CREAT. MATH. INFORM. Volume **31** (2022), No. 2, Pages 215 - 228 Online version at https://semnul.com/creative-mathematics/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2022.02.07

On Intuitionistic Fuzzy Structure Space On Γ-Ring

P. K. SHARMA, HEM LATA and NITIN BHARADWAJ

ABSTRACT. In this research article, we investigate and study the intuitionistic fuzzy structure space of a Γ -ring M set up by the class of intuitionistic fuzzy prime ideals of M called the intuitionistic fuzzy prime spectrum of Γ -ring. Apart from studying basic properties of this structure space, we explore separation axioms, compactness, irreducibility and connectedness in this structure space.

1. INTRODUCTION

Algebraic systems found to take a noteworthy role in mathematics with ample applications in numerous directions such as theoretical physics, computer sciences, control engineering, information sciences, coding theory etc. The prime spectrum of a ring with unity is a space formed by introducing Zariski topology on the set of all prime ideals in a commutative ring with unity which plays a crucial role in commutative algebra (for detail see [5, 10]).

It is well known that the concept of a Γ -ring was initially introduced and investigated by Nobusawa [14]. Barnes [4] weakened slightly the conditions in the definition of the Γ -ring in the sense of Nobusawa. Since then, many researchers have investigated various properties of this Γ -ring. Any ring can be regarded as a Γ -ring by suitably choosing Γ . Many primary results in ring theory have been broaden to Γ -rings. R. Paul [19] studied various types of ideals in Γ -ring and the corresponding operator rings.

W. E. Coppage and J. Luh [6] studied radical of Γ -ring. Y. B. Jun [12], elucidate fuzzy prime ideal of a Γ -ring and derived a number of characterization for a fuzzy ideal to be a fuzzy prime ideal. T. K. Dutta and T. Chanda [8] proved the same result in a different way and also proved handful characterization of fuzzy prime ideals. B. A. Ersoy [9] defined fuzzy semi-prime ideal and obtained some results. A. K. Aggarwal et al in [1] studied some theorems on fuzzy prime ideals of Γ -ring.

The conception of intuitionistic fuzzy set (IFS) was first launched by Atanassaov [2, 3], as an extension to the notion of fuzzy set (FS) given by Zadeh [25]. Kim et al in [13] examined the intuitionistic fuzzification of ideal of Γ -ring which were further studied by Palaniappan at al in [15, 16, 17]. The notion of IF prime ideal and IF semi-prime were studied by Palaniappan and Ramachandran in [18]. Authors in [21] studied the notion of IF characteristic ideals of a Γ -ring and obtained a one to one correlation between the set of all IF characteristic ideals of Γ -ring and that of its operator ring. Further in [22] they introduced the notion of IF prime radical and IF primary ideal of a of Γ -ring. An extension of IF ideal of Γ -ring was introduced in [23] which is used to characterise IF prime and IF semi-prime ideals. In [11] S. M. Goswami et al studied structure space of semi-ring and Γ -Semirings.

In 2017, P. K. Sharma et al. in [20] introduced the notion of IF prime spectrum of a commutative ring with identity and studied it. Since Γ -ring is a generalization of ring,

Received: 08.12.2021. In revised form: 12.04.2022. Accepted: 19.04.2022

²⁰²⁰ Mathematics Subject Classification. 03F55, 13C13, 13C99, 16N40.

Key words and phrases. Γ -ring, Intuitionistic fuzzy (semi-) prime ideal, Structure space, f-invariant intuitionistic fuzzy set.

it is natural to investigate the ring theoretic analogues in these general settings. Keeping this view in mind we introduce in this paper a topology on the set of all IF prime ideals of a commutative Γ -ring M with identity and denote the resulting structure space by IFSpec(M). We study separation axioms, compactness, irreducibility and connectedness in this structure space.

2. PRELIMINARIES

In this section we recollect a few definitions and results, which are necessary for the development of the article,

Definition 2.1. ([14, 4]) If (M, +) and $(\Gamma, +)$ are additive Abelian groups. Then M is called a Γ -ring (in the sense of Barnes [2]) if there exist mapping $M \times \Gamma \times M \to M$, $(m_1, \alpha, m_2) \mapsto m_1 \alpha m_2, m_1, m_2 \in M, \gamma \in \Gamma$ holding the following circumstances: (1) $m_1 \alpha m_2 \in M$. (2) $(m_1+m_2)\alpha m_3 = m_1 \alpha m_3 + m_2 \alpha m_3, m_1(\alpha+\beta)m_2 = m_1 \alpha m_2 + m_1 \beta m_2, m_1 \alpha (m_2+m_3) = m_1 \alpha m_2 + m_1 \alpha m_3$.

(3) $(m_1 \alpha m_2)\beta m_3 = m_1 \alpha (m_2 \beta m_3)$. for all $m_1, m_2, m_3 \in M$, and $\gamma \in \Gamma$.

A non-void subset N of M is considered as left (right) ideal of M provided N is an additive subgroup of M and $M\Gamma N \subseteq N(N\Gamma M \subseteq N)$. Also, N is called an ideal of M if N is both left and right ideal. A mapping $f: M \to M'$ of Γ -rings is called a Γ -homomorphism [4] if $f(m_1 + m_2) = f(m_1) + f(m_2)$ and $f(m_1 \alpha m_2) = f(m_1)\alpha f(m_2)$ for all $m_1, m_2 \in M, \alpha \in \Gamma$. When M' = M, then a Γ -homomorphism is called a Γ -endomorphism, further a one-one and onto Γ -endomorphism is called a Γ -automorphism.

Definition 2.2. ([6]) A non-zero element m of a commutative Γ -ring M is called a unit element if for every pair of non-zero elements $\gamma_1, \gamma_2 \in \Gamma$ there exist an element m' in M such that $m\gamma_1m'\gamma_2x = x$ for all $x \in M$.

Definition 2.3. ([6, 24]) An element m of a Γ -ring M is called nilpotent if for any $\gamma \in \Gamma$ there exists a positive integer n depending on γ such that $(m\gamma)^n m = (m\gamma)(m\gamma)...(m\gamma)m = 0_M$. A subset S of M is said to be nil if each element of S is nilpotent. The nil radical of M is defined as the sum of all nil ideals of M.

In a Γ -ring the prime radical is a subset of the nil radical.

Definition 2.4. Let *M* be a Γ -ring and $m \in M$, then the principal ideal generated by *m*, denoted by $\langle m \rangle$ is the intersection of all ideals containing *m* and is the set of all finite sums of the elements of the form $nm + a\gamma_1m + m\gamma_2b + c\gamma_3m\gamma_4d$, where *n* is an integer, $a, b, c, d \in M$, $\gamma_1, \gamma_2, \gamma_3, \gamma_4 \in \Gamma$.

Definition 2.5. ([7]) A Γ -ring M is called a Boolean Γ -ring if $\forall m \in M, m\gamma m = m$, for all $\gamma \in \Gamma$.

Theorem 2.1. ([7]) Let M be a Boolean Γ -ring with unity \mathbf{e} . Then (i) $m = -m, \forall m \in M$; (ii) $m_1 \gamma m_2 = m_2 \gamma m_1, \forall m_1, m_2 \in M, \gamma \in \Gamma$, i.e., M is commutative. Γ -ring. (iii) m is idempotent element in M if and only if $\mathbf{e} - m$ is idempotent element in M.

Definition 2.6. ([10]) A topological space (X, T) is called irreducible if every pair of nonempty open subsets of the space X has a non-empty intersection.

Definition 2.7. ([2, 3]) An IFS *A* of a non-void set *X* is described by the formation $A = \{ < x, \mu_A(x), \nu_A(x) > : x \in X \}$, where $\mu_A, \nu_A : X \to [0, 1]$ denote the degree of membership

(namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to A respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Remark 2.1. ([2, 3])

(i) When $\mu_A(x) + \nu_A(x) = 1$, i.e., $\nu_A(x) = 1 - \mu_A(x) = \mu_{A^c}(x)$. Then *A* is called a fuzzy set. (ii) An IFS $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ is shortly denoted by $A(x) = (\mu_A(x), \nu_A(x))$, for all $x \in X$. We will write IFS(X), the set of all IFSs of *X*.

If $A, B \in IFS(X)$, then $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x), \forall x \in X$ and $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$. For any subset Y of X, the IF characteristic function χ_Y is an IFS of X, defined as $\chi_Y(x) = (1,0), \forall x \in Y$ and $\chi_Y(x) = (0,1), \forall x \in X \setminus Y$. Let $\alpha, \beta \in [0,1]$ with $\alpha + \beta \leq 1$. Then the crisp set $A_{(\alpha,\beta)} = \{x \in X : \mu_A(x) \geq \alpha \text{ and } \nu_A(x) \leq \beta\}$ is called the (α, β) -level cut subset of A. Also the IFS $x_{(\alpha,\beta)}$ of X defined as $x_{(\alpha,\beta)}(y) = (\alpha,\beta)$, if y = x, otherwise (0,1) is called the intuitionistic fuzzy point (IFP) in X with support x. By $x_{(\alpha,\beta)} \in A$ we mean $\mu_A(x) \geq \alpha$ and $\nu_A(x) \leq \beta$. Further if $f : X \to Y$ is a mapping and A, B be respectively IFS of X and Y. Then the image f(A) is an IFS of Y is defined as $\mu_{f(A)}(y) = Sup\{\mu_A(x) : f(x) = y\}, \nu_{f(A)}(y) = Inf\{\nu_A(x) : f(x) = y\}$, for all $y \in Y$ and the inverse image $f^{-1}(B)$ is an IFS of X is defined as $\mu_{f^{-1}(B)}(x) = \mu_B(f(x))$, $\nu_{f^{-1}(B)}(x) = \nu_B(f(x))$, for all $x \in X$, i.e., $f^{-1}(B)(x) = B(f(x))$, for all $x \in X$. Also the IFS A of X is said to be f-invariant if for any $x, y \in X$, whenever f(x) = f(y) implies A(x) = A(y).

Definition 2.8. ([15]) Let *A* and *B* be two IFSs of a Γ -ring *M* and $\gamma \in \Gamma$. Then the product $A\Gamma B$ and the composition $A \circ B$ of *A* and *B* are defined by

$$A\Gamma B(m) = \begin{cases} (\lor_{m=m_1\gamma m_2}(\mu_A(m_1) \land \mu_B(m_2)), \land_{m=m_1\gamma m_2}(\nu_A(m_1) \lor \nu_B(m_2)), & \text{if } m = m_1\gamma m_2 \\ (0,1), & \text{otherwise} \end{cases}$$

and

$$A \circ B(m) = \begin{cases} (\bigvee_{m = \sum_{i=1}^{n} y_i \gamma z_i} (\mu_A(y_i) \land \mu_B(z_i)), \land_{m = \sum_{i=1}^{n} y_i \gamma z_i} (\nu_A(y_i) \lor \nu_B(z_i))), & \text{if } m = \sum_{i=1}^{n} y_i \gamma z_i (\mu_A(y_i) \land \mu_B(z_i)), \land_{m = \sum_{i=1}^{n} y_i \gamma z_i} (\mu_A(y_i) \lor \mu_B(z_i)), & \text{otherwise} \end{cases}$$

Remark 2.2. ([15]) If *A* and *B* be two IFSs of a Γ -ring *M*, then $A\Gamma B \subseteq A \circ B \subseteq A \cap B$

Definition 2.9. ([15]) Let *A* be an IFS of a Γ -ring *M*. Then *A* is called an intuitionistic fuzzy ideal (IFI) of *M* if for all $m_1, m_2 \in M, \gamma \in \Gamma$, the following circumstances holds: (i) $\mu_A(m_1 - m_2) \ge \mu_A(m_1) \land \mu_A(m_2)$; (ii) $\mu_A(m_1 \alpha m_2) \ge \mu_A(m_1) \lor \mu_A(m_2)$; (iii) $\nu_A(m_1 - m_2) \le \nu_A(m_1) \lor \nu_A(m_2)$; (iv) $\nu_A(m_1 \alpha m_2) \le \nu_A(m_1) \land \nu_A(m_2)$.

The IFS $\tilde{0}$ and $\tilde{1}$ defined by $\tilde{0}(m) = (0,1)$ and $\tilde{1}(m) = (1,0), \forall m \in M$ are IFIs of M. These are called trivial IFIs of M. Also if A is an IFI of M, then $\mu_A(0_M) \ge \mu_A(m)$ and $\nu_A(0_M) \le \nu_A(m), \forall m \in M$ (See [12]).

Remark 2.3. ([15, 17, 18]) If A, B and C be IFIs of a Γ -ring M, then $A\Gamma B, A \circ B, A \cap B$ are also IFI of M. Further, $A\Gamma B \subseteq C$ if and only if $A \circ B \subseteq C$.

Definition 2.10. ([18]) Let *P* be an IFI of a Γ -ring *M*. Then *P* is said to be IF prime (IF semi-prime) if *P* is non-constant and for any IFIs *A*, *B* of *M*, $A\Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$ (for any IFI *A* of *M* such that $A\Gamma A \subseteq P$ implies $A \subseteq P$).

Remark 2.4. ([18]) Let $x_{(p,q)}, y_{(t,s)} \in IFP(M)$. Then $x_{(p,q)}\Gamma y_{(t,s)} = (x\Gamma y)_{(p \wedge t, q \vee s)}$

Theorem 2.2. ([18]) Let M be a commutative Γ -ring and A be an IFI of M. Then following are equivalent

(i) $x_{(p,q)}\Gamma y_{(t,s)} \subseteq A \Rightarrow x_{(p,q)} \subseteq A \text{ or } y_{(t,s)} \subseteq A, \text{ where } x_{(p,q)}, y_{(t,s)} \in IFP(M).$ (ii) A is an IF prime ideal of M.

Theorem 2.3. ([18]) Let A be an IFI of Γ -ring M. Then each (p,q)-level cut set $A_{(p,q)}$ is either empty or an ideal of M, where $p \leq \mu_A(0_M)$ and $q \geq \nu_A(0_M)$. In particular $A_{(1,0)}$ which is denoted by A_* , i.e., the set $A_* = \{x \in M : \mu_A(x) = \mu_A(0_M) \text{ and } \nu_A(x) = \nu_A(0_M)\}$ is ideal of M. If $A \in IFPI(M)$, then A_* is a prime ideal of M.

Theorem 2.4. ([18]) If P is an IF prime ideal of a Γ -ring M, then the following conditions hold: (i) $P(0_M) = (1,0)$, (ii) P_* is a prime ideal of M, (iii) $Img(P) = \{(1,0), (t,s)\}$, where $t, s \in [0,1)$ such that $t + s \leq 1$.

Definition 2.11. ([20]) A non-constant IFI A of a Γ -ring M is called an IF maximal ideal if, $Img(A) = \{(1,0), (t,s)\}$, where $t, s \in [0,1)$ such that $t + s \leq 1$ and A_* is a maximal ideal of M.

Clearly every IF maximal ideal A of a Γ -ring M is an IF prime ideal of M.

3. Intuitionistic fuzzy structure space of Γ -ring

In this section, we introduce a topological structure on the collection \mathcal{X} of all IF prime ideals of Γ -ring M and investigate some of its properties.

Remark 3.5.

(i) $\mathcal{X} = \{P : P \text{ is an IF prime ideal of } \Gamma\text{-ring } M\}$ (ii) $\mathcal{V}(A) = \{P \in \mathcal{X} : A \subseteq P\}$, where *A* is any *IFS* of *M*. (iii) $\mathcal{X}(A) = \mathcal{X} \setminus \mathcal{V}(A)$, the complement of $\mathcal{V}(A)$ in \mathcal{X} , i.e., = $\{P \in \mathcal{X} : A \nsubseteq P\}$ (iv) For any IFS *B* of *M*, < *B* > denote the *IFI* generated by *B*.

Theorem 3.5. Let M be a Γ -ring and $\tau = \{\mathcal{X}(A) : A \text{ is an IFPI of } M\} = \{P \in \mathcal{X} : A \nsubseteq P\}.$ Then τ is a topology on \mathcal{X} and the ordered pair (\mathcal{X}, τ) is a topological space.

Proof. Consider the trivial IFIs *A* = 0 and *B* = 1 of *M*. Then *V*(*A*) = *V*(0) = *X* and *V*(*B*) = *V*(1) = ∅, so as *X*(0) = ∅ and *X*(1) = *X* implies ∅, *X* ∈ *τ*. Next, let *A*₁ and *A*₂ be any two IFIs of *M*. Then *B* ∈ *V*(*A*₁) ∪ *V*(*A*₂) ⇒ *A*₁ ⊆ *B* or *A*₂ ⊆ *B* ⇒ *A*₁ ∩ *A*₂ ⊆ *B* ⇒ *B* ∈ *V*(*A*₁ ∩ *A*₂) and *B* ∈ *V*(*A*₁) ∪ *V*(*A*₂) ⇒ *A*₁ ∩ *A*₂ ⊆ *B* ⇒ *A*₁∩*A*₂ ⊆ *B* = ⇒ *B* ∈ *V*(*A*₁ ∩ *A*₂) and *B* ∈ *V*(*A*₁) ∩ *A*₂ ⊆ *B* [As *B* is intuitionistic fuzzy prime ideal of *M*] ⇒ *B* ∈ *V*(*A*₁) or *B* ∈ *V*(*A*₂) ⇒ *B* ∈ *V*(*A*₁) ∪ *V*(*A*₂). Hence *V*(*A*₁) ∪ *V*(*A*₂) = *V*(*A*₁ ∩ *A*₂) ⇒ *X* \ (*V*(*A*₁) ∪ *V*(*A*₂)) = *X* \ *V*(*A*₁ ∩ *A*₂) ⇒ (*X* \ *V*(*A*₁)) ∩ (*X* \ *V*(*A*₂)) = *X* \ *V*(*A*₁ ∩ *A*₂), i.e., *X*(*A*₁) ∩ *X*(*A*₂) = *X*(*A*₁ ∩ *A*₂). From this we conclude that *τ* is closed under finite intersections. Now, suppose that {*A*_{*i*} : *i* ∈ Λ} be any family of IFIs of *M*. It can be confirmed that ∩{*V*(*A*_{*i*)} : *i* ∈ Λ} = *X*(< ∪{*A*_{*i*} : *i* ∈ Λ} >). In another way, {*X*(*A*_{*i*}) : *i* ∈ Λ} = *X*(< ∪{*A*_{*i*} : *i* ∈ Λ} >). Hence *τ* is closed under arbitrary unions. Hence, *τ* defines a topology on *X*.

Remark 3.6. The topological space (X, τ) defined in Theorem (3.5) is assigned as the IF prime spectrum of *M* and is denoted by IFSpec(M) or , for comfort, we denote it by \mathcal{X} only.

Example 3.1. (1) Consider $M = \Gamma = \mathbb{Z}$, the ring of integers. Then M is a Γ -ring. Suppose that $p \in \mathbb{Z}$ is a prime integer. Then for every $t, s \in [0, 1)$ such that $t + s \leq 1$, define $P_{t,s} \in IFS(M)$

as

$$\mu_{P_{t,s}}(x) = \begin{cases} 1, & \text{if } x \in \\ t, & \text{if otherwise} \end{cases}; \quad \nu_{P_{t,s}}(x) = \begin{cases} 0, & \text{if } x \in \\ s, & \text{otherwise.} \end{cases}$$

for all $x \in M$. Then by Theorem (2.4), $P_{s,t}$ is an intuitionistic fuzzy prime ideal of M.

Thus, $IFSpec(M) = \{P_{t,s}, where t, s \in [0,1) \text{ such that } t + s \leq 1 \text{ and } p \text{ is prime element of } \mathbb{Z} \}.$

(2) Consider $M = \Gamma = \mathbf{Z}_2$, where $\mathbf{Z}_2 = \{\overline{0}, \overline{1}\}$ be a boolean ring. Then M is a Γ -ring and for every $t, s \in [0, 1)$ such that $t + s \leq 1$, define $P_{t,s} \in IFS(M)$ as

$$\mu_{P_{t,s}}(x) = \begin{cases} 1, & \text{if } x = \bar{0} \\ t, & \text{if } x = \bar{1} \end{cases}; \quad \nu_{P_{t,s}}(x) = \begin{cases} 0, & \text{if } x = \bar{0} \\ s, & \text{if } x = \bar{1}. \end{cases}$$

for all $x \in M$. Then by Theorem (2.4), $P_{t,s}$ is an intuitionistic fuzzy prime ideal of M.

Thus, $IFSpec(M) = \{P_{t,s}, where t, s \in [0,1) \text{ such that } t + s \leq 1\}.$

Proposition 3.1. Let M, N be Γ -rings. If $f : M \to N$ is a surjective homomorphism, then $\forall x \in M, \alpha, \beta \in (0, 1]$ such that $\alpha + \beta \leq 1$, we have

$$f(x_{(\alpha,\beta)}) = (f(x))_{(\alpha,\beta)}$$

Proof. Let $y \in N$ be any element, then $f(x_{(\alpha,\beta)})(y) = (\mu_{f(x_{(\alpha,\beta)})}(y), \nu_{f(x_{(\alpha,\beta)})}(y))$, where $\mu_{f(x_{(\alpha,\beta)})}(y) = Sup\{\mu_{x_{(\alpha,\beta)}}(p) : f(p) = y\} = \begin{cases} \alpha, & \text{if } p = x \text{ (i.e., } y = f(x)); \\ 0, & \text{otherwise.} \end{cases}$ and

$$\begin{split} \nu_{f(x_{(\alpha,\beta)})}(y) &= Inf\{\nu_{x_{(\alpha,\beta)}}(p): f(p) = y\} = \begin{cases} \beta, & \text{if } p = x \text{ (i.e., } y = f(x)\text{);} \\ 1, & \text{otherwise.} \end{cases} = \nu_{(f(x))_{(\alpha,\beta)}}(y) \\ \text{Hence } f(x_{(\alpha,\beta)}) &= (f(x))_{(\alpha,\beta)}. \end{split}$$

Recollect that a topological space \mathcal{Y} is compact if and only if every covering of \mathcal{Y} by basic open sets is reducible to a finite sub covering of \mathcal{Y} .

Theorem 3.6. Let M be a Γ -ring and $x, y \in M$ and $\alpha, \beta \in (0, 1]$ with $\alpha + \beta \leq 1$. Then the following statements are true (i) $\mathcal{X}(x_{(\alpha,\beta)}) \cap \mathcal{X}(y_{(\alpha,\beta)}) = \mathcal{X}((x\gamma y)_{(\alpha,\beta)})$, for all $\gamma \in \Gamma$. (ii) $\mathcal{X}(x_{(\alpha,\beta)}) = \emptyset$ if and only if x is nilpotent. (iii) $\mathcal{X}(x_{(\alpha,\beta)}) = \mathcal{X}$ if x is a unit in M.

Proof. (i) Let $x, y \in M, \gamma \in \Gamma$ and $\alpha, \beta \in (0, 1]$ with $\alpha + \beta \leq 1$. Let $P \in \mathcal{X}$. Then $\mu_P(0_M) = 1, \nu_P(0_M) = 0, Img(P) = \{(1, 0), (t, s)\}$, where $t, s \in [0, 1)$ such that $t + s \leq 1$, P_* is a prime ideal of M (by Theorem (2.4)). Suppose $P \in \mathcal{X}(x_{(\alpha,\beta)}) \cap \mathcal{X}(y_{(\alpha,\beta)})$, then $P \in \mathcal{X}(x_{(\alpha,\beta)})$ and $P \in \mathcal{X}(y_{(\alpha,\beta)})$ $\Leftrightarrow x_{(\alpha,\beta)} \nsubseteq P, y_{(\alpha,\beta)} \oiint P \Leftrightarrow \mu_P(x) < \alpha, \nu_P(x) > \beta$ and $\mu_P(y) < \alpha, \nu_P(y) > \beta$ $\Leftrightarrow \alpha = \mu_{x_{(\alpha,\beta)}}(x) > \mu_P(x), \beta = \nu_{x_{(\alpha,\beta)}}(x) < \nu_P(x)$ and $\alpha = \mu_{y_{(\alpha,\beta)}}(y) > \mu_P(y), \beta = \nu_{y_{(\alpha,\beta)}}(y) < \nu_P(y)$ $\Leftrightarrow x, y \notin P_*$, for if $x, y \in P_*$, then $\alpha > \mu_P(x) = \mu_P(y) = 1$ and $\beta < \nu_P(x) = \nu_P(y) = 0$ $\Leftrightarrow x\gamma y \notin P_*$, for all $\gamma \in \Gamma$, as P_* is a prime ideal of M. $\Leftrightarrow \alpha > \mu_P(x\gamma y)$ and $\beta < \nu_P(x\gamma y)$, since $Img(P) = \{(1,0), (t,s)\}, t, s \in [0,1)$ such that $t + s \leq 1$ $\Leftrightarrow (x\gamma y)_{(\alpha,\beta)} \nsubseteq P \Leftrightarrow P \in \mathcal{X}((x\gamma y)_{(\alpha,\beta)})$. This proves that $\mathcal{X}(x_{(\alpha,\beta)}) \cap \mathcal{X}(y_{(\alpha,\beta)}) = \mathcal{X}((x\gamma y)_{(\alpha,\beta)})$, for all $\gamma \in \Gamma$.

(ii) Suppose *J* be any prime ideal of *M* and χ_J be the intuitionistic fuzzy characteristic function of *J*. Then from Theorem (2.4) we have $\chi_J \in \mathcal{X}$. Further, if $\mathcal{X}(x_{(\alpha,\beta)}) = \emptyset$ then $\mathcal{V}(x_{(\alpha,\beta)}) = \mathcal{X}$ that implies $x_{(\alpha,\beta)} \subseteq \chi_J$ and therefore, $\mu_{\chi_J}(x) \ge \alpha > 0$ and $\nu_{\chi_J}(x) \le \beta < 1$ so that $\mu_{\chi_J}(x) = 1$ and $\nu_{\chi_J}(x) = 0$ and so $x \in J$. Thus $x \in \cap \{J : J \text{ is a prime ideal of } M \}$. As the prime radical is subset of the nil radical so x is nilpotent.

Conversely, assume that x is nilpotent. Then for every $\gamma \in \Gamma, \exists n \in \mathbb{N}$ depending on γ so that $(x\gamma)^n x = 0_M$. Let $P \in \mathcal{X}$ be any element. Then $\mu_P((x\gamma)^n x) = \mu_P(0_M) = 1$ and $\nu_P((x\gamma)^n x) = \nu_P(0_M) = 0$. Therefore $1 = \mu_P((x\gamma)^n x) \ge \mu_P(x)$ and $0 = \nu_P((x\gamma)^n x) \le \nu_P(x)$ implies that $\mu_P(x) = 1$ and $\nu_P(x) = 0$. So $x \in P_*$. But P_* is a prime ideal of M. Hence $\alpha = \mu_{x_{(\alpha,\beta)}}(x) \le \mu_P(x)$ and $\beta = \nu_{x_{(\alpha,\beta)}}(x) \ge \nu_P(x)$, whence $x_{(\alpha,\beta)} \subseteq P, \forall P \in \mathcal{X}$. Thus $\mathcal{V}(x_{(\alpha,\beta)}) = \mathcal{X}$, i.e., $\mathcal{X}(x_{(\alpha,\beta)}) = \emptyset$.

(iii) Suppose *J* and χ_J be same as in part (ii). Now if $\mathcal{X}(x_{(\alpha,\beta)}) = \mathcal{X}$ then $\mathcal{V}(x_{(\alpha,\beta)}) = \emptyset$ that implies $x_{(\alpha,\beta)} \notin \chi_J$ and thus $\mu_{\chi_J}(x) < \alpha$ and $\nu_{\chi_J}(x) > \beta$ so that $x \notin J$. Hence $x \notin \bigcup \{J : J \text{ is a prime ideal of } M \}$. This shows that x is a unit.

The following example show that the converse of Theorem (3.6)(iii) is not true in general. This is a deviation of the result from the crisp theory (see [5], Proposition (2.2)).

Example 3.2. Consider M, Γ and $\mathcal{X} = IFSpec(M)$ as in Example (3.1)(1). Define $A \in \mathcal{X}$ as follow

$$\mu_A(x) = \begin{cases} 1, & \text{if } x \in <2>\\ 0.6, & \text{if otherwise} \end{cases}; \quad \nu_A(x) = \begin{cases} 0, & \text{if } x \in <2>\\ 0.3, & \text{otherwise.} \end{cases}$$

Take $\alpha = 0.5, \beta = 0.4$ and x = 1. Then we see that IFP $x_{(\alpha,\beta)} \subseteq A$, hence $A \notin \mathcal{X}(x_{(\alpha,\beta)})$, and consequently $\mathcal{X} \neq \mathcal{X}(x_{(\alpha,\beta)})$.

Proposition 3.2. The subfamily $\{\mathcal{X}(x_{(\alpha,\beta)}) : x \in M, \alpha, \beta \in (0,1] \text{ s.t. } \alpha + \beta \leq 1\}$ of τ is a base for τ .

Proof. Let $\mathcal{X}(A) \in \tau$, where *A* is an IFI of *M*. Let $B \in \mathcal{X}(A)$. Then $A \nsubseteq B$. This implies that there exists $x \in M$ such that $\mu_A(x) > \mu_B(x)$ and $\nu_A(x) < \nu_B(x)$. Thus $x \notin B_*$ and hence $\mu_B(x) = t$ and $\nu_B(x) = s$, for some $t, s \in [0, 1)$ with $t + s \leq 1$. Let $\mu_A(x) = \alpha > 0, \nu_A(x) = \beta < 1$. Clearly $x_{(\alpha,\beta)} \nsubseteq B$ and so $B \in \mathcal{X}(x_{(\alpha,\beta)})$.

Now, $\mathcal{V}(A) \subseteq \mathcal{V}(x_{(\alpha,\beta)})$, because if $P \in \mathcal{V}(A)$ then $A \subseteq P$ and so $\mu_{x_{(\alpha,\beta)}}(x) = \alpha = \mu_A(x) < \mu_P(x)$ and $\nu_{x_{(\alpha,\beta)}}(x) = \beta = \nu_A(x) > \nu_P(x)$. This implies that $x_{(\alpha,\beta)} \subseteq P$ and thus $P \in \mathcal{V}(x_{(\alpha,\beta)})$. Hence $\mathcal{X}(x_{(\alpha,\beta)}) \subseteq \mathcal{X}(A)$. Thus $B \in \mathcal{X}(x_{(\alpha,\beta)}) \subseteq \mathcal{X}(A)$. Hence the subfamily $\{\mathcal{X}(x_{(\alpha,\beta)}) : x \in M, \alpha, \beta \in (0,1] \text{ such that } \alpha + \beta \leq 1\}$ is a base for τ . \Box

Proposition 3.3. The subset $\mathcal{Y} = \{P \in \mathcal{X} : Img(P) = \{(1,0), (t,s)\}, where t, s \in [0,1) with t + s \leq 1\}$, is compact with respect to the subspace topology.

Proof. Proceeding in the same manner as in Proposition (3.2), we can easily verify that the family $\{\mathcal{X}(x_{(\gamma,\delta)}) \cap \mathcal{Y} : x \in M, \text{ and } \gamma \in (t,1] \text{ and } \delta \in [0,s) \text{ such that } \gamma + \delta \leq 1\}$ forms a base for \mathcal{Y} . Now, suppose that $\{\mathcal{X}((x_i)_{(p,q)}) \cap \mathcal{Y} : i \in \Lambda \text{ and } (p,q) \in K \times S \subseteq (t,1] \times [0,s)\}$ is a covering of \mathcal{Y} taken from the basic open sets. Suppose $\gamma = Sup\{p : p \in K\}$ and

 $\delta = Inf\{q: q \in S\}$. Then the family $\{\mathcal{X}((x_i)_{(\gamma,\delta)}) \cap \mathcal{Y}: i \in \Lambda\}$ also covers \mathcal{Y} . Now,

$$\begin{split} \mathcal{Y} &= & \cup \{\mathcal{X}((x_i)_{(\gamma,\delta)}) \cap \mathcal{Y} : i \in \Lambda\} \\ &= & (\cup \{\mathcal{X}((x_i)_{(\gamma,\delta)}) : i \in \Lambda\}) \cap \mathcal{Y} \\ &= & (\mathcal{X} \setminus \mathcal{V}(\cup \{(x_i)_{(\gamma,\delta)} : i \in \Lambda\})) \cap \mathcal{Y} \\ &= & (\mathcal{X} \cap \mathcal{Y}) \setminus (\mathcal{V}(\cup \{(x_i)_{(\gamma,\delta)} : i \in \Lambda\}) \cap \mathcal{Y}) \\ &= & \mathcal{Y} \setminus (\mathcal{V}(\cup \{(x_i)_{(\gamma,\delta)} : i \in \Lambda\}) \cap \mathcal{Y}). \end{split}$$

This show that $\mathcal{V}(\cup\{(x_i)_{(\gamma,\delta)}: i \in \Lambda\}) \cap \mathcal{Y} = \emptyset$. Further, suppose that *J* be any prime ideal of Γ -ring *M*. Consider an IFI *A* of *M* given by

$$\mu_A(x) = \begin{cases} 1, & \text{if } x \in J \\ \alpha, & \text{if otherwise} \end{cases}; \quad \nu_A(x) = \begin{cases} 0, & \text{if } x \in J \\ \beta, & \text{if otherwise} \end{cases}$$

Clearly, A is an IFPI of M and $A \in \mathcal{Y}$. So $A \notin \mathcal{V}(\cup\{(x_i)_{(\gamma,\delta)} : i \in \Lambda\})$. Hence $(x_j)_{(\gamma,\delta)} \notin A$ for some $j \in \Lambda$. Thus $\gamma > \mu_A(x_i)$ and $\delta < \nu_A(x_i)$ for some $j \in \Lambda$. As a result, $x_i \notin J$. This proves that there is no prime ideal of M containing the set $\{x_i : i \in \Lambda\}$. Therefore, A for all l = 1, 2, ..., n and $e_l = \sum_{q=1}^{n} m_{q_l} \gamma_{q_l} x_{q_l}$, where n_l is a finite positive integer, $m_{q_l} \in M, \ x_{q_l} \in \{x_j : J \in \Lambda\}, \ \gamma_{q_l} \in \Gamma \text{ for all } q = 1, 2, ..., n_l \text{ and } l = 1, 2, ..., n_l \text{ Now we claim that } \mathcal{V}(\cup_{l=1}^n \cup_{q=1}^{n_l} (x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{Y} = \emptyset, \text{ as } A \in \mathcal{V}(\cup_{l=1}^n \cup_{q=1}^{n_l} (x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{Y} \text{ implies } \mathcal{V}(\cup_{l=1}^n \cup_{q=1}^{n_l} (x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{Y} \text{ implies } \mathcal{V}(\cup_{l=1}^n \cup_{q=1}^{n_l} (x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{Y} \text{ implies } \mathcal{V}(\cup_{l=1}^n \cup_{q=1}^n (x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{Y} \text{ implies } \mathcal{V}(\cup_{l=1}^n \cup_{q=1}^n (x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{Y} \text{ implies } \mathcal{V}(\cup_{l=1}^n (x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{V} \text{ implies } \mathcal{V} \text{ implies } \mathcal{V}(\cup_{l=1}^n (x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{V} \text{ implies } \mathcal{V} \text{ implies } \mathcal{V} \text{ i$ $\bigcup_{l=1}^{n} \bigcup_{q=1}^{n_l} (x_{q_l})_{(\gamma,\delta)} \subseteq A$ and $Img(A) = \{(1,0), (\alpha,\beta)\}$. This imply $\gamma = \mu_{(x_{q_l})_{(\gamma,\delta)}}(x_{q_l}) \leq \mu_A(x_{q_l}) \text{ and } \delta = \nu_{(x_{q_l})_{(\gamma,\delta)}}(x_{q_l}) \geq \nu_A(x_{q_l}), \forall q = 1, 2, ..., n_l, l = 0$ 1, 2, ..., n. $\Rightarrow \mu_A(x_{q_l}) = 1, \nu_A(x_{q_l}) = 0$, for all $q = 1, 2, ..., n_l, l = 1, 2, ..., n$, since $\gamma > \alpha, \delta < \beta$. $\Rightarrow x_{q_l} \in A_*$ for all $q = 1, 2, ..., n_l, l = 1, 2, ..., n_l$ $\Rightarrow e_l \in A_*$ for all l = 1, 2, ..., n $\Rightarrow x_i = \sum_{i=1}^n x_i \delta_i e_i \in A_* = J$, which is a contradiction. Thus we have $\mathcal{Y} = \mathcal{Y} \setminus (\mathcal{V}(\bigcup_{l=1}^{n} \bigcup_{q=1}^{n_l} (x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{Y})$ $= (\mathcal{X} \cap \mathcal{Y}) \setminus (\mathcal{V}(\bigcup_{l=1}^{n} \bigcup_{q=1}^{n_l} (x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{Y})$ $= (\mathcal{X} \setminus \mathcal{V}(\bigcup_{l=1}^{n} \bigcup_{q=1}^{n_l} (x_{q_l})_{(\gamma,\delta)})) \cap \mathcal{Y}$ $= (\bigcup_{l=1}^{n} \bigcup_{q=1}^{n_l} \mathcal{X}(x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{Y}$ $= \bigcup_{l=1}^{n} \bigcup_{q=1}^{n_l} (\mathcal{X}(x_{q_l})_{(\gamma,\delta)} \cap \mathcal{Y}).$

This proves that $\{\mathcal{X}((x_{q_l})_{(\gamma,\delta)}) \cap \mathcal{Y} : q = 1, 2, ..., n_l, l = 1, 2, ..., n\}$ covers \mathcal{Y} . Hence \mathcal{Y} is compact.

4. SEPARATION AXIOMS OF IF SPEC(M)

We know that a topological space \mathcal{X} is called T_0 , if $\forall, x \neq y \in \mathcal{X}$, \exists at least one open set containing x but not y (or \exists an open set containing y but not x). Also we know that a topological space is called T_1 if and only if every subset containing one point is closed set.

Proposition 4.4. The space X is T_0

Proof. Let $A, B \in \mathcal{X}$ such that $A \neq B$. Then either $A \nsubseteq B$ or $B \nsubseteq A$. Let $B \nsubseteq A$. Then $B \in \mathcal{X}(A)$. Also, $A \notin \mathcal{X}(A)$ and $\mathcal{X}(A)$ is open. Therefore, \mathcal{X} is T_0 space.

In the following examples we show that there exists some element of basis of \mathcal{X} which is not closed, and it is even possible that \mathcal{X} is not T_1 and hence not T_2 . These results are also deviation from the results in crisp theory (see [5], Theorem (4.12)).

Example 4.3. Consider M and Γ as in Example (3.1)(2). Then $\mathcal{X} = \{P_{t,s}, \text{ where } t, s \in [0, 1) \text{ such that } t + s \leq 1\}$, where $P_{t,s}$ is defined as

$$\mu_{P_{t,s}}(x) = \begin{cases} 1, & \text{if } x = \bar{0} \\ t, & \text{if } x = \bar{1} \end{cases}; \quad \nu_{P_{t,s}}(x) = \begin{cases} 0, & \text{if } x = \bar{0} \\ s, & \text{if } x = \bar{1}. \end{cases}$$

for all $x \in M$. Now we show that if $x = \overline{1}$ and $\alpha = 0.6, \beta = 0.3$, then $\mathcal{X}(\overline{1}_{(\alpha,\beta)})$ is not closed. Suppose on the contrary that $\mathcal{X}(\overline{1}_{(\alpha,\beta)})$ is closed. Then there exists subset $K \times S$ of $[0,1] \times [0,1]$ such that $\mathcal{X}(\overline{1}_{(\alpha,\beta)}) = \cap \{\mathcal{V}(y_{(p,q)}) : (p,q) \in K \times S, y \in \mathbb{Z}_2\}$. If $y = \overline{1}$ and $(p,q) \in K \times S = (\alpha,1] \times [0,\beta)$ such that $p + q \leq 1$, then it is not difficult to check that $\mathcal{X}(\overline{1}_{(\alpha,\beta)}) \nsubseteq \mathcal{V}(\overline{1}_{(p,q)})$ and if $y = \overline{1}$ and p = 0, q = 1 or $y = \overline{0}, (p,q) \in [0,1] \times [0,1]$, then it is seen that $\mathcal{V}(y_{(p,q)}) = \mathcal{X}$. Thus $\mathcal{X}(\overline{1}_{(\alpha,\beta)})$ must be equal to \mathcal{X} , which is a contradiction. Therefore $\mathcal{X}(\overline{1}_{(\alpha,\beta)})$ is not closed.

Example 4.4. Consider the space \mathcal{X} as in Example (4.3). Choose $P_{0.6,0.3}, P_{0.5,0.4} \in \mathcal{X}$. Let W be an open set containing $P_{0.6,0.3}$. Then $W = \bigcap \{\mathcal{X}(\bar{1}_{(p,q)}) : (p,q) \in K \times S\}$ for some $K \times S \subseteq (0,1] \times (0,1]$. Thus there exists $(p,q) \in K \times S$ such that $P_{0.6,0.3} \in \mathcal{X}(\bar{1}_{(p,q)})$. So p > 0.6 > 0.5 and q < 0.3 < 0.4. Consequently $P_{0.5,0.4} \in \mathcal{X}(\bar{1}_{(p,q)}) \subseteq W$. In other words any open neighbourhood of $P_{0.6,0.3}$ also contain $P_{0.5,0.4}$. Thus \mathcal{X} is not T_1 .

Proposition 4.5. Let M be a Γ -ring and $A \in \mathcal{X}$ then $\mathcal{V}(A) = cl\{A\}$, the closure of A in \mathcal{X} . Further $B \in cl\{A\}$ if and only if $A \subseteq B$, where $A, B \in \mathcal{X}$.

Proof. Since $\mathcal{V}(A)$ is a closed subset of \mathcal{X} containing A. Therefore $cl\{A\} \subseteq \mathcal{V}(A)$ For the reverse inclusion, consider $B \in \mathcal{X}$ such that $B \notin cl\{A\}$. Then, \exists an open set $\mathcal{X}(C)$ where C is an IFI of M containing B but not A. Therefore, $C \nsubseteq B$ but $C \subseteq A$. So $A \nsubseteq B$ and hence $B \notin \mathcal{V}(A)$. Thus $\mathcal{V}(A) \subseteq cl\{A\}$. Hence $\mathcal{V}(A) = cl\{A\}$.

Further, $B \in cl\{A\}$ if and only if $B \in \mathcal{V}(A)$, which is equivalent to $A \subseteq B$.

Proposition 4.6. Let \mathcal{Y} be same as in Proposition (3.3). If $A \in \mathcal{Y}$, then $\{A\}$ is closed in \mathcal{Y} if and only if A is an IF maximal ideal of M. (In other words, \mathcal{Y} is T_1 if and only if every singleton element of \mathcal{Y} is an IF maximal ideal of M.)

Proof. Let $A \in \mathcal{Y}$ and $\{A\}$ be closed. Then $\mathcal{V}(A) = cl\{A\} = \{A\}$. Hence $\mathcal{V}(A) \cap \mathcal{Y} = \{A\}$, by Proposition (4.5). Now, we show that A is an IF maximal ideal. As $A \in \mathcal{Y}$, $Img(A) = \{(1,0), (t,s)\}$. So it is left to prove that the ideal $A_* = \{x \in M : \mu_A(x) = 1 \text{ and } \mu_A(x) = 0\}$ is maximal. For this, it is enough to show that there is no prime ideal of M properly containing A_* . Let J be a prime ideal of M properly containing A_* .

Let B be an IFI of M defined by

$$\mu_B(x) = \begin{cases} 1, & \text{if } x \in J \\ t, & \text{if otherwise} \end{cases}; \quad \nu_B(x) = \begin{cases} 0, & \text{if } x \in J \\ s, & \text{if otherwise} \end{cases}, \text{where } t+s \le 1$$

Then $B \in \mathcal{Y}$ and A is properly contained in B. This contradicts the fact that $\mathcal{V}(A) \cap \mathcal{Y} = \{A\}$. This proves that A_* is a maximal ideal of M and so A is an IF maximal ideal of M.

Conversely, let $A \in \mathcal{Y}$ and A is an IF maximal ideal. Then the ideal $A_* = \{x \in M : \mu_A(x) = 1 \text{ and } \mu_A(x) = 0\}$ is maximal ideal of M. We claim that $\mathcal{V}(A) \cap \mathcal{Y} = \{A\}$. Clearly, $\{A\} \subseteq \mathcal{V}(A) \cap \mathcal{Y}$. Next

$$B \in \mathcal{V}(A) \cap \mathcal{Y} \Rightarrow A_* \subseteq B_* \Rightarrow A_* = B_*$$

222

since A_* is maximal ideal. Thus we have A = B, since $Img(A) = Img(B) = \{(1, 0), (t, s)\}$. Therefore, $\mathcal{V}(A) \cap \mathcal{Y} = \{A\}$. Consequently, $\{A\}$ is a closed subset of \mathcal{Y} .

We know that a topological space \mathcal{X} is Hausdorff (or T_2 space), if and only if $\forall, x \neq y \in \mathcal{X}$, \exists two disjoint open sets one containing x and another containing y. As a remarkable deviation from commutative algebra, we notice that for a Γ -ring M in which each prime ideal is maximal ideal, the space IFSpec(M) is not Hausdorff, but, it may, a portion of its subspaces are demonstrated to be Hausdorff.

Theorem 4.7. Let M be a Γ -ring whose each prime ideal is a maximal ideal. Then the space $\mathcal{X} = IFSpec(M)$ is not T_2 .

Proof. For the proof we show that \exists two distinct elements A, B of $\mathcal{X} = IFSpec(M)$ that cannot be separated by two disjoint basic open sets.

Consider a prime ideal J and two IF prime ideals A and B of M as follow

$$\mu_A(x) = \begin{cases} 1, & \text{if } x \in J \\ 0.1, & \text{if otherwise} \end{cases}; \quad \nu_A(x) = \begin{cases} 0, & \text{if } x \in J \\ 0.2, & \text{if otherwise} \end{cases};$$
$$\mu_B(x) = \begin{cases} 1, & \text{if } x \in J \\ 0.3, & \text{if otherwise} \end{cases}; \quad \nu_B(x) = \begin{cases} 0, & \text{if } x \in J \\ 0.4, & \text{if otherwise} \end{cases}$$

Consider $\mathcal{X}(x_{(\alpha,\beta)})$ and $\mathcal{X}(y_{(\alpha,\beta)})$ be two basic open sets in \mathcal{X} containing A and B respectively, where $x, y \in M$ and $\alpha, \beta \in (0,1]$ s.t. $\alpha + \beta \leq 1$. Then $x_{(\alpha,\beta)} \notin A$ and $y_{(\alpha,\beta)} \notin B$ and so $x \notin A_* = J$ and $y \notin B_* = J$. Since J is prime ideal in M, so $x\gamma y \notin J$, for every $\gamma \in \Gamma$. Then $x\gamma y$ is not nilpotent and so by Theorem (3.6) (i) and (ii) we have $\mathcal{X}(x_{(\alpha,\beta)}) \cap \mathcal{X}(y_{(\alpha,\beta)}) = X((x\gamma y)_{(\alpha,\beta)}) \neq \emptyset$. Hence \mathcal{X} is not T_2 .

Theorem 4.8. Let M be a Boolean Γ -ring with unity e. Let $t, s \in [0, 1)$ with $t+s \leq 1$ and suppose $\mathcal{Y} = \{P \in \mathcal{X} : Img(P) = \{(1,0), (t,s)\}\}, x, y \in M$, and $\gamma, \delta \in (0,1]$ so that $\gamma + \delta \leq 1$. Then: (i) The set $\mathcal{X}(x_{(\gamma,\delta)}) \cap \mathcal{Y}$ is a clopen set in \mathcal{Y} , provided $\gamma > t$ and $\delta < s$. (ii) $\mathcal{X}(x_{(\gamma,\delta)}) \cup \mathcal{X}(y_{(\gamma,\delta)}) = \mathcal{X}(z_{(\gamma,\delta)})$ for some $z \in M$. (iii) The space \mathcal{Y} is T_2 .

Proof. (i) Since $\mathcal{X}(x_{(\gamma,\delta)})$ is open set in \mathcal{X} , it follows that $\mathcal{X}(x_{(\gamma,\delta)}) \cap \mathcal{Y}$ is open set in \mathcal{Y} . We now show that $\mathcal{X}(x_{(\gamma,\delta)}) \cap \mathcal{Y} = \mathcal{V}((\mathbf{e} - x)_{(\gamma,\delta)}) \cap \mathcal{Y}$. [This would simply implies that $\mathcal{X}(x_{(\gamma,\delta)})$ is closed set in \mathcal{Y} .

If $A \in \mathcal{X}(x_{(\gamma,\delta)}) \cap \mathcal{Y}$ then $\mu_A(x) < \gamma, \nu_A(x) > \delta$, but $Img(A) = \{(1,0), (t,s)\}$ so that $\mu_A(x) = t, \nu_A(x) = s$. Hence $\gamma > t$ and $\delta < s$ and $x \notin A_*$. This implies that $\gamma > t$ and $\delta < s$ and $\mathbf{e} - x \in A_*$, since $x\Gamma(\mathbf{e} - x) = x\Gamma\mathbf{e} - x\Gamma x = x - x = 0 \in A_*$ and the ideal A_* is prime implies that $(\mathbf{e} - x) \in A_*$. As a result, $\mu_A(\mathbf{e} - x) = 1$ and $\nu_A(\mathbf{e} - x) = 0$ so that $(\mathbf{e} - x)_{(\gamma,\delta)} \subseteq A$ and thus $A \in \mathcal{V}((\mathbf{e} - x)_{(\gamma,\delta)}) \cap \mathcal{Y}$.

Conversely, let $A \in \mathcal{V}((\mathbf{e}-x)_{(\gamma,\delta)}) \cap \mathcal{Y}$ then $(\mathbf{e}-x)_{(\gamma,\delta)} \subseteq A$ and $Img(A) = \{(1,0),(t,s)\}$ which implies that $\gamma \leq \mu_A(\mathbf{e}-x)$ and $\delta \geq \nu_A(\mathbf{e}-x)$. Hence $t < \mu_A(\mathbf{e}-x)$ and $s > \mu_A(\mathbf{e}-x)$ and thus $\mu_A(\mathbf{e}-x) = 1$ and $\nu_A(\mathbf{e}-x) = 0$. It follows that $\mathbf{e}-x \in A_*$ and hence $x \in A_*$ so that $\mu_A(x) = t < \gamma$ and $\nu_A(x) = s > \delta$. This means that $x_{(\gamma,\delta)} \nsubseteq A$ and thus $A \in \mathcal{X}(x_{(\gamma,\delta)}) \cap \mathcal{Y}$. Hence $\mathcal{X}(x_{(\gamma,\delta)}) \cap \mathcal{Y} = \mathcal{V}((\mathbf{e}-x)_{(\gamma,\delta)}) \cap \mathcal{Y}$.

(ii) If $A \in \mathcal{X}(x_{(\gamma,\delta)}) \cup \mathcal{X}(y_{(\gamma,\delta)})$ then $x_{(\gamma,\delta)} \nsubseteq A$ or $y_{(\gamma,\delta)} \nsubseteq A$ (which mean that $\mu_A(x) < \gamma$ and $\nu_A(x) > \delta$ or $\mu_A(y) < \gamma$ and $\nu_A(y) > \delta$). This implies that $x \notin A_*$ or $y \notin A_*$ and thus

 $\mathbf{e} - x \notin A_*$ or $\mathbf{e} - y \notin A_*$. As a result, $(\mathbf{e} - x)\Gamma(\mathbf{e} - y) = \mathbf{e} - x - y + x\Gamma y \notin A_*$, so that $x + y - x\Gamma y \notin A_*$. Hence $A \in \mathcal{X}(z_{(\gamma, \delta)})$, where $z = x + y - x\Gamma y$.

(iii) Let $A, B \in \mathcal{X}, A \neq B$. Then A and B are IF prime ideals of M and $Img(A) = Img(B) = \{(1,0), (t,s)\}$. As we know that every prime ideal in a Boolean Γ -ring is maximal ideal. It follows that A_*, B_* are maximal ideals of M. So $A_* \notin B_*$, since $A \neq B$. Choose $x \in A_*$ and $x \notin B_*$. Then $\mathbf{e} - x \in B_*$ and $\mathbf{e} - x \notin A_*$. Now, $\mu_B(x) = \mu_A(\mathbf{e} - x) = t$ and $\nu_B(x) = \nu_A(\mathbf{e} - x) = s$ and $\mu_A(x) = 1 = \mu_B(\mathbf{e} - x)$ and $\nu_A(x) = 0 = \nu_B(\mathbf{e} - x)$. Let $\alpha \in (t, 1)$ and $\beta \in (0, s)$ such that $\alpha + \beta \leq 1$. Then $\mu_{x_{(\alpha,\beta)}}(x) = \alpha > t = \mu_B(x)$ and $\nu_{x_{(\alpha,\beta)}}(x) = \beta < s = \nu_B(x)$ so that $x_{(\alpha,\beta)} \notin B$. Hence $B \in \mathcal{X}(x_{(\alpha,\beta)})$. Also, $\mu_{(\mathbf{e}-x)_{(\alpha,\beta)}}(\mathbf{e} - x) = \alpha > t = \mu_A(\mathbf{e} - x)$ and $\nu_{(\mathbf{e}-x)_{(\alpha,\beta)}}(\mathbf{e} - x) = \beta < s = \nu_A(\mathbf{e} - x)$, so that $(\mathbf{e} - x)_{(\alpha,\beta)} \notin A$. Hence $A \in \mathcal{X}((\mathbf{e} - x)_{(\alpha,\beta)})$. Then, by Theorem (3.6)(i), we have $\mathcal{X}(x_{(\alpha,\beta)}) \cap \mathcal{X}((\mathbf{e} - x)_{(\alpha,\beta)}) = \mathcal{X}((x\Gamma(\mathbf{e} - x))_{(\alpha,\beta)}) = \mathcal{X}((0)_{(\alpha,\beta)}) = \emptyset$ [As M is Boolean Γ -ring]. Consequently, \mathcal{Y} is Hausdorff.

Theorem 4.9. If *M* is Boolean Γ -ring, $t, s \in [0, 1)$ with $t + s \leq 1$ and $\mathcal{Y} = \{P \in \mathcal{X} : Img(P) = \{(1, 0), (t, s)\}\}$, then the space \mathcal{Y} is compact, Hausdorff.

 \Box

Proof. Follows immediately from Proposition (3.3) and Theorem (4.8)(i),(iii).

5. Intuitionistic fuzzy prime radical and algebraic nature of intuitionistic fuzzy prime ideal under Γ -homomorphism

Definition 5.12. ([22]) Let M be a Γ -ring. For any IFI A of M. The IFS \sqrt{A} defined by

$$\mu_{\sqrt{A}}(x) = \vee \{\mu_A((x\gamma)^{n-1}x) : n \in \mathbf{N}\} \text{ and } \nu_{\sqrt{A}}(x) = \wedge \{\nu_A((x\gamma)^{n-1}) : n \in \mathbf{N})\}$$

is called the IF prime radical of *A*, where $(x\gamma)^{n-1}x = x$, for $n = 1, \gamma \in \Gamma$. Further, \sqrt{A} is the smallest IF semi-prime ideal of *M* containing *A*.

Proposition 5.7. ([22]) For every IFIs A and B of Γ -ring M, we have (i) $A \subseteq \sqrt{A}$; (ii) $A \subseteq B \Rightarrow \sqrt{A} \subseteq \sqrt{B}$; (iii) $\sqrt{\sqrt{A}} = \sqrt{A}$.

Proposition 5.8. ([22]) Let A be an IFPI of a Γ -ring M. Then $\sqrt{A} = A$ and hence every IFPI is IF semi prime ideal.

Theorem 5.10. Let A be any IFI of a Γ -ring M. Then (i) $\mathcal{V}(A) = \mathcal{V}(\sqrt{A})$ (ii) $\mathcal{X}(x_{(\alpha,\beta)}) = \mathcal{X}(y_{(\alpha,\beta)})$ if and only if $\sqrt{\langle x_{(\alpha,\beta)} \rangle} = \sqrt{\langle y_{(\alpha,\beta)} \rangle}$, where $\alpha, \beta \in (0,1]$ with $\alpha + \beta \leq 1$.

Proof. (i) Suppose $B \in \mathcal{V}(A)$ be any element. Then $A \subseteq B$, where B is an IFPI of M, then from Proposition (5.8) we have $\sqrt{B} = B$, therefore we have $A \subseteq \sqrt{B}$. Hence $B \in \mathcal{V}(\sqrt{A})$, so that $\mathcal{V}(A) \subseteq \mathcal{V}(\sqrt{A})$. The reverse inclusion is clear-cut.

(ii) If $\mathcal{X}(x_{(\alpha,\beta)}) = \mathcal{X}(y_{(\alpha,\beta)})$, then $\mathcal{V}(x_{(\alpha,\beta)}) = \mathcal{V}(y_{(\alpha,\beta)})$ which implies $\mathcal{V}(\langle x_{(\alpha,\beta)} \rangle) = \mathcal{V}(\langle y_{(\alpha,\beta)} \rangle)$. This mean $\cap \{B : B \in \mathcal{V}(\langle x_{(\alpha,\beta)} \rangle)\} = \cap \{B : B \in \mathcal{V}(\langle y_{(\alpha,\beta)} \rangle)\}$ and therefore, $\sqrt{\langle x_{(\alpha,\beta)} \rangle} = \sqrt{\langle y_{(\alpha,\beta)} \rangle}$.

Conversely, let $\sqrt{\langle x_{(\alpha,\beta)} \rangle} = \sqrt{\langle y_{(\alpha,\beta)} \rangle}$. Then

$$\begin{array}{lll} B \in \mathcal{V}(x_{(\alpha,\beta)}) & \Leftrightarrow & x_{(\alpha,\beta)} \subseteq B \\ & \Leftrightarrow & < x_{(\alpha,\beta)} > \subseteq B \\ & \Leftrightarrow & \sqrt{< x_{(\alpha,\beta)} >} \subseteq B \\ & \Leftrightarrow & \sqrt{< y_{(\alpha,\beta)} >} \subseteq B \\ & \Leftrightarrow & y_{(\alpha,\beta)} \subseteq B \text{ as before} \\ & \Leftrightarrow & B \in \mathcal{V}(y_{(\alpha,\beta)}). \end{array}$$

Hence $\mathcal{V}(x_{(\alpha,\beta)}) = \mathcal{V}(y_{(\alpha,\beta)})$ so that $\mathcal{X}(x_{(\alpha,\beta)}) = \mathcal{X}(y_{(\alpha,\beta)})$.

It is prompt from above Theorem (5.10) that the topology τ is exactly the collection of all open sets $\mathcal{X}(A)$, where *A* runs over IF semi-prime ideals of *M*.

Now we recall the following results for immediate use

Definition 5.13. ([18]) Let $f : M \to N$ be a function. An IFS A of M is called an f - invariant if $f(x) = f(y) \Rightarrow A(x) = A(y)$, i.e., $\mu_A(x) = \mu_A(y)$ and $\nu_A(x) = \nu_A(y)$, where $x, y \in M$.

If *A* be any *f* - invariant IFS of *M*, then $f^{-1}(f(A)) = A$.

Theorem 5.11. ([18]) Let $f : M \to N$ is a surjective Γ -homomorphism and A be any f-invariant IF prime ideal of M and B be any IF prime ideal of N. Then f(A) and $f^{-1}(B)$ are IF prime ideal of N and M respectively.

Theorem 5.12. Let $f: M \to N$ is a surjective Γ -homomorphism and $\mathcal{X} = IFSpec(M)$, $\mathcal{X}' = IFSpec(N)$, $\mathcal{X}^* = \{A \in \mathcal{X} : A \text{ is } f\text{-invariant }\}$, $\mathcal{X}'(B) = \mathcal{X}' \setminus \mathcal{V}(B)$, where B is any IFI of N, and h be a map from \mathcal{X}' to \mathcal{X}^* defined by $h(A') = f^{-1}(A')$, $A' \in \mathcal{X}'$. Then the following considerations are equivalent

(i) h is continuous

(ii) h is open, and

(iii) h is a homeomorphism of \mathcal{X}' onto \mathcal{X}^* in other words the map h is an embedding of \mathcal{X}' onto \mathcal{X}^* .

Proof. (i) Let $A' \in \mathcal{X}'$. It follows from Theorem(5.11) that $f^{-1}(A') \in \mathcal{X}$. Also, $f^{-1}(A')$ is f-invariant, since for all $a, b \in M$, if f(a) = f(b), then $\mu_{A'}(f(a)) = \mu_{A'}(f(b))$ and $\nu_{A'}(f(a)) = \nu_{A'}(f(b)) \Rightarrow \mu_{f^{-1}(A')}(a) = \mu_{f^{-1}(A')}(b)$ and $\nu_{f^{-1}(A')}(a) = \nu_{f^{-1}(A')}(b)$, i.e., $f^{-1}(A')(a) = f^{-1}(A')(b)$. Hence $h(A') = f^{-1}(A') \in \mathcal{X}^*$. Next we show that $h^{-1}(\mathcal{X}(x_{(\alpha,\beta)}) \cap \mathcal{X}^*) = \mathcal{X}'((f(x))_{(\alpha,\beta)})$. Since $A' \in h^{-1}(\mathcal{X}(x_{(\alpha,\beta)}) \Leftrightarrow h(A') \in \mathcal{X}(x_{(\alpha,\beta)})$ $\Leftrightarrow x_{(\alpha,\beta)} \nsubseteq h(A') = f^{-1}(A')$ $\Leftrightarrow (f(x))_{(\alpha,\beta)} = f(x_{(\alpha,\beta)}) \nsubseteq A'$, by Proposition (3.1) $\Leftrightarrow A' \in \mathcal{X}'((f(x))_{(\alpha,\beta)})$.

This shows that the pre-image of any basic open set in \mathcal{X}^* is open set in \mathcal{X}' . Hence *h* is continuous.

(ii) Let $\mathcal{X}'((f(x))_{(\alpha,\beta)}), x \in M$ and $\alpha, \beta \in (0,1]$ with $\alpha + \beta \leq 1$, be any basic open set in \mathcal{X}' . Let $B \in \mathcal{X}'((f(x))_{(\alpha,\beta)})$. Then $B = h(A') = f^{-1}(A')$ for some $A' \in \mathcal{X}'$ such that $(f(x))_{(\alpha,\beta)} \notin A'$. As in part (1) we can show that B is f - invariant. Next, $h(\mathcal{X}'((f(x))_{(\alpha,\beta)})) = \mathcal{X}(x_{(\alpha,\beta)}) \cap \mathcal{X}^*$, because $A \in h(X'((f(x))_{(\alpha,\beta)})) \Leftrightarrow h^{-1}(A) \in X'((f(x))_{(\alpha,\beta)})$ and A is f-invariant $\Leftrightarrow f(x_{(\alpha,\beta)}) = (f(x))_{(\alpha,\beta)} \nsubseteq h^{-1}(A) = f(A)$ $\Leftrightarrow x_{(\alpha,\beta)} \nsubseteq f^{-1}(f(A)) = A$, since A is f-invariant $\Leftrightarrow A \in \mathcal{X}(x_{(\alpha,\beta)}) \cap \mathcal{X}^*$.

Thus the direct image of each basic open set in \mathcal{X}' is open in \mathcal{X}^* and so *h* is open.

(iii) In the light of part (i) and part (ii), it is enough to prove that h is one-one and onto. Let $A', B' \in \mathcal{X}'$. Then $h(A') = h(B') \Rightarrow f^{-1}(A') = f^{-1}(B') \Rightarrow f(f^{-1}(A')) = f(f^{-1}(B'))$. As f is onto, therefore, we get A' = B'. Thus f is one-one. Finally, let $A \in \mathcal{X}^*$. Then A is an f-invariant IF prime ideal of M and Therefore by Theorem (5.11), f(A) is an IF prime ideal of N. Further, $h(f(A)) = f^{-1}(f(A)) = A$. Since A is f-invariant. Therefore h is onto.

6. IRREDUCIBILITY AND CONNECTEDNESS OF IF SPEC(M)

Recollect that a space is an irreducible if and only if the intersection of any two nonempty basic open sets is non-empty. Also it is disconnected if and only if it can be written as the union of two non-empty disjoint closed subsets.

Definition 6.14. The intersection of all IF prime ideals of *M* is called the IF nil radical of Γ -ring *M* and is written as IFnil(M).

Theorem 6.13. The space \mathcal{X} is irreducible if and only if $IFnil(M) \in \mathcal{X}$.

Proof. Let \mathcal{X} be irreducible and let \mathcal{N} be the nil radical of Γ -ring M. Then

$$\mu_{IFnil(M)}(x) = \begin{cases} 1, & \text{if } x \in \mathcal{N} \\ 0, & \text{if } M \setminus \mathcal{N} \end{cases}; \quad \nu_{IFnil(M)}(x) = \begin{cases} 0, & \text{if } x \in \mathcal{N} \\ 1, & \text{if } M \setminus \mathcal{N} \end{cases}$$

Next, let $x, y \in M$ and let $\alpha, \beta \in (0, 1]$ with $\alpha + \beta \leq 1$. Then $x\gamma y \in \mathcal{N} \Rightarrow x\gamma y$ is nilpotent and thus $\mathcal{X}((x\gamma y)_{(\alpha,\beta)}) = \emptyset$ by Theorem (3.6)(ii). Therefore, $\mathcal{X}(x_{(\alpha,\beta)}) \cap \mathcal{X}(y_{(\alpha,\beta)}) = \emptyset$, since \mathcal{X} is irreducible. Hence either x or y is nilpotent, and thus $x \in \mathcal{N}$ or $y \in \mathcal{N}$. Consequently, \mathcal{N} is prime ideal of M, whence it follows from Theorem (2.4) that $IFnil(M) \in \mathcal{X}$.

Conversely, assume that $IFnil(M) \in \mathcal{X}$. Then \mathcal{N} is prime ideal of M. Let $x, y \in M$ and let $\alpha, \beta \in (0, 1]$ such that $\alpha + \beta \leq 1$. Then $\mathcal{X}(x_{(\alpha,\beta)}) \cap \mathcal{X}(y_{(\alpha,\beta)}) = \emptyset$ implies that $\mathcal{X}((x\Gamma y)_{(\alpha,\beta)}) = \emptyset$, by Theorem (3.6)(i), and thus $x\gamma y$ is nilpotent for every $\gamma \in \Gamma$, by Theorem (3.5)(ii). Then $x\gamma y \in \mathcal{N}$ and so $x \in \mathcal{N}$ or $y \in \mathcal{N}$, which means x is nilpotent or y is nilpotent. Hence $\mathcal{X}(x_{(\alpha,\beta)}) = \emptyset$ or $\mathcal{X}(y_{(\alpha,\beta)}) = \emptyset$, by Theorem (3.6)(ii). This shows that the intersection of any two non-empty basic open sets is non-empty. Hence, \mathcal{X} is irreducible.

Theorem 6.14. *The space* \mathcal{X} *is disconnected if and only if* M *has a non-trivial idempotent element. Proof.* Let \mathcal{X} be disconnected. Then there exist IFIs A and B of M such that $\mathcal{X} = \mathcal{V}(A) \cup \mathcal{V}(B), \mathcal{V}(A), \mathcal{V}(B) \neq \emptyset, \mathcal{V}(A) \cap \mathcal{V}(B) = \emptyset.$

Now, $\mathcal{V}(A) \cap \mathcal{V}(B) = \emptyset$ implies $\mathcal{V}(A \oplus B) = \emptyset$ so that $\mu_{A \oplus B}(x) = 1$ and $\nu_{A \oplus B}(x) = 0$; for all $x \in M$. So, $Sup_{\mathbf{e}=m+n}\{max\{\mu_A(m), \mu_B(n)\}\} = 1$ and $Inf_{\mathbf{e}=m+n}\{min\{\nu_A(m), \nu_B(n)\}\} = 0$, where \mathbf{e} is the unity of $M \Rightarrow \mu_A(m) = \mu_B(n) = 1$ and $\nu_A(m) = \nu_B(n) = 0$, for all $m, n \in M$ such that $\mathbf{e} = m + n$. Let $I = A_*$ and $J = B_*$. Let K be the prime ideal of M and χ_K be its intuitionistic fuzzy characteristic function. Then $\chi_K \in \mathcal{X}$. Since

 $\mathcal{X} = \mathcal{V}(A) \cup \mathcal{V}(B) = \mathcal{V}(A \cap B)$, it follows that $A \cap B \subseteq \chi_K$.

Next, if $x \in I \cap J$, then $\mu_{A \cap B}(x) = 1$ and $\nu_{A \cap B}(x) = 0 \Rightarrow \mu_{\chi_K}(x) = 1$ and $\nu_{\chi_K}(x) = 0$ and then $x \in K$. Thus $x \in \cap \{K : K \text{ is a prime ideal of } M\}$. This implies that x is a nilpotent element. This shows that every element of $I \cap J$ is nilpotent.

Clearly, $M/(I \cap J) = I/(I \cap J) \oplus J/(I \cap J)$, Therefore, $\mathbf{e} + (I \cap J) = i + (I \cap J) + j + (I \cap J)$, for some $i \in I, j \in J$. So that $i\gamma(\mathbf{e} - i) \in (I \cap J)$ for every $\gamma \in \Gamma$ and hence $i\gamma(\mathbf{e} - i)$ is nilpotent. Thus $(i\gamma(\mathbf{e} - i)\gamma)^m i\gamma(\mathbf{e} - i) = 0$ for some $m \in Z^+$. Consequently, $(i\gamma(\mathbf{e} - i)\gamma)^m = (i\gamma(\mathbf{e} - i)\gamma)^{m+1}Q((i\gamma(\mathbf{e} - i)))$, for some polynomial $Q(i\gamma(\mathbf{e} - i))$ in $(i\gamma(\mathbf{e} - i))$. Let $x = (i\gamma(\mathbf{e} - i)\gamma)^m Q(i\gamma(\mathbf{e} - i))$. It is now simple matter to verify that $x \neq 0, x \neq \mathbf{e}$, and $x\gamma x = x$.

Conversely, for any non-trivial idempotent element x of M, it can be easily verified that $\mathcal{X} = \mathcal{V}(x_{(\alpha,\beta)}) \cup \mathcal{V}((\mathbf{e} - x)_{(\alpha,\beta)}), \mathcal{V}(x_{(\alpha,\beta)}) \neq \emptyset, \mathcal{V}((\mathbf{e} - x)_{(\alpha,\beta)}) \neq \emptyset,$ $\mathcal{V}(x_{(\alpha,\beta)}) \cap \mathcal{V}((\mathbf{e} - x)_{(\alpha,\beta)}) = \emptyset$, where $\alpha, \beta \in (0, 1]$ such that $\alpha + \beta \leq 1$. This establishes that \mathcal{X} is disconnected.

Corollary 6.1. The space \mathcal{X} is connected if and only if 0_M and \mathbf{e} are the only idempotent in M.

7. CONCLUSIONS

In this paper we have constituted a topology on $\mathcal{X} = IFSpec(M)$, the collection of all intuitionistic fuzzy prime ideals of a commutative Γ -ring M with unity, which is called Zariski topology. By using the bases for the Zariski topology, it is shown that the subspace \mathcal{Y} of \mathcal{X} is compact. Further the space \mathcal{X} is always T_0 but not T_1 and hence not T_2 , however when M is a Boolean Γ -ring, then we have constructed a subspace which is T_2 space. We have also shown that subspace \mathcal{Y} is T_1 if and only if every singleton element of \mathcal{Y} is IF maximal ideal of M. Further for a homomorphism f from a Γ -ring M onto a Γ -ring N, it is shown that $\mathcal{X}' = IFSpec(N)$ is homeomorphic to the subset $\mathcal{X}^* = \{A \in \mathcal{X} : A \text{ is } f\text{- invariant } \}$ consisting of $f\text{-invariant elements of } \mathcal{X} = IFSpec(M)$. Also, the space \mathcal{X} is irreducible if and only if the intersection of all the elements of \mathcal{X} is also an element of \mathcal{X} . However the space \mathcal{X} is connected if and only if 0_M and \mathbf{e} are the only idempotent elements in M.

Acknowledgments. The second author would like to thanks Lovely Professional University, Phagwara for providing the opportunity to do research work.

REFERENCES

- Aggarwal, A. K.; Mishra, P. K.; Verma, S.; Sexena, R. A study of some theorems on fuzzy prime ideals of Γ-rings. SSRN-Elsevier 2019, 809–814.
- [2] Atanassov, K. T. Intuitionistic fuzzy sets. In: Squrev v(ed) vii ITKR's session, Central Science and Technology Library of the Bulgarian Academy of Sci, Sofia 1983.
- [3] Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 20 (1986), 87-96.
- [4] Barnes, W. E. On the Γ-rings of Nobusawa. *Pacific J. Math.* **18** (1966), 411-422.
- [5] Choomee K. The Zariski Topology on the Prime Spectrum of a Commutative Ring. A thesis submitted to California State University, Northridge, for the award of the degree of Master of Science in Mathematics. 2018 available at https://scholarworks.csun.edu/handle/10211.3/207612
- [6] Coppage, W. E.; and Luh, J. Radicals of Γ-rings. J. Math. Soc. Japan. 23 (1971), 40-52.
- [7] Dukel, K. C.; and Ceven, Y. Additivity of multiplicative isomorphism in gamma rings. Palestine Journal of Mathematics. 6 (2017), no. 2, 308-313.
- [8] Dutta, T. K.; and Chanda, T. Fuzzy Prime Ideals in Γ-rings. Bull Malays Math. Soc. 30 (2007), no. 1, 65-73.
- [9] Ersoy, B. A. Fuzzy semiprime ideals in Γ-rings, *Int. J. Physical Sciences.* **5** (2010), no. 4, 308-312.

- [10] Fernandez, J. S. The prime spectrum of a ring: A Survey. M.Phil., Thesis, Florida Atlantic University, Florida. 1991.
- [11] Goswami, S. M.; Mukhopadhyay, A.; Sardar, S. K. Fuzzy Structure Space of Semirings and Γ-Semirings. Southeast Asian Bulletin of Mathematics. 43 (2019), 333–344.
- [12] Jun, Y. B. On fuzzy prime ideals of Γ-ring. Soochow J. Math. 21 (1995), no. 1, 41-48.
- [13] Kim, K. H.; Jun, Y. B.; and Ozturk, M. A. Intuitionistic fuzzy Γ-ideals of Γ-rings, Scienctiae Mathematicae Japonicae Online. 4 (2001), 431–440.
- [14] Nobusawa, N. On a generalization of the ring theory. Osaka Journal of Mathematics.1 (1964), no. 1, 81-89.
- [15] Palaniappan, N.; Veerappan, P. S.; and Ramachandran, M. (2010) Characterization of Intuitionistic fuzzy ideals of Γ-rings. *Applied Mathematical Sciences*. 4 (2010), no. 23, 1107–1117.
- [16] Palaniappan, N.; Veerappan, P. S.; and Ramachandran, M. (2011) Some properties of Intuitionistic fuzzy ideals of Γ-rings. *Thai Journal of Mathematics*. 9 (2011), no. 2, 305-318.
- [17] Palaniappan, N.; Ramachandran, M. A Note on characterization of intuitionistic fuzzy ideals in Γ-rings. International Mathematical Forum. 5 (2010), no. 52, 2553–2562.
- [18] Palaniappan, N.; Ramachandran, M. Intuitionistic fuzzy prime ideals in Γ-rings. International Journal of Fuzzy Mathematics and Systems. 1 (2011), no. 2, 141-153.
- [19] Paul, R. On various types of ideals of Γ-rings and the corresponding operator rings. Int. J. of Engineering Research and Applications. 5 (2015), no. 8, 95-98.
- [20] Sharma, P. K.; Kaur, G. Intuitionistic fuzzy prime spectrum of a ring. CiiT International Journal of Fuzzy System. 9 (2017), no. 8, 167-175.
- [21] Sharma, P. K.; Lata, H. Intuitionistic fuzzy characteristic ideals of a Γ-ring. South East Asian Journal of Mathematics and Mathematical Sciences. 18 (2022), to appear.
- [22] Sharma, P. K.; Lata, H.; and Bharadwaj, N. (2022) Intuitionistic fuzzy prime radical and intuitionistic fuzzy primary ideal of a Γ-ring. *Creat. Math. Inform.* (2022), (Accepted).
- [23] Sharma, P. K.; Lata, H.; and Bhardwaj, N. (2021) Extensions of intuitionistic fuzzy ideal of Γ-rings. presented in the international conference on Recent Trends in Mathematics, Organized by Himachal Mathematics Society, from September 06-07, 2021, at H. P. University, Shimla.
- [24] Warsi, Z. K. On decomposition of primary ideals of Γ-rings. Department of Mathematics, University of Gorkhpur. 9 (1978), no. 9, 912–917.
- [25] Zadeh, L. A. Fuzzy Sets. Inform. And Control. 8 (1965), 338-353.

¹ P. G. DEPARTMENT OF MATHEMATICS, D. A. V. COLLEGE, JALANDHAR, PUNJAB, INDIA. *Email address*: pksharma@davjalandhar.com

² RESEARCH SCHOLAR, LOVELY PROFESSIONAL UNIVERSITY, PHAGWARA, PUNJAB, INDIA. *Email address*: goyalhema1986@gmail.com

³ DEPARTMENT OF MATHEMATICS, LOVELY PROFESSIONAL UNIVERSITY, PHAGWARA, PUNJAB, INDIA. *Email address*: nitin.15903@lpu.co.in