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On Intuitionistic Fuzzy Structure Space On Γ-Ring

P. K. SHARMA, HEM LATA and NITIN BHARADWAJ

ABSTRACT. In this research article, we investigate and study the intuitionistic fuzzy structure space of a
Γ-ring M set up by the class of intuitionistic fuzzy prime ideals of M called the intuitionistic fuzzy prime
spectrum of Γ-ring. Apart from studying basic properties of this structure space, we explore separation axioms,
compactness, irreducibility and connectedness in this structure space.

1. INTRODUCTION

Algebraic systems found to take a noteworthy role in mathematics with ample appli-
cations in numerous directions such as theoretical physics, computer sciences, control
engineering, information sciences, coding theory etc. The prime spectrum of a ring with
unity is a space formed by introducing Zariski topology on the set of all prime ideals in a
commutative ring with unity which plays a crucial role in commutative algebra (for detail
see [5, 10]).

It is well known that the concept of a Γ-ring was intially introduced and investigated
by Nobusawa [14]. Barnes [4] weakened slightly the conditions in the definition of the
Γ-ring in the sense of Nobusawa. Since then, many researchers have investigated various
properties of this Γ-ring. Any ring can be regarded as a Γ-ring by suitably choosing Γ.
Many primary results in ring theory have been broaden to Γ-rings. R. Paul [19] studied
various types of ideals in Γ-ring and the corresponding operator rings.

W. E. Coppage and J. Luh [6] studied radical of Γ-ring. Y. B. Jun [12], elucidate fuzzy
prime ideal of a Γ-ring and derived a number of characterization for a fuzzy ideal to be a
fuzzy prime ideal. T. K. Dutta and T. Chanda [8] proved the same result in a different way
and also proved handful characterization of fuzzy prime ideals. B. A. Ersoy [9] defined
fuzzy semi-prime ideal and obtained some results. A. K. Aggarwal et al in [1] studied
some theorems on fuzzy prime ideals of Γ-ring.

The conception of intuitionistic fuzzy set (IFS) was first launched by Atanassaov [2, 3],
as an extension to the notion of fuzzy set (FS) given by Zadeh [25]. Kim et al in [13]
examined the intuitionistic fuzzification of ideal of Γ-ring which were further studied by
Palaniappan at al in [15, 16, 17]. The notion of IF prime ideal and IF semi-prime were
studied by Palaniappan and Ramachandran in [18]. Authors in [21] studied the notion of
IF characteristic ideals of a Γ-ring and obtained a one to one correlation between the set
of all IF characteristic ideals of Γ-ring and that of its operator ring. Further in [22] they
introduced the notion of IF prime radical and IF primary ideal of a of Γ-ring. An extension
of IF ideal of Γ-ring was introduced in [23] which is used to characterise IF prime and IF
semi-prime ideals. In [11] S. M. Goswami et al studied structure space of semi-ring and
Γ-Semirings.

In 2017, P. K. Sharma et al. in [20] introduced the notion of IF prime spectrum of a
commutative ring with identity and studied it. Since Γ-ring is a generalization of ring,
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it is natural to investigate the ring theoretic analogues in these general settings. Keeping
this view in mind we introduce in this paper a topology on the set of all IF prime ideals
of a commutative Γ-ring M with identity and denote the resulting structure space by
IFSpec(M). We study separation axioms, compactness, irreducibility and connectedness
in this structure space.

2. PRELIMINARIES

In this section we recollect a few definitions and results, which are necessary for the
development of the article,

Definition 2.1. ([14, 4]) If (M,+) and (Γ,+) are additive Abelian groups. Then M is
called a Γ-ring ( in the sense of Barnes [2]) if there exist mapping M × Γ × M → M ,
(m1, α,m2) 7→ m1αm2, m1,m2 ∈ M,γ ∈ Γ holding the following circumstances:
(1) m1αm2 ∈ M .
(2) (m1+m2)αm3 = m1αm3+m2αm3, m1(α+β)m2 = m1αm2+m1βm2, m1α(m2+m3) =
m1αm2 +m1αm3.
(3) (m1αm2)βm3 = m1α(m2βm3). for all m1,m2,m3 ∈ M , and γ ∈ Γ.

A non-void subset N of M is considered as left (right) ideal of M provided N is an
additive subgroup of M and MΓN ⊆ N(NΓM ⊆ N). Also, N is called an ideal of
M if N is both left and right ideal. A mapping f : M → M

′
of Γ-rings is called a Γ-

homomorphism [4] if f(m1 + m2) = f(m1) + f(m2) and f(m1αm2) = f(m1)αf(m2)

for all m1,m2 ∈ M,α ∈ Γ. When M
′
= M , then a Γ-homomorphism is called a Γ-

endomorphism, further a one-one and onto Γ-endomorphism is called a Γ-automorphism.

Definition 2.2. ([6]) A non-zero element m of a commutative Γ-ring M is called a unit
element if for every pair of non-zero elements γ1, γ2 ∈ Γ there exist an element m

′
in M

such that mγ1m
′
γ2x = x for all x ∈ M .

Definition 2.3. ([6, 24]) An element m of a Γ-ring M is called nilpotent if for any γ ∈ Γ
there exists a positive integer n depending on γ such that (mγ)nm = (mγ)(mγ)...(mγ)m =
0M . A subset S of M is said to be nil if each element of S is nilpotent. The nil radical of M
is defined as the sum of all nil ideals of M .

In a Γ-ring the prime radical is a subset of the nil radical.

Definition 2.4. Let M be a Γ-ring and m ∈ M , then the principal ideal generated by m,
denoted by < m > is the intersection of all ideals containing m and is the set of all finite
sums of the elements of the form nm + aγ1m + mγ2b + cγ3mγ4d, where n is an integer,
a, b, c, d ∈ M , γ1, γ2, γ3, γ4 ∈ Γ.

Definition 2.5. ([7]) A Γ-ring M is called a Boolean Γ-ring if ∀m ∈ M,mγm = m, for all
γ ∈ Γ.

Theorem 2.1. ([7]) Let M be a Boolean Γ-ring with unity e. Then
(i) m = −m,∀m ∈ M ;
(ii) m1γm2 = m2γm1,∀m1,m2 ∈ M,γ ∈ Γ, i.e., M is commutative. Γ-ring.
(iii) m is idempotent element in M if and only if e −m is idempotent element in M .

Definition 2.6. ([10]) A topological space (X,T ) is called irreducible if every pair of non-
empty open subsets of the space X has a non-empty intersection.

Definition 2.7. ([2, 3]) An IFS A of a non-void set X is described by the formation A = {<
x, µA(x), νA(x) >: x ∈ X}, where µA, νA : X → [0, 1] denote the degree of membership
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(namely µA(x)) and the degree of non-membership (namely νA(x)) of each element x ∈ X
to A respectively and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X.

Remark 2.1. ([2, 3])
(i) When µA(x)+νA(x) = 1, i.e., νA(x) = 1−µA(x) = µAc(x). Then A is called a fuzzy set.
(ii) An IFS A = {< x, µA(x), νA(x) >: x ∈ X} is shortly denoted by A(x) = (µA(x), νA(x)),
for all x ∈ X . We will write IFS(X), the set of all IFSs of X .

If A,B ∈ IFS(X), then A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x),∀x ∈ X
and A = B ⇔ A ⊆ B and B ⊆ A. For any subset Y of X , the IF characteristic function χY

is an IFS of X , defined as χY (x) = (1, 0),∀x ∈ Y and χY (x) = (0, 1),∀x ∈ X\Y . Let α, β ∈
[0, 1] with α + β ≤ 1. Then the crisp set A(α,β) = {x ∈ X : µA(x) ≥ α and νA(x) ≤ β} is
called the (α, β)-level cut subset of A. Also the IFS x(α,β) of X defined as x(α,β)(y) = (α, β),
if y = x, otherwise (0, 1) is called the intuitionistic fuzzy point (IFP) in X with support
x. By x(α,β) ∈ A we mean µA(x) ≥ α and νA(x) ≤ β. Further if f : X → Y is a
mapping and A,B be respectively IFS of X and Y . Then the image f(A) is an IFS of Y is
defined as µf(A)(y) = Sup{µA(x) : f(x) = y}, νf(A)(y) = Inf{νA(x) : f(x) = y}, for all
y ∈ Y and the inverse image f−1(B) is an IFS of X is defined as µf−1(B)(x) = µB(f(x)),
νf−1(B)(x) = νB(f(x)), for all x ∈ X , i.e., f−1(B)(x) = B(f(x)), for all x ∈ X . Also the
IFS A of X is said to be f -invariant if for any x, y ∈ X , whenever f(x) = f(y) implies
A(x) = A(y).

Definition 2.8. ([15]) Let A and B be two IFSs of a Γ-ring M and γ ∈ Γ. Then the product
AΓB and the composition A ◦B of A and B are defined by

AΓB(m) =

{
(∨m=m1γm2(µA(m1) ∧ µB(m2)),∧m=m1γm2(νA(m1) ∨ νB(m2)), if m = m1γm2

(0, 1), otherwise

and

A◦B(m) =

{
(∨m=

∑n
i=1 yiγzi(µA(yi) ∧ µB(zi)),∧m=

∑n
i=1 yiγzi(νA(yi) ∨ νB(zi))), if m =

∑n
i=1 yiγzi

(0, 1), otherwise

Remark 2.2. ([15]) If A and B be two IFSs of a Γ-ring M , then AΓB ⊆ A ◦B ⊆ A ∩B

Definition 2.9. ([15]) Let A be an IFS of a Γ-ring M . Then A is called an intuitionistic
fuzzy ideal (IFI) of M if for all m1,m2 ∈ M,γ ∈ Γ, the following circumstances holds:
(i) µA(m1 −m2) ≥ µA(m1) ∧ µA(m2);
(ii) µA(m1αm2) ≥ µA(m1) ∨ µA(m2);
(iii) νA(m1 −m2) ≤ νA(m1) ∨ νA(m2);
(iv)νA(m1αm2) ≤ νA(m1) ∧ νA(m2).

The IFS 0̃ and 1̃ defined by 0̃(m) = (0, 1) and 1̃(m) = (1, 0),∀m ∈ M are IFIs of M .
These are called trivial IFIs of M . Also if A is an IFI of M , then µA(0M ) ≥ µA(m) and
νA(0M ) ≤ νA(m),∀m ∈ M (See [12]).

Remark 2.3. ([15, 17, 18]) If A,B and C be IFIs of a Γ-ring M , then AΓB, A ◦B, A ∩B are
also IFI of M . Further, AΓB ⊆ C if and only if A ◦B ⊆ C.

Definition 2.10. ([18]) Let P be an IFI of a Γ-ring M . Then P is said to be IF prime (IF
semi-prime) if P is non-constant and for any IFIs A,B of M , AΓB ⊆ P implies A ⊆ P or
B ⊆ P ( for any IFI A of M such that AΓA ⊆ P implies A ⊆ P ).

Remark 2.4. ([18]) Let x(p,q), y(t,s) ∈ IFP (M). Then x(p,q)Γy(t,s) = (xΓy)(p∧t,q∨s)

Theorem 2.2. ([18]) Let M be a commutative Γ-ring and A be an IFI of M . Then following are
equivalent
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(i) x(p,q)Γy(t,s) ⊆ A ⇒ x(p,q) ⊆ A or y(t,s) ⊆ A, where x(p,q), y(t,s) ∈ IFP (M).
(ii) A is an IF prime ideal of M .

Theorem 2.3. ([18]) Let A be an IFI of Γ-ring M . Then each (p, q)-level cut set A(p,q) is either
empty or an ideal of M , where p ≤ µA(0M ) and q ≥ νA(0M ). In particular A(1,0) which is
denoted by A∗, i.e., the set A∗ = {x ∈ M : µA(x) = µA(0M ) and νA(x) = νA(0M )} is ideal of
M . If A ∈ IFPI(M), then A∗ is a prime ideal of M .

Theorem 2.4. ([18]) If P is an IF prime ideal of a Γ-ring M , then the following conditions hold:
(i) P (0M ) = (1, 0),
(ii) P∗ is a prime ideal of M ,
(iii) Img(P ) = {(1, 0), (t, s)}, where t, s ∈ [0, 1) such that t+ s ≤ 1.

Definition 2.11. ([20]) A non-constant IFI A of a Γ-ring M is called an IF maximal ideal if,
Img(A) = {(1, 0), (t, s)}, where t, s ∈ [0, 1) such that t + s ≤ 1 and A∗ is a maximal ideal
of M .

Clearly every IF maximal ideal A of a Γ-ring M is an IF prime ideal of M .

3. INTUITIONISTIC FUZZY STRUCTURE SPACE OF Γ-RING

In this section, we introduce a topological structure on the collection X of all IF prime
ideals of Γ-ring M and investigate some of its properties.

Remark 3.5.
(i) X = {P : P is an IF prime ideal of Γ-ring M}
(ii) V(A) = {P ∈ X : A ⊆ P}, where A is any IFS of M .
(iii) X (A) = X \ V(A), the complement of V(A) in X , i.e., = {P ∈ X : A ⫅̸ P}
(iv) For any IFS B of M , < B > denote the IFI generated by B.

Theorem 3.5. Let M be a Γ-ring and τ = {X (A) : A is an IFPI of M} = {P ∈ X : A ⊈ P}.
Then τ is a topology on X and the ordered pair (X , τ) is a topological space.

Proof. Consider the trivial IFIs A = 0̃ and B = 1̃ of M . Then V(A) = V(0̃) = X and
V(B) = V(1̃) = ∅, so as X (0̃) = ∅ and X (1̃) = X implies ∅,X ∈ τ .
Next, let A1 and A2 be any two IFIs of M . Then
B ∈ V(A1) ∪ V(A2) ⇒ A1 ⊆ B or A2 ⊆ B ⇒ A1 ∩ A2 ⊆ B ⇒ B ∈ V(A1 ∩ A2) and
B ∈ V(A1 ∩A2) ⇒ A1 ∩A2 ⊆ B ⇒ A1ΓA2 ⊆ B [ As A1ΓA2 ⊆ A1 ∩A2 ]
⇒ A1 ⊆ B or A2 ⊆ B [ As B is intuitionistic fuzzy prime ideal of M ]
⇒ B ∈ V(A1) or B ∈ V(A2) ⇒ B ∈ V(A1) ∪ V(A2).
Hence V(A1) ∪ V(A2) = V(A1 ∩ A2) ⇒ X \ (V(A1) ∪ V(A2)) = X \ V(A1 ∩ A2) ⇒ (X \
V(A1)) ∩ (X \ V(A2)) = X \ V(A1 ∩A2), i.e., X (A1) ∩ X (A2) = X (A1 ∩A2).
From this we conclude that τ is closed under finite intersections.
Now, suppose that {Ai : i ∈ Λ} be any family of IFIs of M . It can be confirmed that
∩{V(Ai) : i ∈ Λ} = V(< ∪{Ai : i ∈ Λ} >). In another way,
{X (Ai) : i ∈ Λ} = X (< ∪{Ai : i ∈ Λ} >). Hence τ is closed under arbitrary unions.
Hence, τ defines a topology on X . □

Remark 3.6. The topological space (X, τ) defined in Theorem (3.5) is assigned as the IF
prime spectrum of M and is denoted by IFSpec(M) or , for comfort, we denote it by X
only.

Example 3.1. (1) Consider M = Γ = Z, the ring of integers. Then M is a Γ-ring. Suppose that
p ∈ Z is a prime integer. Then for every t, s ∈ [0, 1) such that t + s ≤ 1, define Pt,s ∈ IFS(M)
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as

µPt,s(x) =

{
1, if x ∈< p >

t, if otherwise
; νPt,s(x) =

{
0, if x ∈< p >

s, otherwise.

for all x ∈ M . Then by Theorem (2.4), Ps,t is an intuitionistic fuzzy prime ideal of M .

Thus, IFSpec(M) = {Pt,s, where t, s ∈ [0, 1) such that t+ s ≤ 1 and p is prime element of Z}.

(2) Consider M = Γ = Z2, where Z2 = {0̄, 1̄} be a boolean ring. Then M is a Γ-ring and for
every t, s ∈ [0, 1) such that t+ s ≤ 1, define Pt,s ∈ IFS(M) as

µPt,s(x) =

{
1, if x = 0̄

t, if x = 1̄
; νPt,s(x) =

{
0, if x = 0̄

s, if x = 1̄.

for all x ∈ M . Then by Theorem (2.4), Pt,s is an intuitionistic fuzzy prime ideal of M .

Thus, IFSpec(M) = {Pt,s, where t, s ∈ [0, 1) such that t+ s ≤ 1}.

Proposition 3.1. Let M,N be Γ-rings. If f : M → N is a surjective homomorphism, then
∀x ∈ M,α, β ∈ (0, 1] such that α+ β ≤ 1, we have

f(x(α,β)) = (f(x))(α,β)

Proof. Let y ∈ N be any element, then f(x(α,β))(y) = (µf(x(α,β))(y), νf(x(α,β))(y)), where

µf(x(α,β))(y) = Sup{µx(α,β)
(p) : f(p) = y} =

{
α, if p = x (i.e., y = f(x));
0, otherwise. =µ(f(x))(α,β)

(y)

and

νf(x(α,β))(y) = Inf{νx(α,β)
(p) : f(p) = y} =

{
β, if p = x (i.e., y = f(x));
1, otherwise. =ν(f(x))(α,β)

(y)

Hence f(x(α,β)) = (f(x))(α,β). □

Recollect that a topological space Y is compact if and only if every covering of Y by
basic open sets is reducible to a finite sub covering of Y .

Theorem 3.6. Let M be a Γ-ring and x, y ∈ M and α, β ∈ (0, 1] with α + β ≤ 1. Then the
following statements are true
(i) X (x(α,β)) ∩ X (y(α,β)) = X ((xγy)(α,β)), for all γ ∈ Γ.
(ii) X (x(α,β)) = ∅ if and only if x is nilpotent.
(iii) X (x(α,β)) = X if x is a unit in M .

Proof. (i) Let x, y ∈ M,γ ∈ Γ and α, β ∈ (0, 1] with α + β ≤ 1. Let P ∈ X . Then
µP (0M ) = 1, νP (0M ) = 0, Img(P ) = {(1, 0), (t, s)}, where t, s ∈ [0, 1) such that t + s ≤ 1,
P∗ is a prime ideal of M ( by Theorem (2.4)).
Suppose P ∈ X (x(α,β)) ∩ X (y(α,β)), then P ∈ X (x(α,β)) and P ∈ X (y(α,β))
⇔ x(α,β) ⊈ P , y(α,β) ⊈ P ⇔ µP (x) < α, νP (x) > β and µP (y) < α, νP (y) > β
⇔ α = µx(α,β)

(x) > µP (x), β = νx(α,β)
(x) < νP (x) and α = µy(α,β)

(y) > µP (y), β =

νy(α,β)
(y) < νP (y)

⇔ x, y /∈ P∗, for if x, y ∈ P∗, then α > µP (x) = µP (y) = 1 and β < νP (x) = νP (y) = 0
⇔ xγy /∈ P∗, for all γ ∈ Γ, as P∗ is a prime ideal of M .
⇔ α > µP (xγy) and β < νP (xγy), since Img(P ) = {(1, 0), (t, s)}, t, s ∈ [0, 1) such that
t+ s ≤ 1
⇔ (xγy)(α,β) ⊈ P ⇔ P ∈ X ((xγy)(α,β)).
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This proves that X (x(α,β)) ∩ X (y(α,β)) = X ((xγy)(α,β)), for all γ ∈ Γ.

(ii) Suppose J be any prime ideal of M and χJ be the intuitionistic fuzzy characteristic
function of J . Then from Theorem (2.4) we have χJ ∈ X . Further, if X (x(α,β)) = ∅ then
V(x(α,β)) = X that implies x(α,β) ⊆ χJ and therefore, µχJ

(x) ≥ α > 0 and νχJ
(x) ≤ β < 1

so that µχJ
(x) = 1 and νχJ

(x) = 0 and so x ∈ J . Thus x ∈ ∩{J : J is a prime ideal of M }.
As the prime radical is subset of the nil radical so x is nilpotent.

Conversely, assume that x is nilpotent. Then for every γ ∈ Γ,∃ n ∈ N depending on γ
so that (xγ)nx = 0M . Let P ∈ X be any element. Then µP ((xγ)

nx) = µP (0M ) = 1 and
νP ((xγ)

nx) = νP (0M ) = 0. Therefore 1 = µP ((xγ)
nx) ≥ µP (x) and 0 = νP ((xγ)

nx) ≤
νP (x) implies that µP (x) = 1 and νP (x) = 0. So x ∈ P∗. But P∗ is a prime ideal of M .
Hence α = µx(α,β)

(x) ≤ µP (x) and β = νx(α,β)
(x) ≥ νP (x), whence x(α,β) ⊆ P,∀P ∈ X .

Thus V(x(α,β)) = X , i.e., X (x(α,β)) = ∅.

(iii) Suppose J and χJ be same as in part (ii). Now if X (x(α,β)) = X then V(x(α,β)) = ∅
that implies x(α,β) ⊈ χJ and thus µχJ

(x) < α and νχJ
(x) > β so that x /∈ J . Hence

x /∈ ∪{J : J is a prime ideal of M }. This shows that x is a unit. □

The following example show that the converse of Theorem (3.6)(iii) is not true in gen-
eral. This is a deviation of the result from the crisp theory (see [5], Proposition (2.2) ).

Example 3.2. Consider M , Γ and X = IFSpec(M) as in Example (3.1)(1).
Define A ∈ X as follow

µA(x) =

{
1, if x ∈< 2 >

0.6, if otherwise
; νA(x) =

{
0, if x ∈< 2 >

0.3, otherwise.

Take α = 0.5, β = 0.4 and x = 1. Then we see that IFP x(α,β) ⊆ A, hence A /∈ X (x(α,β)),
and consequently X ̸= X (x(α,β)).

Proposition 3.2. The subfamily {X (x(α,β)) : x ∈ M,α, β ∈ (0, 1] s.t. α+ β ≤ 1} of τ is a base
for τ .

Proof. Let X (A) ∈ τ , where A is an IFI of M . Let B ∈ X (A). Then A ⊈ B. This implies
that there exists x ∈ M such that µA(x) > µB(x) and νA(x) < νB(x). Thus x /∈ B∗ and
hence µB(x) = t and νB(x) = s, for some t, s ∈ [0, 1) with t+ s ≤ 1.
Let µA(x) = α > 0, νA(x) = β < 1. Clearly x(α,β) ⊈ B and so B ∈ X (x(α,β)).

Now, V(A) ⊆ V(x(α,β)), because if P ∈ V(A) then A ⊆ P and so µx(α,β)
(x) = α =

µA(x) < µP (x) and νx(α,β)
(x) = β = νA(x) > νP (x). This implies that x(α,β) ⊆ P and

thus P ∈ V(x(α,β)). Hence X (x(α,β)) ⊆ X (A). Thus B ∈ X (x(α,β)) ⊆ X (A). Hence the
subfamily {X (x(α,β)) : x ∈ M,α, β ∈ (0, 1] such that α+ β ≤ 1} is a base for τ . □

Proposition 3.3. The subset Y = {P ∈ X : Img(P ) = {(1, 0), (t, s)}, where t, s ∈ [0, 1) with
t+ s ≤ 1}, is compact with respect to the subspace topology.

Proof. Proceeding in the same manner as in Proposition (3.2), we can easily verify that the
family {X (x(γ,δ)) ∩ Y : x ∈ M, and γ ∈ (t, 1] and δ ∈ [0, s) such that γ + δ ≤ 1} forms a
base for Y . Now, suppose that {X ((xi)(p,q))∩Y : i ∈ Λ and (p, q) ∈ K ×S ⊆ (t, 1]× [0, s)}
is a covering of Y taken from the basic open sets. Suppose γ = Sup{p : p ∈ K} and



On Intuitionistic Fuzzy Structure Space On Γ-Ring 221

δ = Inf{q : q ∈ S}. Then the family {X ((xi)(γ,δ)) ∩ Y : i ∈ Λ} also covers Y . Now,

Y = ∪{X ((xi)(γ,δ)) ∩ Y : i ∈ Λ}
= (∪{X ((xi)(γ,δ)) : i ∈ Λ}) ∩ Y
= (X \ V(∪{(xi)(γ,δ) : i ∈ Λ})) ∩ Y
= (X ∩ Y)\(V(∪{(xi)(γ,δ) : i ∈ Λ}) ∩ Y)

= Y\(V(∪{(xi)(γ,δ) : i ∈ Λ}) ∩ Y).

This show that V(∪{(xi)(γ,δ) : i ∈ Λ})∩Y = ∅. Further, suppose that J be any prime ideal
of Γ-ring M . Consider an IFI A of M given by

µA(x) =

{
1, if x ∈ J

α, if otherwise
; νA(x) =

{
0, if x ∈ J

β, if otherwise
.

Clearly, A is an IFPI of M and A ∈ Y . So A /∈ V(∪{(xi)(γ,δ) : i ∈ Λ}). Hence (xj)(γ,δ) ⊈ A
for some j ∈ Λ. Thus γ > µA(xj) and δ < νA(xj) for some j ∈ Λ. As a result, xj /∈ J .
This proves that there is no prime ideal of M containing the set {xi : i ∈ Λ}. Therefore,
< {xi : i ∈ Λ} >= M . Let

∑n
l=1[δl, el] be the right unity of Γ-ring M , where δl ∈ Γ,

el ∈ M for all l = 1, 2, ...., n and el =
∑nl

q=1 mqlγqlxql , where nl is a finite positive integer,
mql ∈ M , xql ∈ {xj : J ∈ Λ}, γql ∈ Γ for all q = 1, 2, ..., nl and l = 1, 2, ....n. Now
we claim that V(∪n

l=1 ∪
nl
q=1 (xql)(γ,δ)) ∩ Y = ∅, as A ∈ V(∪n

l=1 ∪
nl
q=1 (xql)(γ,δ)) ∩ Y implies

∪n
l=1 ∪

nl
q=1 (xql)(γ,δ) ⊆ A and Img(A) = {(1, 0), (α, β)}. This imply

γ = µ(xql
)(γ,δ)

(xql) ≤ µA(xql) and δ = ν(xql
)(γ,δ)

(xql) ≥ νA(xql),∀q = 1, 2, .., nl, l =
1, 2, .., n.
⇒ µA(xql) = 1, νA(xql) = 0, for all q = 1, 2, ..., nl, l = 1, 2, ..., n, since γ > α, δ < β.
⇒ xql ∈ A∗ for all q = 1, 2, ..., nl, l = 1, 2, ..., n
⇒ el ∈ A∗ for all l = 1, 2, ..., n
⇒ xj =

∑n
i=1 xjδlel ∈ A∗ = J , which is a contradiction. Thus we have

Y = Y \ (V(∪n
l=1 ∪

nl
q=1 (xql)(γ,δ)) ∩ Y)

= (X ∩ Y) \ (V(∪n
l=1 ∪

nl
q=1 (xql)(γ,δ)) ∩ Y)

= (X \ V(∪n
l=1 ∪

nl
q=1 (xql)(γ,δ))) ∩ Y

= (∪n
l=1 ∪

nl
q=1 X (xql)(γ,δ)) ∩ Y

= ∪n
l=1 ∪

nl
q=1 (X (xql)(γ,δ) ∩ Y).

This proves that {X ((xql)(γ,δ)) ∩ Y : q = 1,2,...,nl, l = 1,2,..., n } covers Y . Hence Y is com-
pact. □

4. SEPARATION AXIOMS OF IF SPEC(M)

We know that a topological space X is called T0, if ∀, x ̸= y ∈ X , ∃ atleast one open
set containing x but not y (or ∃ an open set containing y but not x). Also we know that a
topological space is called T1 if and only if every subset containing one point is closed set.

Proposition 4.4. The space X is T0

Proof. Let A,B ∈ X such that A ̸= B. Then either A ⊈ B or B ⊈ A. Let B ⊈ A. Then
B ∈ X (A). Also, A /∈ X (A) and X (A) is open. Therefore, X is T0 space. □

In the following examples we show that there exists some element of basis of X which
is not closed, and it is even possible that X is not T1 and hence not T2. These results are
also deviation from the results in crisp theory (see [5], Theorem (4.12)).
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Example 4.3. Consider M and Γ as in Example (3.1)(2).
Then X = {Pt,s, where t, s ∈ [0, 1) such that t+ s ≤ 1}, where Pt,s is defined as

µPt,s
(x) =

{
1, if x = 0̄

t, if x = 1̄
; νPt,s

(x) =

{
0, if x = 0̄

s, if x = 1̄.

for all x ∈ M . Now we show that if x = 1̄ and α = 0.6, β = 0.3, then X (1̄(α,β)) is not
closed. Suppose on the contrary that X (1̄(α,β)) is closed. Then there exists subset K × S
of [0, 1] × [0, 1] such that X (1̄(α,β)) = ∩{V(y(p,q)) : (p, q) ∈ K × S, y ∈ Z2}. If y = 1̄ and
(p, q) ∈ K × S = (α, 1] × [0, β) such that p + q ≤ 1, then it is not difficult to check that
X (1̄(α,β)) ⊈ V(1̄(p,q)) and if y = 1̄ and p = 0, q = 1 or y = 0̄, (p, q) ∈ [0, 1] × [0, 1], then it
is seen that V(y(p,q)) = X . Thus X (1̄(α,β)) must be equal to X , which is a contradiction.
Therefore X (1̄(α,β)) is not closed.

Example 4.4. Consider the space X as in Example (4.3). Choose P0.6,0.3, P0.5,0.4 ∈ X . Let
W be an open set containing P0.6,0.3. Then W = ∩{X (1̄(p,q)) : (p, q) ∈ K × S} for some
K × S ⊆ (0, 1] × (0, 1]. Thus there exists (p, q) ∈ K × S such that P0.6,0.3 ∈ X (1̄(p,q)). So
p > 0.6 > 0.5 and q < 0.3 < 0.4. Consequently P0.5,0.4 ∈ X (1̄(p,q)) ⊆ W . In other words
any open neighbourhood of P0.6,0.3 also contain P0.5,0.4. Thus X is not T1.

Proposition 4.5. Let M be a Γ-ring and A ∈ X then V(A) = cl{A}, the closure of A in X .
Further B ∈ cl{A} if and only if A ⊆ B , where A,B ∈ X .

Proof. Since V(A) is a closed subset of X containing A. Therefore cl{A} ⊆ V(A)
For the reverse inclusion, consider B ∈ X such that B /∈ cl{A}. Then, ∃ an open set X (C)
where C is an IFI of M containing B but not A. Therefore, C ⊈ B but C ⊆ A. So A ⊈ B
and hence B /∈ V(A). Thus V(A) ⊆ cl{A}. Hence V(A) = cl{A}.

Further, B ∈ cl{A} if and only if B ∈ V(A), which is equivalent to A ⊆ B. □

Proposition 4.6. Let Y be same as in Proposition (3.3). If A ∈ Y , then {A} is closed in Y if and
only if A is an IF maximal ideal of M . ( In other words, Y is T1 if and only if every singleton
element of Y is an IF maximal ideal of M .)

Proof. Let A ∈ Y and {A} be closed. Then V(A) = cl{A} = {A}. Hence V(A) ∩ Y = {A},
by Proposition (4.5). Now, we show that A is an IF maximal ideal. As A ∈ Y , Img(A) =
{(1, 0), (t, s)}. So it is left to prove that the ideal A∗ = {x ∈ M : µA(x) = 1 and µA(x) = 0}
is maximal. For this, it is enough to show that there is no prime ideal of M properly con-
taining A∗. Let J be a prime ideal of M properly containing A∗.

Let B be an IFI of M defined by

µB(x) =

{
1, if x ∈ J

t, if otherwise
; νB(x) =

{
0, if x ∈ J

s, if otherwise
,where t+ s ≤ 1.

Then B ∈ Y and A is properly contained in B. This contradicts the fact that V(A) ∩ Y =
{A}. This proves that A∗ is a maximal ideal of M and so A is an IF maximal ideal of M .

Conversely, let A ∈ Y and A is an IF maximal ideal. Then the ideal A∗ = {x ∈ M :
µA(x) = 1 and µA(x) = 0} is maximal ideal of M . We claim that V(A)∩Y = {A}. Clearly,
{A} ⊆ V(A) ∩ Y . Next

B ∈ V(A) ∩ Y ⇒ A∗ ⊆ B∗ ⇒ A∗ = B∗
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since A∗ is maximal ideal. Thus we have A = B, since Img(A) = Img(B) = {(1, 0), (t, s)}.
Therefore, V(A) ∩ Y = {A}. Consequently, {A} is a closed subset of Y . □

We know that a topological space X is Hausdorff (or T2 space), if and only if ∀, x ̸= y ∈
X , ∃ two disjoint open sets one containing x and another containing y. As a remarkable
deviation from commutative algebra, we notice that for a Γ-ring M in which each prime
ideal is maximal ideal, the space IFSpec(M) is not Hausdorff, but, it may, a portion of its
subspaces are demonstrated to be Hausdorff.

Theorem 4.7. Let M be a Γ-ring whose each prime ideal is a maximal ideal. Then the space
X = IFSpec(M) is not T2.

Proof. For the proof we show that ∃ two distinct elements A,B of X = IFSpec(M) that
cannot be separated by two disjoint basic open sets.
Consider a prime ideal J and two IF prime ideals A and B of M as follow

µA(x) =

{
1, if x ∈ J

0.1, if otherwise
; νA(x) =

{
0, if x ∈ J

0.2, if otherwise
;

µB(x) =

{
1, if x ∈ J

0.3, if otherwise
; νB(x) =

{
0, if x ∈ J

0.4, if otherwise
.

Consider X (x(α,β)) and X (y(α,β)) be two basic open sets in X containing A and B respec-
tively, where x, y ∈ M and α, β ∈ (0, 1] s.t. α + β ≤ 1. Then x(α,β) ⊈ A and y(α,β) ⊈ B
and so x /∈ A∗ = J and y /∈ B∗ = J . Since J is prime ideal in M , so xγy /∈ J , for
every γ ∈ Γ. Then xγy is not nilpotent and so by Theorem (3.6) (i) and (ii) we have
X (x(α,β)) ∩ X (y(α,β)) = X((xγy)(α,β)) ̸= ∅. Hence X is not T2. □

Theorem 4.8. Let M be a Boolean Γ-ring with unity e. Let t, s ∈ [0, 1) with t+s ≤ 1 and suppose
Y = {P ∈ X : Img(P ) = {(1, 0), (t, s)}}, x, y ∈ M, and γ, δ ∈ (0, 1] so that γ + δ ≤ 1. Then:
(i) The set X (x(γ,δ)) ∩ Y is a clopen set in Y , provided γ > t and δ < s.
(ii) X (x(γ,δ)) ∪ X (y(γ,δ)) = X (z(γ,δ)) for some z ∈ M .
(iii) The space Y is T2.

Proof. (i) Since X (x(γ,δ)) is open set in X , it follows that X (x(γ,δ)) ∩ Y is open set in Y .
We now show that X (x(γ,δ)) ∩ Y = V((e − x)(γ,δ)) ∩ Y . [ This would simply implies that
X (x(γ,δ)) is closed set in Y .

If A ∈ X (x(γ,δ)) ∩ Y then µA(x) < γ, νA(x) > δ, but Img(A) = {(1, 0), (t, s)} so that
µA(x) = t, νA(x) = s. Hence γ > t and δ < s and x /∈ A∗. This implies that γ > t and
δ < s and e − x ∈ A∗, since xΓ(e − x) = xΓe − xΓx = x − x = 0 ∈ A∗ and the ideal A∗
is prime implies that (e − x) ∈ A∗. As a result, µA(e − x) = 1 and νA(e − x) = 0 so that
(e − x)(γ,δ) ⊆ A and thus A ∈ V((e − x)(γ,δ)) ∩ Y .

Conversely, let A ∈ V((e−x)(γ,δ))∩Y then (e−x)(γ,δ) ⊆ A and Img(A) = {(1, 0), (t, s)}
which implies that γ ≤ µA(e−x) and δ ≥ νA(e−x). Hence t < µA(e−x) and s > µA(e−x)
and thus µA(e − x) = 1 and νA(e − x) = 0. It follows that e − x ∈ A∗ and hence
x ∈ A∗ so that µA(x) = t < γ and νA(x) = s > δ. This means that x(γ,δ) ⊈ A and
thus A ∈ X (x(γ,δ)) ∩ Y . Hence X (x(γ,δ)) ∩ Y = V((e − x)(γ,δ)) ∩ Y .

(ii) If A ∈ X (x(γ.δ))∪X (y(γ.δ)) then x(γ.δ) ⊈ A or y(γ.δ) ⊈ A (which mean that µA(x) < γ
and νA(x) > δ or µA(y) < γ and νA(y) > δ ). This implies that x /∈ A∗ or y /∈ A∗ and thus
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e − x /∈ A∗ or e − y /∈ A∗. As a result, (e − x)Γ(e − y) = e − x − y + xΓy /∈ A∗, so that
x+ y − xΓy /∈ A∗. Hence A ∈ X (z(γ.δ)), where z = x+ y − xΓy.

(iii) Let A,B ∈ X , A ̸= B. Then A and B are IF prime ideals of M and Img(A) =
Img(B) = {(1, 0), (t, s)}. As we know that every prime ideal in a Boolean Γ-ring is max-
imal ideal. It follows that A∗, B∗ are maximal ideals of M . So A∗ ⊈ B∗, since A ̸= B.
Choose x ∈ A∗ and x /∈ B∗. Then e− x ∈ B∗ and e− x /∈ A∗. Now, µB(x) = µA(e− x) = t
and νB(x) = νA(e − x) = s and µA(x) = 1 = µB(e − x) and νA(x) = 0 = νB(e − x).
Let α ∈ (t, 1) and β ∈ (0, s) such that α + β ≤ 1. Then µx(α,β)

(x) = α > t = µB(x)

and νx(α,β)
(x) = β < s = νB(x) so that x(α,β) ⊈ B. Hence B ∈ X (x(α,β)). Also,

µ(e−x)(α,β)
(e − x) = α > t = µA(e − x) and ν(e−x)(α,β)

(e − x) = β < s = νA(e − x),
so that (e − x)(α,β) ⊈ A. Hence A ∈ X ((e − x)(α,β)). Then, by Theorem (3.6)(i), we have
X (x(α,β)) ∩ X ((e − x)(α,β)) = X ((xΓ(e − x))(α,β)) = X ((0)(α,β)) = ∅ [ As M is Boolean
Γ-ring]. Consequently, Y is Hausdorff. □

Theorem 4.9. If M is Boolean Γ-ring, t, s ∈ [0, 1) with t+s ≤ 1 and Y = {P ∈ X : Img(P ) =
{(1, 0), (t, s)}} , then the space Y is compact, Hausdorff.

Proof. Follows immediately from Proposition (3.3) and Theorem (4.8)(i),(iii). □

5. INTUITIONISTIC FUZZY PRIME RADICAL AND ALGEBRAIC NATURE OF INTUITIONISTIC
FUZZY PRIME IDEAL UNDER Γ-HOMOMORPHISM

Definition 5.12. ([22]) Let M be a Γ-ring. For any IFI A of M . The IFS
√
A defined by

µ√
A(x) = ∨{µA((xγ)

n−1x) : n ∈ N} and ν√A(x) = ∧{νA((xγ)n−1) : n ∈ N)}

is called the IF prime radical of A, where (xγ)n−1x = x, for n = 1, γ ∈ Γ.
Further,

√
A is the smallest IF semi-prime ideal of M containing A.

Proposition 5.7. ([22]) For every IFIs A and B of Γ-ring M , we have
(i) A ⊆

√
A;

(ii) A ⊆ B ⇒
√
A ⊆

√
B;

(iii)
√√

A =
√
A.

Proposition 5.8. ([22]) Let A be an IFPI of a Γ-ring M . Then
√
A = A and hence every IFPI

is IF semi prime ideal.

Theorem 5.10. Let A be any IFI of a Γ-ring M . Then
(i) V(A) = V(

√
A)

(ii) X (x(α,β)) = X (y(α,β)) if and only if √< x(α,β) > =
√
< y(α,β) >, where α, β ∈ (0, 1] with

α+ β ≤ 1.

Proof. (i) Suppose B ∈ V(A) be any element. Then A ⊆ B, where B is an IFPI of M , then
from Proposition (5.8) we have

√
B = B, therefore we have A ⊆

√
B. Hence B ∈ V(

√
A),

so that V(A) ⊆ V(
√
A). The reverse inclusion is clear-cut.

(ii)If X (x(α,β)) = X (y(α,β)), then V(x(α,β)) = V(y(α,β)) which implies
V(< x(α,β) >) = V(< y(α,β) >). This mean ∩{B : B ∈ V(< x(α,β) >)} = ∩{B : B ∈ V(<
y(α,β) >)} and therefore, √< x(α,β) > =

√
< y(α,β) >.
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Conversely, let √< x(α,β) > =
√
< y(α,β) >. Then

B ∈ V(x(α,β)) ⇔ x(α,β) ⊆ B

⇔ < x(α,β) >⊆ B

⇔
√

< x(α,β) > ⊆ B

⇔
√

< y(α,β) > ⊆ B

⇔ y(α,β) ⊆ B as before
⇔ B ∈ V(y(α,β)).

Hence V(x(α,β)) = V(y(α,β)) so that X (x(α,β)) = X (y(α,β)).

It is prompt from above Theorem (5.10) that the topology τ is exactly the collection of
all open sets X (A), where A runs over IF semi-prime ideals of M . □

Now we recall the following results for immediate use

Definition 5.13. ([18]) Let f : M → N be a function. An IFS A of M is called an f - invari-
ant if f(x) = f(y) ⇒ A(x) = A(y), i.e., µA(x) = µA(y) and νA(x) = νA(y), where x, y ∈ M .

If A be any f - invariant IFS of M , then f−1(f(A)) = A.

Theorem 5.11. ([18]) Let f : M → N is a surjective Γ-homomorphism and A be any f -
invariant IF prime ideal of M and B be any IF prime ideal of N . Then f(A) and f−1(B) are IF
prime ideal of N and M respectively.

Theorem 5.12. Let f : M → N is a surjective Γ-homomorphism and X = IFSpec(M), X ′
=

IFSpec(N), X ∗ = {A ∈ X : A is f - invariant }, X ′
(B) = X ′ \ V(B), where B is any IFI of

N , and h be a map from X ′
to X ∗ defined by h(A

′
) = f−1(A

′
), A

′ ∈ X ′
. Then the following

considerations are equivalent
(i) h is continuous
(ii) h is open, and
(iii) h is a homeomorphism of X ′

onto X ∗ in other words the map h is an embedding of X ′
onto

X ∗.

Proof. (i) Let A
′ ∈ X ′

. It follows from Theorem(5.11) that f−1(A
′
) ∈ X .

Also, f−1(A
′
) is f -invariant, since for all a, b ∈ M , if f(a) = f(b), then

µA′ (f(a)) = µA′ (f(b)) and νA′ (f(a)) = νA′ (f(b)) ⇒ µf−1(A′ )(a) = µf−1(A′ )(b) and
νf−1(A′ )(a) = νf−1(A′ )(b), i.e., f−1(A

′
)(a) = f−1(A

′
)(b). Hence h(A

′
) = f−1(A

′
) ∈ X ∗.

Next we show that h−1(X (x(α,β)) ∩ X ∗) = X ′
((f(x))(α,β)).

Since A
′ ∈ h−1(X (x(α,β)) ⇔ h(A

′
) ∈ X (x(α,β))

⇔ x(α,β) ⊈ h(A
′
) = f−1(A

′
)

⇔ (f(x))(α,β) = f(x(α,β)) ⊈ A
′
, by Proposition (3.1)

⇔ A
′ ∈ X ′

((f(x))(α,β)).

This shows that the pre-image of any basic open set in X ∗ is open set in X ′
. Hence h is

continuous.
(ii) Let X ′

((f(x))(α,β)), x ∈ M and α, β ∈ (0, 1] with α + β ≤ 1, be any basic open set
in X ′

. Let B ∈ X ′
((f(x))(α,β)). Then B = h(A

′
) = f−1(A

′
) for some A

′ ∈ X ′
such that

(f(x))(α,β) ⊈ A
′
. As in part (1) we can show that B is f - invariant.
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Next, h(X ′
((f(x))(α,β))) = X (x(α,β)) ∩ X ∗, because

A ∈ h(X
′
((f(x))(α,β))) ⇔ h−1(A) ∈ X

′
((f(x))(α,β)) and A is f -invariant

⇔ f(x(α,β)) = (f(x))(α,β) ⊈ h−1(A) = f(A)

⇔ x(α,β) ⊈ f−1(f(A)) = A, since A is f -invariant
⇔ A ∈ X (x(α,β)) ∩ X ∗.
Thus the direct image of each basic open set in X ′

is open in X ∗ and so h is open.

(iii) In the light of part (i) and part (ii), it is enough to prove that h is one-one and onto.
Let A

′
, B

′ ∈ X ′
. Then h(A

′
) = h(B

′
) ⇒ f−1(A

′
) = f−1(B

′
) ⇒ f(f−1(A

′
)) = f(f−1(B

′
)).

As f is onto, therefore, we get A
′
= B

′
. Thus f is one-one. Finally, let A ∈ X ∗. Then A is

an f -invariant IF prime ideal of M and Therefore by Theorem (5.11), f(A) is an IF prime
ideal of N . Further, h(f(A)) = f−1(f(A)) = A. Since A is f -invariant. Therefore h is
onto. □

6. IRREDUCIBILITY AND CONNECTEDNESS OF IF SPEC(M)

Recollect that a space is an irreducible if and only if the intersection of any two non-
empty basic open sets is non-empty. Also it is disconnected if and only if it can be written
as the union of two non-empty disjoint closed subsets.

Definition 6.14. The intersection of all IF prime ideals of M is called the IF nil radical of
Γ-ring M and is written as IFnil(M).

Theorem 6.13. The space X is irreducible if and only if IFnil(M) ∈ X .

Proof. Let X be irreducible and let N be the nil radical of Γ-ring M . Then

µIFnil(M)(x) =

{
1, if x ∈ N
0, if M \ N

; νIFnil(M)(x) =

{
0, if x ∈ N
1, if M \ N

.

Next, let x, y ∈ M and let α, β ∈ (0, 1] with α + β ≤ 1. Then xγy ∈ N ⇒ xγy is nilpotent
and thus X ((xγy)(α,β)) = ∅ by Theorem (3.6)(ii). Therefore,X (x(α,β))∩X (y(α,β)) = ∅, since
X is irreducible. Hence either x or y is nilpotent, and thus x ∈ N or y ∈ N . Consequently,
N is prime ideal of M , whence it follows from Theorem (2.4) that IFnil(M) ∈ X .

Conversely, assume that IFnil(M) ∈ X . Then N is prime ideal of M . Let x, y ∈ M
and let α, β ∈ (0, 1] such that α + β ≤ 1. Then X (x(α,β)) ∩ X (y(α,β)) = ∅ implies that
X ((xΓy)(α,β)) = ∅ , by Theorem (3.6)(i), and thus xγy is nilpotent for every γ ∈ Γ, by
Theorem (3.5)(ii). Then xγy ∈ N and so x ∈ N or y ∈ N , which means x is nilpotent or
y is nilpotent. Hence X (x(α,β)) = ∅ or X (y(α,β)) = ∅, by Theorem (3.6)(ii). This shows
that the intersection of any two non-empty basic open sets is non-empty. Hence, X is
irreducible. □

Theorem 6.14. The space X is disconnected if and only if M has a non-trivial idempotent element.

Proof. Let X be disconnected. Then there exist IFIs A and B of M such that X = V(A) ∪
V(B),V(A),V(B) ̸= ∅,V(A) ∩ V(B) = ∅.

Now, V(A)∩V(B) = ∅ implies V(A⊕B) = ∅ so that µA⊕B(x) = 1 and νA⊕B(x) = 0; for
all x ∈ M . So, Supe=m+n{max{µA(m), µB(n)}} = 1 and Infe=m+n{min{νA(m), νB(n)}} =
0, where e is the unity of M ⇒ µA(m) = µB(n) = 1 and νA(m) = νB(n) = 0, for all
m,n ∈ M such that e = m + n. Let I = A∗ and J = B∗. Let K be the prime ideal
of M and χK be its intuitionistic fuzzy characteristic function. Then χK ∈ X . Since
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X = V(A) ∪ V(B) = V(A ∩B), it follows that A ∩B ⊆ χK .

Next, if x ∈ I ∩ J , then µA∩B(x) = 1 and νA∩B(x) = 0 ⇒ µχK
(x) = 1 and νχK

(x) = 0
and then x ∈ K. Thus x ∈ ∩{K : K is a prime ideal of M}. This implies that x is a nilpo-
tent element. This shows that every element of I ∩ J is nilpotent.

Clearly, M/(I∩J) = I/(I∩J)⊕J/(I∩J), Therefore, e+(I∩J) = i+(I∩J)+j+(I∩J),
for some i ∈ I, j ∈ J . So that iγ(e − i) ∈ (I ∩ J) for every γ ∈ Γ and hence iγ(e − i) is
nilpotent. Thus (iγ(e − i)γ)miγ(e − i) = 0 for some m ∈ Z+. Consequently, (iγ(e −
i)γ)m = (iγ(e − i)γ)m+1Q((iγ(e − i))), for some polynomial Q(iγ(e − i)) in (iγ(e − i)).
Let x = (iγ(e − i)γ)mQ(iγ(e − i)). It is now simple matter to verify that x ̸= 0, x ̸= e, and
xγx = x.

Conversely, for any non-trivial idempotent element x of M , it can be easily verified that
X = V(x(α,β)) ∪ V((e − x)(α,β)),V(x(α,β)) ̸= ∅,V((e − x)(α,β)) ̸= ∅,
V(x(α,β)) ∩ V((e − x)(α,β)) = ∅, where α, β ∈ (0, 1] such that α+ β ≤ 1.
This establishes that X is disconnected. □

Corollary 6.1. The space X is connected if and only if 0M and e are the only idempotent in M .

7. CONCLUSIONS

In this paper we have constituted a topology on X = IFSpec(M), the collection of all
intuitionistic fuzzy prime ideals of a commutative Γ-ring M with unity, which is called
Zariski topology. By using the bases for the Zariski topology, it is shown that the subspace
Y of X is compact. Further the space X is always T0 but not T1 and hence not T2, however
when M is a Boolean Γ-ring, then we have constructed a subspace which is T2 space.
We have also shown that subspace Y is T1 if and only if every singleton element of Y is
IF maximal ideal of M . Further for a homomorphism f from a Γ-ring M onto a Γ-ring
N , it is shown that X ′

= IFSpec(N) is homeomorphic to the subset X ∗ = {A ∈ X :
A is f - invariant } consisting of f -invariant elements of X = IFSpec(M). Also, the space
X is irreducible if and only if the intersection of all the elements of X is also an element
of X . However the space X is connected if and only if 0M and e are the only idempotent
elements in M .
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