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A note on an Engel condition with derivations in rings

MOHD ARIF RAZA and NADEEM UR REHMAN

ABSTRACT. Let R be a prime ring with center Z(R), C the extended centroid of R, d a derivation of R and
n, k be two fixed positive integers. In the present paper we investigate the behavior of a prime ring R satisfying
any one of the properties (i) d([z, y]x)™ = [z, y]x (i) if char(R) # 2, d([z,y]x) — [z, Y]k € Z(R) for all z,y in
some appropriate subset of R. Moreover, we also examine the case when R is a semiprime ring.

1. INTRODUCTION, NOTATION AND STATEMENTS OF THE RESULTS

Throughout this paper, unless specifically stated, R is a (semi)-prime ring, Z(R) is the
center of R, () is the Martindale quotient ring of R and U is the Utumi quotient ring
of R. The center of U, denoted by C, is called the extended centroid of R (we refer
the reader to [3], for the definitions and related properties of these objects). For each
z,y € R and each k > 0, define [z, y]; inductively by [z,y]o = z, [z,y]1 = zy — yz and
[z, 9]k = [[z,y]k—1,y] for k > 1. The ring R is said to satisfy an Engel condition if there

exists a positive integer k such that [x,y], = 0. Note that an Engel condition is a poly-

nomial [z, 9] = 3¢ _o(=1)™(¥)y™zy*~™ in non-commuting indeterminates z,y and

[z + 2,9k = [z,y]k + [2,y]x. Recall that a ring R is prime if for any a,b € R, aRb = {0}
implies a = 0 or b = 0, and is semiprime if for any a € R, aRa = {0} implies a = 0.
An additive mapping d : R — R is called a derivation if d(zy) = d(z)y + xd(y) holds
for all #,y € R. In particular, d is an inner derivation induced by an element ¢ € R, if
d(xz) = [a,z] forall z € R.

Many results in literature indicate that the global structure of a ring R is often tightly
connected to the behavior of additive mappings defined on R. During the past few
decades, there has been an ongoing interest concerning the relationship between the com-
mutativity of a ring and the existence of certain specific types of derivations. Derivation
with certain properties investigated in various paper (see [1, 2, 4, 7, 19] and references
therein). Starting from these results, many author studied derivations in the context of
prime and semiprime rings. The Engel type identity with derivation appeared in the well-
known paper of Posner [19], who proved that a prime ring admitting a nonzero derivation
d such that [d(z),z] € Z(R) for all x € R, must be commutative. Since then several au-
thors have studied this kind of identities with derivations acting on one-sided, two-sided
and Lie ideals of prime and semiprime rings (see [8], for a partial bibliography).

In 1992, Daif and Bell [7, Theorem 3], showed that if in a semiprime ring R there exists
a nonzero ideal I of R and a derivation d such that d([z,y]) = [z,y] for all z,y € I, then
I C Z(R). If R is a prime ring, this implies that R is commutative. Recently in 2011,
Huang [12] generalized Daif and Bell result. More precisely he prove that, if R is a prime
ring, I is a nonzero ideal of R, m, n are two fixed positive integers and d a derivation of R
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satisfy d([z,y])™ = [z,y], for all z,y € I, then R is commutative. In 1994, Giambruno et.
al. [10] established that a ring must be commutative if it satisfy [z, y|} = [z, y]k.

It is natural to ask what we can say about the commutativity of R satisfying any of
the following conditions: (P1) d([z,y]x)™ = [z, ylx (P2) d([z,y]k) — [z,y]x € Z(R) for all
x,y € 1. This result generalized a theorem of Huang [12], and for derivation Giambruno
theorem [10].

2. DERIVATIONS IN PRIME RINGS

We have started with the following proposition which is very crucial for developing
the proof of our main result.

Proposition 2.1. Let R be a prime ring, () the Martindale quotient ring of R, I a nonzero ideal of
R and n, k be two fixed positive integers. If d is a nonzero inner derivation on @), in the sense that
there exists q € Q such that d(z) = [q, ] for all x € R, and I satisfies ([q, [z, y]x])™ = [z, y]x for
all x,y € I, then R is commutative.

Proof. Assume that R is non-commutative. We have given that ([g, [z, y]x])" = [z, ]k
for all z,y € I. Since d # 0, ¢ ¢ Z(R) and hence I satisfied generalized polynomial
identity(GPI). By Chuang [5, Theorem 2], I and () satisfy the same generalized polynomial
identities, thus we have

([Qa [x’y]k])n = [I,y]k forallz,y € Q.

In case the center C of () is infinite, we have
([qv [xvy]k])n = [xvy}k for all T,y € Q Rc 67

where C is algebraic closure of C. Since both Q and Q ®¢ C are prime and centrally
closed [9, Theorems 2.5 and 3.5], we may replace R by @ or Q ®¢ C according as C is
finite or infinite. Thus we may assume that R is centrally closed over C (i.e., RC = R)
which is either finite or algebraically closed and ([g, [z, y]x])™ = [z,y]s for all z,y € R. By
Martindale [17, Theorem 3], RC (and so R) is a primitive ring having nonzero socle H
with D as the associated division ring.

Hence by Jacobson’s theorem [13, p.75], R is isomorphic to a dense ring of linear trans-
formations of some vector space V over D and H consists of the finite rank linear trans-
formations in R. If V is a finite dimensional over D, then the density of R on V implies
that R 2 M;(D), where t = dimp). Assume first that dimpV > 3.

Step 1. We want to show that, for any v € V, v and qv are linearly D-dependent. If
v = 0, then {v, qv} is linearly D-dependent. Now let v # 0 and {v, qv} is linearly D-
independent, since dimpV > 3, then there exists w € V such that {v, gv, w} is also linearly
D-independent. By the density of R, there exist 2,y € R such that:

zw=v, zqu=0, zTw=v
yo =0, yqu=w, Yyw=w.

These imply that (—1)"v = ([g, [z, y]x])"v— ([z, y]x)v = 0, a contradiction. So, we conclude
that {v, qv} is linearly D-dependent, for all v € V.

Step 2. We show here that there exists & € D such that qv = va, for any v € V. Now
choose v, w € V linearly independent. By Step 1, there exist v, a, 1w € D such that

qU = VQy, qU = Wy, Q(U + ’LU) = (’U + w)av+w

Moreover,
vy + wa = (V4 W)y 4.
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Hence
v(ay — Qptuw) + WOy — Qpty) =0,

and because v, w are linearly D-independent, we have o, = a,, = 44, that is, o does
not depend on the choice of v. This completes the proof of Step 2.

Let now for r € R,v € V. By Step 2, quv = va, r(qv) = r(va), and also ¢(rv) = (rv)c.
Thus 0 = [g,7]v, for any v € V, that is [¢,7]V = 0. Since V is a left faithful irreducible
R-module, hence [¢,7] =0, for all » € R, i.e., g € Z(R) and d = 0, which contradicts our
hypothesis.

Therefore dimpV mustbe < 2. In this case R is a simple GPl-ring with 1, and so it
is a central simple algebra finite dimensional over its center. By Lanski [15, Lemma 2], it
follows that there exists a suitable filed IF such that R C M, (F), the ring of all ¢ x ¢t matrices
over F, and moreover, M, (F) satisfies the same generalized polynomial identity of R.

If we assume ¢ > 3, then by the same argument as in Steps 1 and 2, we get a contra-
diction. Obviously if ¢ = 1, then R is commutative. Thus we may assume that ¢ = 2,
ie, R C Ms(F), where M, (F) satisfies ([¢, [z, y]x])" = [z, y]x. Denote by e;; the usual unit
matrix with 1 in (¢, j)-entry and zero elsewhere. Since by choosing = = €12,y = e22. In this
case we have (ge12 — €129)" = e12. Right multiplying by eq2, we get (—1)"(e12¢)"e12 =
qi1 qi12

(q€12 — 612(])” = €é12€12 = 0. Now set q =
421 422

. By calculation, we find that

(=)™ (8 q(2)’1) = 0, which implies that ¢; = 0. In the same manner, we can see that

q12 = 0. Thus we conclude that ¢ is a diagonal matrix in M>(F). Let x € Aut(My(F)).
Since ([x(q), [x(x), xW]])™ = [x(), x(y)]x, then x(¢) must be diagonal matrix in M(F).
In particular, let x(z) = (1 — e;5)x(1 + ¢;5) for ¢ # j. Then x(q) = ¢+ (gi; — gj;)ei;,
that is ¢;; = g;; for ¢ # j. This implies that ¢ is central in M (F), which leads to d = 0,
a contradiction. Thus ¢t = 1, that is R is commutative. This completes the proof of the
proposition. O

Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R and n, k be two fixed positive integers.
If R admits a derivation d such that d([z,y],)™ = [z, ]k for all z,y € I, then R is commutative.

Proof. 1If d = 0, then [z,y]; = 0 which is rewritten as [I;(y),y]x—1 = 0 for all z,y € I.
By Lanski [15, Theorem 1], either R is commutative or I, = 0ie., I C Z(R) in which
case R is also commutative by Mayne [18, Lemma 3]. Now we assume that d # 0 and
d([z, y]k)"™ = [z, y]x for all z,y € I, that is I satisfies the differential identity

( f (=™ (Z) ( Yo Yy eyt 1)

m=0 i+j=m—1
k —m
>ymd($)yk
mm(

m

ey enn(k
+ i(—l)m (i)y ; y’"d(y)ys)>n
m=0 rts=k—m—1
S (e

In the light of Kharchenko’s theory [14], we split the proof into two cases:
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Firstly we assume that d is an inner derivation induced by an element ¢ € @) such that
d(z) = [¢,z] for all x € R. Therefore from (2.1), we have

(i(—l)m(i)< > vl et

i+j=m—1

Z) vy (Y vl y])y5)>n

r+s=k—m-—1
u k
= E (l)m( )ymxykm forall z,y € I.
m

It can be easily seen that
(qé(—nm( By o ()t g
k
S (S

And hence we can write ([g, [z, y]x])™ = [z, y]x for all z,y € I. In this case we are done

from Proposition 2.1.

Secondly we now assume that d is an outer derivation on Q. Now by Kharchencko’s
theorem [14], I satisfy the generalized polynomial identity

(i(—l)m(jﬂ)( > Yyt

m=0

and in particular / satisfy the polynomial identity

Z (=™ (TIZ) ymaytT™ =0 forallz,y € 1.

m=0

That is [z,y]r = 0 for all z,y € I, and hence R is commutative by the same argument
presented above. This completes the proof of the theorem. O

We immediately get the following corollary from the above theorem:

Corollary 2.1. Let R be a prime ring, I a nonzero ideal of R and k be a fixed positive integer. If
R admits a derivation d such that d([z,y]r) = [z, Y]k for all z,y € I, then R is commutative.
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Theorem 2.2. Let R be a prime ring of characteristic different from 2 with center Z(R), I a
nonzero ideal of R and k be a fixed positive integer. If R admits a derivation d such that d([x, yx)—
[z,y]r € Z(R) forall x,y € I, then R satisfies s4, the standard identity in four variables.

Proof. If d = 0, then [z, y]; € Z(R) for all z,y € I and hence R satisfies the same identities.
In this case the identity is a polynomial so that there exists a field I such that R and F,
satisfy the same identities. Thus pick = e31,y = e11 — ea2 , we see that [z, yl, = e31 ¢
Z(R), a contradiction. Therefore ¢t < 2 and R satisfies s;. Now, we assume that d # 0.

If d([z,y]x) = [z,y]k for all z, y € I, then R is commutative by Corollary 2.1. Otherwise
we have INZ(R) # 0by our assumptions. Let now J be a nonzero two-sided ideal of R,
the ring of the central quotient of R. Since JNR is an ideal of R, then JARNZ(R) # 0. That
is J contains an invertible element in Rz, and so Rz is simple with 1. By the hypothesis for
any z,y € I and r € R, thus I satisfies the differential identity [d([z,y]x) — [z, Y]k, 7] = 0.
Which can be rewritten as, that is, I satisfy the polynomial identity

k i _ '
Fagrdtendo) =) X0 (F) X vt

m .
1+j=m—1

> (Fymay

k
1 SCV (o) PO DTS
m=0 r+s=k—m-—1

k

(e

If d is not an inner derivation, then / satlsfles the polynomial identity
f(@,y,rw, z) = |: ( ) inyj)xyk_m
i+j=m—1
< )ymwy
m
k
m
r+<; k m—1

-2 ””(Z)y’“w o=

By Kharchenko’s theorem [14], and setting z = w = 0 yields the identity

{ zk: (-1)™ (:1) Yyt ™, r] =0.

m=0

m=0

In this case it is well known that there exists a field F such that R and F; satisfy the same

k
polynomial identities. Thus Z (—1)™(F)ymxy*=™ is central in F,. Suppose t > 3 and

choose z = e31,y = e33. Then Z (—1)™(F)ymayk=m = (~1)*es, ¢ Z(F3), contrary to

our assumptions. This forces ¢ < 2, i.e., R satisfies s5. Notice that in this case t = 1,
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then R is commutative. Butif ¢ > 2 and « = ej2, ¥ = e22, we get the contradiction

f:o(—l)m (fl)ymxyk_m =e1o & Z(F2).

m=

Now let d be an inner derivation induced by an element ¢ € @, thatis, d(z) = [¢, z] for
all z € R. Since d # 0, we may assume that ¢ ¢ Z(R). By localizing R at Z(R) it is easy to
see that

i(—l)m(Z)( > vlauly)e ’“"+§k: () L e

m=0 i+j—m 1 m=0
+ Z ( )y oY vlewy)
r4+s=k—m-—1
k
Z ( >y xy"™™ € Z(Ry), foranyz,yc Ry.

m=0

Since R and Rz satisfy the same polynomial identities, in order to prove that R is
commutative, we may assume that R is simple with 1. In this case,

S (M)CT vl

m=0 i+j=m—1

+ Xk: (=™ (Ti)ym[q,x]y’“m
+Z ( )y (Y Ylayly)

r4+s=k—m-—1

k
z < )y zy*~™ € Z(R), forall z,y € R.

m=0

Therefore R satisfies a generalized polynomial identity and it is simple with 1, which
implies that = RC' = R and R has a minimal right ideal. Thus ¢ € R = @ and R
is simple artinian, that is, R = D;, where D is a division ring finite dimensional over
Z(R) by [17]. From [15, Lemma 2], it follows that there exists a suitable field F such
that R C M, (F), the ring of all ¢ x ¢t matrices over F, and moreover M, (F) satisfies the
generalized polynomial identity

S (D) vt

m=0 i+j=m—1
k k
+ Z(—l)m< )ym[q,x]yk ”
m=0 m
~ k
1 SCVY (o) PN DR R0
m=0 r+s=k—m-—1
b k
- Z (—1)’”( )ymxyk_m,r] =0forall z,y,r € M (F).
m
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In this case, as already see in Theorem 2.1, we have [q, [z, y]x] — [z, y]x is central in M, (F).
Suppose that ¢ > 3 and M, (F) satisfy

HQ7 [Ia y]k] - [SC, y]ka 7’] =0 fOI‘ all xz,y,Tr S Mt(IF) (22)

Let g = ), ayrey, with a; € F, and choose « = ¢;;, y = ¢;;, and r = ¢;;, where i # j. Then
by using the same argument presented in Theorem 2.1, we get
g, [, ylk] = [z, Y]k, 1] = —2e45qe€45,

which has rank 1 and so it cannot be central in M;(F), with ¢ > 3. This implies that ¢ < 2
and R satisfy s4. Now let e and f be any two orthogonal idempotent elements in M, (F).
Now, we replace x with exf, y with e, and r by ez f in (2.2) and let Y = [qg, [ex f, e]x] —
le, ex f]i. Then we compute

[, ylk = [exf,elr = (=1)Fexf

YVe= ([g,(—1)*exf] — (—1)Fexf)e
= (=) VD (exfq)e.
And
1Y = f(la: (=D)*exf] = (-1)*exf)
= (—1)"(fqex)f.
Hence
0= [[q7 [exf, e]k}] - [67 el'f]k, exf]
=[Y,exf]
= (=1)*2(exfq)exf.
Since char(R) # 2, this implies that (fgex)® = 0 for all z € M;(F). By Levitzki’s lemma
[11, Lemma 1.1], fgex = 0 for all z € M;(F) and by primeness of R, we get fge = 0.
Since f and e are any two orthogonal idempotent elements in M, (F), we have for any
idempotent e in M;(FF), (1 — e)ge = 0 = eq(1 — e) , that is, eq = eqe = ge. Which implies

[g,€] = 0. Since ¢ commutes with all idempotents in M;(F), ¢ € C and hence d = 0, a
contradiction. This completes the proof. O

The following example shows that the main results are not true in the case of arbitrary
rings.

Example 2.1. Let S be any non-commutative ring. Consider R = { (8 8) ra,be S }
0 a

and]:{ 0 0

which is not prime. Define the maps on R as follows d(z) = [e11,x], for all z € R. Then,
it is easy to see that [ is a nonzero ideal of R, d is a nonzero ideal of R and d satisfies the
requirements of Theorems 2.1 and 2.2 but R is not prime.

Hence, the hypothesis of primeness is crucial.

) rae S } Clearly, R is a ring with identity under the natural operations

Example 2.2. Let R = {(g ﬁ) ta,b,ce S} and I = {(8 8) ta € S}. Clearly, Ris a

ring with identity which is not prime and I is a nonzero ideal of R. Define d : R — R such
that d(x) = [z, e11 + ea2]. Then, it is easy to see that d is a nonzero derivation of R. Further,
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for any z,y € R the following conditions: d([z,y|x)"” = [z, y|r and d([z, y]x) — [z, y]x €
Z(R) are satisfied, where n, k are fixed positive integer.
Hence, in Theorems 2.1 and 2.2, the hypothesis of primeness cannot be omitted.

3. DERIVATIONS IN SEMIPRIME RINGS

From now on, R is a semiprime ring and U is the left Utumi quotient ring of R. In order
to prove the main results of this section we will make use of the following facts:

Fact 3.1 ([3, Proposition 2.5.1]). Any derivation of a semiprime ring R can be uniquely extended
to a derivation of its left Utumi quotient ring U, and so any derivation of R can be defined on the
whole U.

Fact 3.2 ([6, p.38]). If R is semiprime, then so is its left Utumi quotient ring. The extended
centroid C of a semiprime ring coincides with the center of its left Utumi quotient ring.

Fact 3.3 ([6, p.42]). Let B be the set of all the idempotents in C, the extended centroid of R.
Suppose that R is an orthogonally complete B-algebra. For any maximal ideal P of B, PR forms
a minimal prime ideal of R, which is invariant under any derivation of R.

Now we are ready to prove the following;:

Theorem 3.3. Let R be a semiprime ring, U the left Utumi quotient ring of R and k be a fixed
positive integer. If R admits a nonzero derivation d such that d([x, y]x)™ = [z, y]k forall z,y € R,
then there exists a central idempotent element e in U such that on the direct sum decomposition
U =eU® (1 —e)U, dvanishes identically on eU and the ring (1 — e)U is commutative.

Proof. Since R is semiprime and d is a derivation of R, we have given that d([z,y]s)" =
[,y]k for all z,y € R. By Fact 3.2, Z(U) = C, the extended centroid of R, and, by Fact
3.1, the derivation d can be uniquely extended on U. As we know that R and U satisfy
the same differential identities [16], therefore R satisfies d([z, y]x)" = [z, y]x. Let B be the
complete Boolean algebra of idempotents in C' and M be any maximal ideal of B. Since
U is an orthogonally complete B-algebra [6, p.42], thus by Fact 3.3, MU is a prime ideal
of U, which is d-invariant. Denote U = U/MU and d the derivation induced by d on U,
ie., d(@) = d(u) for all u € U. For any 7,7 € U, d([Z,7)x)" = [T,7]r. It is obvious that
U is prime. Therefore, by Theorem 2.1, we have either U is commutative or d = 0 in U.
This implies that, for any maximal ideal M of B, d(U) C MU or [U,U] C MU, where MU
runs over all minimal prime ideals of U. In any case d(U)[U,U] C MU = 0, for all M.
Therefore d(U)[U, U] C N, MU = 0.

By using the theory of orthogonal completion for semiprime rings [3, Chapter 3], it is
clear that there exists a central idempotent element e in U such that on the direct sum
decomposition U = eU & (1 — e)U, d vanishes identically on eU and the ring (1 — e)U is
commutative. With this completes the proof. O

We come now to our last result of this section:

Theorem 3.4. Let R be a semiprime ring of characteristic different from 2 with center Z(R), U
the left Utumi quotient ring of R and k be a fixed positive integer. If R admits a nonzero derivation
d such that d([z,y]k) — [z,y]x € Z(R) for all z,y € R, then there exists a central idempotent
element e in U such that on the direct sum decomposition U = eU & (1 — e)U, d vanishes
identically on eU and the ring (1 — e)U satisfies s4, the standard identity in four variables.

Proof. By Fact 3.2, Z(U) = C, the extended centroid of R, and by Fact 3.1, the derivation
d can be uniquely extended on U. Since R and U satisfy the same differential identities,
then d([z,y]x)™ — [z,y]x € C for all z,y € U. Let B be the complete Boolean algebra of
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idempotents in C' and M be any maximal ideal of B. As already pointed out in the proof
of Theorem 3.3, U is an orthogonally complete B-algebra, and by Fact 3.3, MU is a prime
ideal of U, which is d-invariant. Let d be the derivation induced by d on U = U/MU.

Since Z(U) = (C + MU)/MU = C/MU, then d([z,y]x)" — [z,y]x € (C + MU)/MU, for

all z,y € U. Moreover U is prime, hence we may conclude, by Theorem 2.2, either d = 0
in U or U satisfies s4. This implies that, for any maximal ideal M of B, either d(U) C MU
or sq(z1,x2,x3,24) € MU, for all x1,x9,x3,24 € U. In any case d(U)s4(z1, 2,23, 24) C
Ny MU = 0. From [3, Chapter 3], there exists a central idempotent element e of U, the left
Utumi quotient ring of R such that on the direct sum decomposition U = eU & (1 — e)U,
d(eU) = 0 and the ring (1 — e)U satisfies s4. This completes the proof of the theorem. [

According to Theorem 2.1 and Theorem 2.2, we conclude with the following conjecture.

Conjecture 3.1. Let R be a prime or semiprime ring with suitable torsion free restriction, Z(R)
be the center of R, I be a nonzero ideal of R, and n, k be the fixed positive integers. If R admits a
derivation d such that d([z,y]x)" — [z, y]x € Z(R) forall x,y € I, then R is commutative (or
satisfies s4).

Acknowledgement. The authors wish to thank the referee for his/her suggestions which
improve the quality of the paper.
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