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Fourth Hankel determinant for a subclass of analytic
functions defined by generalized Sãlãgean operator

GURMEET SINGH, GAGANDEEP SINGH and GURCHARANJIT SINGH

ABSTRACT. This paper is concerned with the estimation of fourth Hankel determinant for a subclass of an-
alytic functions defined by generalized Sãlãgean operator in the open unit disc E = {z : |z| < 1}. The present
study sets the stage for other researchers to investigate the fourth Hankel determinant for some other subclasses
of analytic functions.

1. INTRODUCTION

Let A denote the class of analytic functions of the form

f(z) = z +

∞∑
k=2

akz
k, (1.1)

in the unit disc E = {z : |z| < 1} and are further normalized by f(0) = f ′(0)− 1 = 0. The
subclass of A consisting of the functions of the form (1.1) and which are univalent in E, is
denoted by S.
Let P denote the class of analytic functions of the form

p(z) = 1 +

∞∑
n=1

cnz
n,

whose real parts are positive in E.
Sãlãgean [27] established an operator, with the help of which many subclasses of A were
introduced. As a generalization, Al-Oboudi [1] introduced the following differential op-
erator:
For δ ≥ 1 and f ∈ A,

D0
δf(z) = f(z),

D1
δf(z) = (1− δ)f(z) + δzf ′(z),

and in general,

Dn
δ f(z) = D(Dn−1

δ f(z)) = (1− δ)Dn−1
δ f(z) + δz(Dn−1

δ f(z))′, n ∈ N

which is equivalent to

Dn
δ f(z) = z +

∞∑
k=2

[1 + (k − 1)δ]nakz
k, n ∈ N0 = N ∪ {0},
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with Dn
δ f(0) = 0. For δ = 1, the operator Dn

δ f(z) reduces to Sãlãgean operator. So, it is
natural to call Dn

δ f(z) as the Generalized Sãlãgean operator.
By R(δ;n;α), let us denote the class of functions in A and which satisfy the condition

Re

{
(1− α)

Dn
δ f(z)

z
+ α(Dn

δ f(z))
′
}

> 0, 0 ≤ α ≤ 1, z ∈ E.

The following consequences can be easily observed:
(i) R(1; 0;α) ≡ R(α), the class investigated by Murugusundramurthi and Magesh [22].
(ii) R(1; 1;α) ≡ R′(α), the class discussed in [26].
(iii) R(1; 0; 1) ≡ R, the class introduced and studied by MacGregor [19].
(iv) R(1; 0; 0) ≡ R1, the subclass of close-to-star functions introduced by MacGregor [20].
In their pioneering work, Noonan and Thomas [24] introduced the qth Hankel determi-
nant for q ≥ 1 and n ≥ 1 as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 ... an+q−1

an+1 ... ... ...
... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣ .
For q = 2, n = 1, a1 = 1 and q = 2, n = 2, the Hankel determinant simplifies respectively
to H2(1) = a3 − a22 and H2(2) = a2a4 − a23.
Numerous work has been done on the estimation of second Hankel determinant by var-
ious authors including Noor [25], Ehrenborg [11], Layman [15], Singh [29], Mehrok and
Singh [21] and Janteng et al. [12].

For q = 3, n = 1, the Hankel determinant reduces to

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ ,
which is known as the third Hankel determinant.
For f ∈ S, a1 = 1,

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22),

and by using the triangle inequality, we have

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|. (1.2)

The estimation of third Hankel determinant is little bit complicated. Babalola [5] was
the first researcher who successfully obtained the upper bound of third Hankel deter-
minant for the classes of starlike functions, convex functions and the class of functions
with bounded boundary rotation. Further a few researchers in [14, 23] and also including
Shanmugam et al. [28], Bucur et al. [8], Altinkaya and Yalcin [2], Singh and Singh [30] have
been actively engaged in the study of third Hankel determinant for various subclasses of
analytic functions.

For any f ∈ A, we can represent the fourth Hankel determinant as

H4(1) = a7H3(1)− a6D1 + a5D2 − a4D3, (1.3)

where D1, D2 and D3 are determinants of order 3 given by

D1 = (a3a6 − a4a5)− a2(a2a6 − a3a5) + a4(a2a4 − a23), (1.4)

D2 = (a4a6 − a25)− a2(a3a6 − a4a5) + a3(a3a5 − a24), (1.5)
D3 = a2(a4a6 − a25)− a3(a3a6 − a4a5) + a4(a3a5 − a24). (1.6)
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Fourth Hankel determinant is a generalization of second and third Hankel determinants.
It is an interesting topic of current research in geometric function theory and so recently,
the researchers has started to study the fourth Hankel determinant for various subclasses
of A. The process of finding the bounds of the fourth Hankel determinant is very lengthy
and difficult. The initiative of finding the fourth Hankel determinant for subclasses of
analytic functions was taken by Arif et al. [3] in 2018. After that, only a few reserachers
worked in this direction including [32, 4, 13, 33, 10, 31].

Inspired from the above works, we study here the fourth Hankel determinant H4(1)
for the class R(δ;n;α). The results already proved by various authors follow as special
cases of our study.

2. MAIN RESULTS

Lemma 2.1. ([9, 18]) If p(z) = 1 +
∑∞

n=1 cnz
n ∈ P , then for n, k ∈ N = {1, 2, 3, ...}, we have

the following inequalities:
|cn+k − λcnck| ≤ 2, 0 ≤ λ ≤ 1

and
|cn| ≤ 2.

Lemma 2.2. ([16, 17, 7]) If p ∈ P , then

2c2 = c21 + (4− c21)x,

4c3 = c31 + 2c1(4− c21)x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z,

and

8c4 = c41+(4−c21)x(c
2
1(x

2−3x+3)+4x)−4(4−c21)(1−|x|2)(c1(x−1)η+ x̄η2−(1−|η|2)z),

for some x, z and η satisfying |x| ≤ 1, |z| ≤ 1, |η| ≤ 1 and c1 ∈ [0, 2].

Lemma 2.3. ([6]) If p ∈ P , then

∣∣∣∣c2 − σ
c21
2

∣∣∣∣ ≤

2(1− σ) if σ ≤ 0,

2 if 0 ≤ σ ≤ 2,

2(σ − 1) if σ ≥ 2.

Theorem 2.1. If f ∈ R(δ;n;α), then

|an| ≤
2

[1 + (n− 1)α][1 + (n− 1)δ]n
, n ≥ 2. (2.1)

The bound is sharp.

Proof. As f ∈ R(δ;n;α), therefore by definition, there exists a function p ∈ P such that

(1− α)
Dn

δ f(z)

z
+ α(Dn

δ f(z))
′ = p(z) = 1 +

∞∑
n=1

cnz
n.

On expanding and equating the coefficients in the above equation, it yields

an =
cn−1

[1 + (n− 1)α][1 + (n− 1)δ]n
. (2.2)
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Using Lemma 2.1 in (2.2), the result (2.1) is obvious.
The estimate is sharp for the function defined as

(1− α)
Dn

δ f(z)

z
+ α(Dn

δ f(z))
′ =

(
1 + δzn

1− δzn

)
, |δ| = 1.

□

For δ = 1, n = 0, Theorem 2.1 gives the following result due to Singh et al. [32]:

Corollary 2.1. If f ∈ R(α), then

|an| ≤
2

[1 + (n− 1)α]
, n ≥ 2.

For δ = 1, n = 1, Theorem 2.1 coincides with the following result due to Sahoo [26]:

Corollary 2.2. If f ∈ R′(α), then

|an| ≤
2

n[1 + (n− 1)α]
, n ≥ 2.

Theorem 2.2. If f ∈ R(δ;n;α), then

|a3 − a22| ≤
2

(1 + 2α)(1 + 2δ)n
. (2.3)

The estimate is sharp.

Proof. Using (2.2), we find that

|a3 − a22| =
1

(1 + 2α)(1 + 2δ)n

∣∣∣∣c2 − 2(1 + 2α)(1 + 2δ)n

(1 + α)2(1 + δ)2n
.
c21
2

∣∣∣∣ .
Since 0 ≤ σ =

2(1 + 2α)(1 + 2δ)n

(1 + α)2(1 + δ)2n
≤ 2, so by Lemma 2.3, the result (2.3) is obvious.

The bound is sharp for the function

f(z) = z +
c1

(1 + α)(1 + δ)2
z2 +

c21 − 2

(1 + 2α)(1 + 2δ)3
z3 + ...

□

For δ = 1, n = 0, Theorem 2.2 agrees with the following result due to Singh et al. [32]:

Corollary 2.3. If f ∈ R(α), then

|a3 − a22| ≤
2

(1 + 2α)
.

For δ = 1, n = 1, Theorem 2.2 gives the following result due to Sahoo [26]:

Corollary 2.4. If f ∈ R′(α), then

|a3 − a22| ≤
2

3(1 + 2α)
.
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Theorem 2.3. If f ∈ R(δ;n;α), then

|a2a4 − a23| ≤
4

(1 + 2α)2(1 + 2δ)2n
. (2.4)

The bound is sharp.

Proof. Using (2.2), we have

|a2a4 − a23| =
∣∣∣∣ c1c3
(1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)

− c22
(1 + 2δ)2n(1 + 2α)2

∣∣∣∣ .
Using Lemma 2.2, rearranging the terms and applying the triangle inequality along with
the inequality |z| ≤ 1, it yields

|a2a4 − a23| ≤ T
4

[
[(1 + 2δ)2n(1 + 2α)2 − (1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)]c41

+2[(1 + 2δ)2n(1 + 2α)2 − (1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)]c21x(4− c21)
+[{(1 + 2δ)2n(1 + 2α)2 − (1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)}c21
+4(1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)](4− c21)x

2

+2(1 + 2δ)2n(1 + 2α)2(4− c21)c1(1− |x|2)
]

,

where T =
1

(1 + δ)n(1 + 2δ)2n(1 + 3δ)n(1 + α)(1 + 2α)2(1 + 3α)
.

For c1 = c ∈ [0, 2] and |x| = µ, we have

|a2a4 − a23| ≤
T

4

[
[(1 + 2δ)2n(1 + 2α)2 − (1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)]c4

+2(1 + 2δ)2n(1 + 2α)2(4− c2)c+ 2[(1 + 2δ)2n(1 + 2α)2

−(1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)]c2(4− c2)µ+ {(1 + 2δ)2n(1 + 2α)2

−(1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)}(4− c2)(c− 2)(c− β)µ2

]
= F (c, µ),

where β = β(α) =
2(1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)

(1 + 2δ)2n(1 + 2α)2 − (1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)
.

Now ∂F
∂µ = {(1+2δ)2n(1+2α)2−(1+δ)n(1+3δ)n(1+α)(1+3α)}(4−c2)[c2+(c−2)(c−β)µ]

2(1+δ)n(1+2δ)2n(1+3δ)(1+α)(1+2α)2(1+3α) > 0.
So, max.F (c, µ) = F (c, 1) = G(c).
Therefore

G′(c) = W (α, δ)

[
{(1 + 2δ)2n(1 + 2α)2 − (1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)}c3

+[4(1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)− 3(1 + 2δ)2n(1 + 2α)2]

]
< 0,

where
W (α, δ) = − 2

(1 + δ)n(1 + 2δ)2n(1 + 3δ)(1 + α)(1 + 2α)2(1 + 3α)
.

So, max.G(c) = G(0). Hence the result (2.4).
The result is sharp for the function

f(z) = z − 2

(1 + 2α)(1 + 2δ)3
z3 + ...

□

For δ = 1, n = 0, Theorem 2.3 gives the following result due to Murugusundramurthi
and Magesh [22]:
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Corollary 2.5. If f ∈ R(α), then

|a2a4 − a23| ≤
4

(1 + 2α)2
.

For δ = 1, n = 1, Theorem 2.3 coincides with the following result due to Sahoo [26]:

Corollary 2.6. If f ∈ R′(α)(0 ≤ α ≤ 1
2 ), then

|a2a4 − a23| ≤
4

9(1 + 2α)2
.

Theorem 2.4. If f ∈ R(δ;n;α), then

|a2a3 − a4| (2.5)

≤ 2[3(1+δ)n(1+2δ)n(1+α)(1+2α)−2(1+3δ)n(1+3α)]
3
2

3(1+δ)n(1+2δ)n(1+3δ)n(1+α)(1+2α)(1+3α)
√

3[(1+δ)n(1+2δ)n(1+α)(1+2α)−(1+3δ)n(1+3α)]
.

The estimate is sharp.

Proof. From (2.2), we have

|a2a3 − a4| =
∣∣∣∣ c1c2
(1 + δ)n(1 + 2δ)n(1 + α)(1 + 2α)

− c3
(1 + 3δ)n(1 + 3α)

∣∣∣∣ .
Using Lemma 2.2 and rearranging the terms, it yields

|a2a3 − a4| =
∣∣∣∣{2(1 + 3δ)n(1 + 3α)− (1 + δ)n(1 + 2δ)n(1 + α)(1 + 2α)}c31

4(1 + δ)n(1 + 2δ)n(1 + 3δ)n(1 + α)(1 + 2α)(1 + 3α)

−2{(1 + δ)n(1 + 2δ)n(1 + α)(1 + 2α)− (1 + 3δ)n(1 + 3α)}
4(1 + δ)n(1 + 2δ)n(1 + 3δ)n(1 + α)(1 + 2α)(1 + 3α)

c1(4− c21)x

+
c1(4− c21)x

2

4(1 + 3δ)n(1 + 3α)
− (4− c21)(1− |x|2)z

2(1 + 3δ)n(1 + 3α)

∣∣∣∣.
On applying the triangle inequality and using c1 = c ∈ [0, 2] and |x| = ρ, |z| ≤ 1, we have

|a2a3 − a4| ≤
{2(1 + 3δ)n(1 + 3α)− (1 + δ)n(1 + 2δ)n(1 + α)(1 + 2α)}c3

4(1 + δ)n(1 + 2δ)n(1 + 3δ)n(1 + α)(1 + 2α)(1 + 3α)

+
{(1 + δ)n(1 + 2δ)n(1 + α)(1 + 2α)− (1 + 3δ)n(1 + 3α)}
2(1 + δ)n(1 + 2δ)n(1 + 3δ)n(1 + α)(1 + 2α)(1 + 3α)

c(4− c2)ρ

+
(4− c2)

2(1 + 3δ)n(1 + 3α)
+

(c− 2)(4− c2)ρ2

4(1 + 3δ)n(1 + 3α)
= F (c, ρ).

∂F
∂ρ = {(1+δ)n(1+2δ)n(1+α)(1+2α)−(1+3δ)n(1+3α)}c(4−c2)

2(1+δ)n(1+2δ)n(1+3δ)n(1+α)(1+2α)(1+3α) + (c−2)(4−c2)ρ
2(1+3δ)n(1+3α) > 0.

Now F (ρ) ≤ F (1) and
F (c, 1) = {4(1+3δ)n(1+3α)−3(1+δ)n(1+2δ)n(1+α)(1+2α)}c3

4(1+δ)n(1+2δ)n(1+3δ)n(1+α)(1+2α)(1+3α)

+ 8{(1+δ)n(1+2δ)n(1+α)(1+2α)−(1+3δ)n(1+3α)}c
4(1+δ)n(1+2δ)n(1+3δ)n(1+α)(1+2α)(1+3α) + (4c−c3)

4(1+3δ)n(1+3α) = G(c).

G′(c) =
3{4(1 + 3δ)n(1 + 3α)− 3(1 + δ)n(1 + 2δ)n(1 + α)(1 + 2α)}c2

4(1 + δ)n(1 + 2δ)n(1 + 3δ)n(1 + α)(1 + 2α)(1 + 3α)

+
8{(1 + δ)n(1 + 2δ)n(1 + α)(1 + 2α)− (1 + 3δ)n(1 + 3α)}

4(1 + δ)n(1 + 2δ)n(1 + 3δ)n(1 + α)(1 + 2α)(1 + 3α)
+

(4− 3c2)

4(1 + 3δ)n(1 + 3α)
.

G′′(c) = 0 gives,

c =

√
3(1 + δ)n(1 + 2δ)n(1 + α)(1 + 2α)− 2(1 + 3δ)n(1 + 3α)

3{(1 + δ)n(1 + 2δ)n(1 + α)(1 + 2α)− (1 + 3δ)n(1 + 3α)}
= c0.
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Since G′′(c0) < 0, so max. G(c) = G(c0) and hence the result (2.5) is obvious.
The bound is sharp for the function

f(z) = z +
c0

(1 + α)(1 + δ)2
z2 +

c20 − 2

(1 + 2α)(1 + 2δ)3
z3 +

c0(c
2
0 − 3)

(1 + 3α)(1 + 3δ)4
z4 + ...

□

For δ = 1, n = 0, Theorem 2.4 agrees with the following result due to Singh et al. [32]:

Corollary 2.7. If f ∈ R(α), then

|a2a3 − a4| ≤


2 if α = 0,

2(1 + 3α+ 6α2)
3
2

3
√
6α(1 + α)(1 + 2α)(1 + 3α)

if 0 < α ≤ 1.

For δ = 1, n = 1, Theorem 2.4 gives the following result due to Singh et al. [32]:

Corollary 2.8. If f ∈ R′(α)(0 ≤ α ≤ 1
2 ), then

|a2a3 − a4| ≤
(5 + 15α+ 18α2)

3
2

18(1 + α)(1 + 2α)(1 + 3α)
√
3(1 + 3α+ 6α2)

.

For δ = 1, n = 0, α = 1, Theorem 2.4 coincides with the following result due to Ba-
balola [5]:

Corollary 2.9. If f ∈ R, then

|a2a3 − a4| ≤
5
√
5

18
√
3
.

Theorem 2.5. If f ∈ R(δ;n;α), then

|H3(1)| ≤ 4
(1+2δ)n(1+2α)

[
2

(1+2δ)2n(1+2α)2 + 1
(1+4δ)n(1+4α)

+ [3(1+δ)n(1+2δ)n(1+α)(1+2α)−2(1+3δ)n(1+3α)]
3
2

3(1+δ)n(1+3δ)2n(1+α)(1+3α)2
√

3[(1+δ)n(1+2δ)n(1+α)(1+2α)−(1+3δ)n(1+3α)]

]
.

The result is sharp.

Proof. Using Theorem 2.1, Theorem 2.2, Theorem 2.3 and Theorem 2.4 in (1.2), the result
is obvious. The bound is sharp for the function
f(z) = z + c0

(1+α)(1+δ)2 z
2 +

c20−2
(1+2α)(1+2δ)3 z

3 +
c0(c

2
0−3)

(1+3α)(1+3δ)4 z
4 +

c40−4c20+2
(1+4α)(1+4δ)5 z

5 + ...

□

For δ = 1, n = 0, Theorem 2.5 gives the following result due to Singh et al. [32]:

Corollary 2.10. If f ∈ R(α), then

|H3(1)| ≤


16 if α = 0,

4

1 + 2α

[
2

(1 + 2α)2
+

1

1 + 4α
+

(1 + 3α+ 6α2)
3
2

3
√
6α(1 + α)(1 + 3α)2

]
if 0 < α ≤ 1.

For δ = 1, n = 1, Theorem 2.5 coincides with the following result due to Singh et al. [32]:
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Corollary 2.11. If f ∈ R′(α)(0 ≤ α ≤ 1
2 ), then

|H3(1)| ≤
1

3(1 + 2α)

[
8

9(1 + 2α)2
+

4

5(1 + 4α)
+

(5 + 15α+ 18α2)
3
2

12(1 + α)(1 + 3α)2
√

3(1 + 3α+ 6α2)

]
.

For δ = 1, n = 0, α = 1, Theorem 2.5 agrees with the following result due to Ba-
balola [5]:

Corollary 2.12. If f ∈ R, then
|H3(1)| ≤ 0.7423.

Theorem 2.6. If f ∈ R(δ;n;α), then

|H4(1)| ≤
8

(1 + 2δ)n(1 + 6δ)n(1 + 2α)(1 + 6α)

[
2

(1 + 2δ)2n(1 + 2α)2
+

1

(1 + 4δ)2n(1 + 4α)
(2.6)

+ [3(1+δ)n(1+2δ)n(1+α)(1+2α)−2(1+3δ)n(1+3α)]
3
2

3(1+δ)n(1+3δ)2n(1+α)(1+3α)2
√

3[(1+δ)n(1+2δ)n(1+α)(1+2α)−(1+3δ)n(1+3α)]

]
+ 2

(1+5δ)n(1+5α)p(δ, α) +
2

(1+4δ)n(1+4α)q(δ, α) +
2

(1+3δ)n(1+3α)r(δ, α),
where

p(δ, α) = 4

[
1

(1 + δ)2n(1 + 5δ)n(1 + α)2(1 + 5α)
+

1

(1 + 2δ)2n(1 + 3δ)n(1 + 3α)(1 + 2α)2

(2.7)

+ 1
(1+δ)n(1+3δ)2n(1+α)(1+3α)2

]
+ 29

4(1+δ)n(1+2δ)n(1+4δ)n(1+α)(1+2α)(1+4α) ,

q(δ, α) = 4

[
63

50(1 + δ)n(1 + 2δ)n(1 + 5δ)n(1 + α)(1 + 2α)(1 + 5α)
(2.8)

+ 9
5(1+2δ)2n(1+4δ)n(1+4α)(1+2α)2 + 76

75(1+2δ)n(1+3δ)2n(1+2α)(1+3α)2

]
and

r(δ, α) = 4

[
1

(1 + 2δ)2n(1 + 5δ)n(1 + 2α)2(1 + 5α)
(2.9)

+ 1
(1+δ)n(1+3δ)n(1+5δ)n(1+α)(1+3α)(1+5α) +

2
(1+3δ)3n(1+3α)3 + 1

(1+δ)n(1+4δ)2n(1+α)(1+4α)2

+ 17
16(1+2δ)n(1+3δ)n(1+4δ)n(1+2α)(1+3α)(1+4α)

]
+

1

(1 + δ)n(1 + 2δ)2n(1 + 3δ)n(1 + 4δ)2n(1 + 5δ)n(1 + α)(1 + 2α)2(1 + 3α)(1 + 4α)2(1 + 5α)
.

Proof. Using (2.2) in (1.4), (1.5) and (1.6), it gives

D1 =
c2c5

(1 + 2δ)n(1 + 5δ)n(1 + 2α)(1 + 5α)
− c3c4

(1 + 3δ)n(1 + 4δ)n(1 + 3α)(1 + 4α)
(2.10)

− c21c5
(1 + δ)2n(1 + 5δ)n(1 + α)2(1 + 5α)

+
c1c2c4

(1 + δ)n(1 + 2δ)n(1 + 4δ)n(1 + α)(1 + 2α)(1 + 4α)

+
c1c

2
3

(1 + δ)n(1 + 3δ)n(1 + α)(1 + 3α)2
− c3c

2
2

(1 + 2δ)2n(1 + 3δ)n(1 + 3α)(1 + 2α)2
,

D2 =
c3c5

(1 + 3δ)n(1 + 5δ)n(1 + 3α)(1 + 5α)
− c24

(1 + 4δ)2n(1 + 4α)2
(2.11)
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− c1c2c5
(1+δ)n(1+2δ)n(1+5δ)n(1+α)(1+2α)(1+5α) +

c1c3c4
(1+δ)n(1+3δ)n(1+4δ)n(1+α)(1+3α)(1+4α)

+
c4c

2
2

(1 + 2δ)2n(1 + 4δ)n(1 + 2α)2(1 + 4α)
− c2c

2
3

(1 + 2δ)n(1 + 3δ)2n(1 + 2α)(1 + 3α)2

and
D3 =

c1c3c5
(1 + δ)n(1 + 3δ)n(1 + 5δ)n(1 + α)(1 + 3α)(1 + 5α)

(2.12)

− c1c
2
4

(1+δ)n(1+4δ)2n(1+α)(1+4α)2 − c22c5
(1+2δ)2n(1+5δ)n(1+2α)2(1+5α)

+
2c2c3c4

(1 + 2δ)n(1 + 3δ)n(1 + 4δ)n(1 + 2α)(1 + 3α)(1 + 4α)
− c33

(1 + 3δ)3n(1 + 3α)3
.

On rearranging the terms in (2.10), (2.11) and (2.12), it yields

D1 =
c5(c2 − c21)

(1 + δ)2n(1 + 5δ)n(1 + α)2(1 + 5α)
+

c3(c4 − c22)

(1 + 2δ)2n(1 + 3δ)n(1 + 3α)(1 + 2α)2
(2.13)

− c3(c4 − c1c3)

(1 + δ)n(1 + 3δ)2n(1 + α)(1 + 3α)2
− 67c4(c3 − c1c2)

48(1 + δ)n(1 + 2δ)n(1 + 4δ)n(1 + α)(1 + 2α)(1 + 4α)

+
19c2(c5 − c1c4)

48(1 + δ)2n(1 + 2δ)n(1 + 4δ)n(1 + α)(1 + 2α)(1 + 4α)

+
c2c5

48(1 + δ)n(1 + 2δ)n(1 + 4δ)n(1 + α)(1 + 2α)(1 + 4α)
,

D2 =
c5(c3 − c1c2)

(1 + δ)n(1 + 2δ)n(1 + 5δ)n(1 + α)(1 + 2α)(1 + 5α)
(2.14)

− c4(c4 − c22)

(1 + 2δ)n(1 + 4δ)n(1 + 4α)(1 + 2α)2

+
c3(c5 − c2c3)

(1 + 2δ)n(1 + 3δ)2n(1 + 2α)(1 + 3α)2
− 4c4(c4 − c1c3)

5(1 + 2δ)n(1 + 3δ)2n(1 + 4α)(1 + 2α)2

− 13c3(c5 − c1c4)

50(1 + δ)n(1 + 2δ)n(1 + 5δ)n(1 + α)(1 + 2α)(1 + 5α)
+

c3c5
75(1 + 2δ)n(1 + 3δ)2n(1 + 2α)(1 + 3α)2

and

D3 =
c5(c4 − c22)

(1 + 2δ)2n(1 + 5δ)n(1 + 2α)2(1 + 5α)
(2.15)

− c5(c4 − c1c3)

(1 + δ)n(1 + 3δ)n(1 + 5δ)n(1 + α)(1 + 3α)(1 + 5α)

+
c3(c6 − c23)

(1 + 3δ)3n(1 + 3α)3
− c3(c6 − c2c4)

(1 + 3δ)3n(1 + 3α)3
+

c4(c5 − c1c4)

(1 + δ)n(1 + 4δ)2n(1 + α)(1 + 4α)2

− 17c4(c5 − c2c3)

16(1 + 2δ)n(1 + 3δ)n(1 + 4δ)3n(1 + 2α)(1 + 3α)(1 + 4α)

+
c4c5

4(1 + δ)n(1 + 2δ)2n(1 + 3δ)n(1 + 4δ)n(1 + 5δ)n(1 + α)(1 + 2α)2(1 + 3α)(1 + 4α)2(1 + 5α)
.

Using Lemma 2.1 and applying triangle inequality in (2.13), (2.14) and (2.15), we obtain

|D1| ≤ p(δ, α), (2.16)

|D2| ≤ q(δ, α), (2.17)
and

|D3| ≤ r(δ, α), (2.18)
where p(δ, α), q(δ, α) and r(δ, α) are defined in (2.7), (2.8) and (2.9) respectively.
Hence, using Theorem 2.1, Theorem 2.5, (2.16), (2.17) and (2.18) and applying triangle
inequality in (1.3), the result (2.6) is obvious.

□
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For δ = 1, n = 0, Theorem 2.6 gives the following result due to Singh et al. [32]:

Corollary 2.13. If f ∈ R(α), then

|H4(1)| ≤



152.0866 if α = 0,

8

(1 + 2α)(1 + 6α)

[
2

(1 + 2α)2
+

1

1 + 4α
+

(1 + 3α+ 6α2)
3
2

3
√
6α(1 + α)(1 + 3α)2

]
+

2

(1 + 5α)
p(α) +

2

(1 + 4α)
q(α) +

2

(1 + 3α)
r(α) if 0 < α ≤ 1,

where

p(α) = 4

[
1

(1 + α)2(1 + 5α)
+

1

(1 + 3α)(1 + 2α)2
+

1

(1 + α)(1 + 3α)2

]
+

29

4(1 + α)(1 + 2α)(1 + 4α)
,

q(α) = 4

[
63

50(1 + α)(1 + 2α)(1 + 5α)
+

9

5(1 + 4α)(1 + 2α)2
+

76

75(1 + 2α)(1 + 3α)2

]
and

r(α) = 4

[
1

(1 + 2α)2(1 + 5α)
+

1

(1 + α)(1 + 3α)(1 + 5α)
+

2

(1 + 3α)3
+

1

(1 + α)(1 + 4α)2

]
+

68

16(1 + 2α)(1 + 3α)(1 + 4α)
+

1

(1 + α)(1 + 2α)2(1 + 3α)(1 + 4α)2(1 + 5α)
.

For δ = 1, n = 1, Theorem 2.6 agrees with the following result due to Singh et al. [32]:

Corollary 2.14. If f ∈ R′(α)(0 ≤ α ≤ 1
2 ), then

|H4(1)| ≤
2

21(1 + 2α)(1 + 6α)

[
8

9(1 + 2α)2
+

4

5(1 + 4α)
+

(5 + 15α+ 18α2)
3
2

12(1 + α)(1 + 3α)2
√
3(1 + 3α+ 6α2)

]

+
1

3(1 + 5α)
u(α) +

2

5(1 + 4α)
v(α) +

1

2(1 + 3α)
w(α),

where
u(α) =

1

6(1 + α)2(1 + 5α)
+

1

9(1 + 3α)(1 + 2α)2
+

1

8(1 + α)(1 + 3α)2
+

29

120(1 + α)(1 + 2α)(1 + 4α)
,

v(α) =
7

50(1 + α)(1 + 2α)(1 + 5α)
+

4

25(1 + 4α)(1 + 2α)2
+

19

225(1 + 2α)(1 + 3α)2

and
w(α) =

2

27(1 + 2α)2(1 + 5α)
+

1

12(1 + α)(1 + 3α)(1 + 5α)
+

1

8(1 + 3α)3
+

2

25(1 + α)(1 + 4α)2

+
17

240(1 + 2α)(1 + 3α)(1 + 4α)
+

1

10800(1 + α)(1 + 2α)2(1 + 3α)(1 + 4α)2(1 + 5α)
.

For δ = 1, n = 0, α = 1, Theorem 2.6 coincides with the following result due to Singh
et al. [32]:

Corollary 2.15. If f ∈ R, then
|H4(1)| ≤ 0.7973.

3. CONCLUSION

In this paper, we have defined a unified class of analytic functions with the help of
generalized Sãlãgean operator and established the upper bound of the fourth Hankel de-
terminant for this class. Many known results follow as special cases by giving particular
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values to the parameters involved in the results of this paper. Till now, only a few reser-
achers became successful in establishing the bound for the fourth Hankel determinant of
some standard classes and no one has studied the fourth Hankel determinant for a unified
class. So, this paper will pave the way for other researchers to study the fourth Hankel
determinant problems for some more unifying classes.
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