds

]1/2
≈ 0.5919429969.

λ = max
t∈[0,1]

{H(t, s)}

=
Γ(η − ε)Γ(η + δ)

[Γ(η + δ)− Γ(η − ε)] Γ(η)Γ(δ)
max
t∈[0,1]

{∫ 1

0

tη−1(1− τ)δ−1dτ

}
≈ 0.7506812224 · max

t∈[0,1]

{
1

2
tη−1

}
≈ 0.3753406112,
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σ(%1) = 1 + max
t∈[0,1]

{∫ 1−%1

%

H(t, τ)dτ

}
= 1 +

Γ(η − ε)Γ(η + δ)

[Γ(η + δ)− Γ(η − ε)] Γ(η)Γ(δ)
max
t∈[0,1]

{∫ 1−%1

%

tη−1(1− τ)δ−1dτ

}
= 1.024617247∫ 1

0

[χ(1, s)]
2
ds =

4

65π
, it follows that ‖χ(1, s)‖2 =

√
4

65π
≈ 0.1399582105

%η−11 σ(%1)

∫ 1−%1

%1

χ(1, s)ψ(s)ds = 0.3193476457× 1.024617247

×
∫ 1−%1

%1

(1− s)η−ε−1 − (1− s)η−1

Γ(η)

sε

Γ(ε+ 1)
ds

≤ 0.3193476457× 1.024617247× 0.08733438065

= 0.02857660458.

β = max

{
1

%η−11 σ(%1)
∫ 1−%1
%1

χ(1, s)ψ(s)ds
, 1

}
> 34.99366054.

So, taking β = 35. Thus,

K1 <
1

(1 + λ)‖χ(1, s)‖q‖ψ‖p
= 8.776300099.

So, taking, K1 = 8 and Next, taking

Ok = 10−2(2k+1) and Ek = 10−4k,

then

Ek+1 = 10−(4k+4) <
1

53/2
× 10−(4k+2) < %η−1k Ok

< Ok = 10−(4k+2) < Ek = 10−4k,

βOk = 35× 10−2(2k+1) < 8× 10−4k = K1Ek.
Also, f satisfies conditions:

f(ω) ≤φ(K1Ek) = K2
1E

2
k = 64× 10−8k, ω ∈

[
0, 10−4k

]
f(ω) ≥φ(βOk) = β2O2

k

= 1225× 10−(8k+4), ω ∈
[

1

53/2
× 10−2(2k+1), 10−2(2k+1)

]
.

Hence, by Theorem 3.2, the bvp (4.8) has denumerably infinitely many positive solutions
{ω[k]}∞k=1 with 10−6 ≤ ‖ω[1]‖ ≤ 10−4, 10−10 ≤ ‖ω[2]‖ ≤ 10−8, 10−14 ≤ ‖ω[3]‖ ≤ 10−12

and so on.
Acknowledgement. The authors thank to the referee for his appropriate comments and
suggestions which help us to improve the manuscript. The author M. Rashmitha is thank-
ful to DST-INSPIRE, Government of India, New Delhi for awarding JRF No. 2016/IF160480.



202 K. R. Prasad, Mahammad Khuddush and M. Rashmita

REFERENCES

[1] Aghajani, A., Jalilian, Y. and Trujillo, J. J., On the existence of solutions of fractional integro-difierential equations,
Fract. Calc. Appl. Anal., 15 (2012), No. 1, 44–69

[2] Bai, Z. and L, H., Positive solutions for a boundary value problem of nonlinear fractional differential equations, J.
Math. Anal. Appl., 311 (2005), 495–505

[3] Benchohra, M., Graef, J. R. and Mostafai, F. Z., Weak solutions for nonlinear fractional difierential equations on
reflexive Banach spaces, Electron. J. Qual. Theory. Diff. Eq., 54 (2010), 1–10

[4] Borisut, P., Kumam, P., Ahmed, I. and Sitthithakerngkiet, K., Nonlinear Caputo Fractional Derivative with
Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems, Symmetry, 11 (2019), No. 6,
829

[5] Cabada, A. and G. Wang, G., Positive solutions of nonlinear fractional differential equations with integral boundary
value conditions’, J. Math. Anal. Appl., 389 (2012), 403–411
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