CREAT. MATH. INFORM. Volume **26** (2017), No. 1, Pages 19 - 27 Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2017.01.03

A note on an Engel condition with derivations in rings

MOHD ARIF RAZA and NADEEM UR REHMAN

ABSTRACT. Let *R* be a prime ring with center Z(R), *C* the extended centroid of *R*, *d* a derivation of *R* and *n*, *k* be two fixed positive integers. In the present paper we investigate the behavior of a prime ring *R* satisfying any one of the properties (i) $d([x, y]_k)^n = [x, y]_k$ (ii) if $char(R) \neq 2$, $d([x, y]_k) - [x, y]_k \in Z(R)$ for all *x*, *y* in some appropriate subset of *R*. Moreover, we also examine the case when *R* is a semiprime ring.

1. INTRODUCTION, NOTATION AND STATEMENTS OF THE RESULTS

Throughout this paper, unless specifically stated, R is a (semi)-prime ring, Z(R) is the center of R, Q is the Martindale quotient ring of R and U is the Utumi quotient ring of R. The center of U, denoted by C, is called the extended centroid of R (we refer the reader to [3], for the definitions and related properties of these objects). For each $x, y \in R$ and each $k \ge 0$, define $[x, y]_k$ inductively by $[x, y]_0 = x$, $[x, y]_1 = xy - yx$ and $[x, y]_k = [[x, y]_{k-1}, y]$ for k > 1. The ring R is said to satisfy an Engel condition if there exists a positive integer k such that $[x, y]_k = 0$. Note that an Engel condition is a polynomial $[x, y]_k = [x, y]_k + [z, y]_k$. Recall that a ring R is prime if for any $a, b \in R$, $aRb = \{0\}$ implies a = 0 or b = 0, and is semiprime if for any $a \in R$, $aRa = \{0\}$ implies a = 0. An additive mapping $d : R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. In particular, d is an inner derivation induced by an element $a \in R$, if d(x) = [a, x] for all $x \in R$.

Many results in literature indicate that the global structure of a ring R is often tightly connected to the behavior of additive mappings defined on R. During the past few decades, there has been an ongoing interest concerning the relationship between the commutativity of a ring and the existence of certain specific types of derivations. Derivation with certain properties investigated in various paper (see [1, 2, 4, 7, 19] and references therein). Starting from these results, many author studied derivations in the context of prime and semiprime rings. The Engel type identity with derivation appeared in the well-known paper of Posner [19], who proved that a prime ring admitting a nonzero derivation d such that $[d(x), x] \in Z(R)$ for all $x \in R$, must be commutative. Since then several authors have studied this kind of identities with derivations acting on one-sided, two-sided and Lie ideals of prime and semiprime rings (see [8], for a partial bibliography).

In 1992, Daif and Bell [7, Theorem 3], showed that if in a semiprime ring R there exists a nonzero ideal I of R and a derivation d such that d([x, y]) = [x, y] for all $x, y \in I$, then $I \subseteq Z(R)$. If R is a prime ring, this implies that R is commutative. Recently in 2011, Huang [12] generalized Daif and Bell result. More precisely he prove that, if R is a prime ring, I is a nonzero ideal of R, m, n are two fixed positive integers and d a derivation of R

Received: 24.03.2016. In revised form: 01.07.2016. Accepted: 15.07.2016

²⁰¹⁰ Mathematics Subject Classification. 16N60, 16U80, 16W25.

Key words and phrases. Prime and semiprime rings, derivation, maximal right ring of quotient, generalized polynomial identity (GPI), ideal.

Corresponding author: Mohd Arif Raza; arifraza03@gmail.com

satisfy $d([x, y])^m = [x, y]_n$ for all $x, y \in I$, then *R* is commutative. In 1994, Giambruno et. al. [10] established that a ring must be commutative if it satisfy $[x, y]_{L}^n = [x, y]_k$.

It is natural to ask what we can say about the commutativity of R satisfying any of the following conditions: $(P_1) d([x, y]_k)^n = [x, y]_k (P_2) d([x, y]_k) - [x, y]_k \in Z(R)$ for all $x, y \in I$. This result generalized a theorem of Huang [12], and for derivation Giambruno theorem [10].

2. DERIVATIONS IN PRIME RINGS

We have started with the following proposition which is very crucial for developing the proof of our main result.

Proposition 2.1. Let *R* be a prime ring, *Q* the Martindale quotient ring of *R*, *I* a nonzero ideal of *R* and *n*, *k* be two fixed positive integers. If *d* is a nonzero inner derivation on *Q*, in the sense that there exists $q \in Q$ such that d(x) = [q, x] for all $x \in R$, and *I* satisfies $([q, [x, y]_k])^n = [x, y]_k$ for all $x, y \in I$, then *R* is commutative.

Proof. Assume that R is non-commutative. We have given that $([q, [x, y]_k])^n = [x, y]_k$ for all $x, y \in I$. Since $d \neq 0$, $q \notin Z(R)$ and hence I satisfied generalized polynomial identity(GPI). By Chuang [5, Theorem 2], I and Q satisfy the same generalized polynomial identities, thus we have

$$([q, [x, y]_k])^n = [x, y]_k$$
 for all $x, y \in Q$.

In case the center C of Q is infinite, we have

$$([q, [x, y]_k])^n = [x, y]_k$$
 for all $x, y \in Q \otimes_C \overline{C}$,

where \overline{C} is algebraic closure of *C*. Since both *Q* and $Q \otimes_C \overline{C}$ are prime and centrally closed [9, Theorems 2.5 and 3.5], we may replace *R* by *Q* or $Q \otimes_C \overline{C}$ according as *C* is finite or infinite. Thus we may assume that *R* is centrally closed over *C* (*i.e.*, RC = R) which is either finite or algebraically closed and $([q, [x, y]_k])^n = [x, y]_k$ for all $x, y \in R$. By Martindale [17, Theorem 3], *RC* (and so *R*) is a primitive ring having nonzero socle *H* with \mathcal{D} as the associated division ring.

Hence by Jacobson's theorem [13, p.75], R is isomorphic to a dense ring of linear transformations of some vector space \mathcal{V} over \mathcal{D} and H consists of the finite rank linear transformations in R. If \mathcal{V} is a finite dimensional over \mathcal{D} , then the density of R on \mathcal{V} implies that $R \cong M_t(\mathcal{D})$, where $t = \dim_{\mathcal{D}} \mathcal{V}$. Assume first that $\dim_{\mathcal{D}} \mathcal{V} \ge 3$.

Step 1. We want to show that, for any $v \in \mathcal{V}$, v and qv are linearly \mathcal{D} -dependent. If v = 0, then $\{v, qv\}$ is linearly \mathcal{D} -dependent. Now let $v \neq 0$ and $\{v, qv\}$ is linearly \mathcal{D} -independent, since $\dim_{\mathcal{D}} \mathcal{V} \geq 3$, then there exists $w \in \mathcal{V}$ such that $\{v, qv, w\}$ is also linearly \mathcal{D} -independent. By the density of R, there exist $x, y \in R$ such that:

$$xv = v, \quad xqv = 0, \quad xw = v$$

 $yv = 0, \quad yqv = w, \quad yw = w.$

These imply that $(-1)^n v = ([q, [x, y]_k])^n v - ([x, y]_k)v = 0$, a contradiction. So, we conclude that $\{v, qv\}$ is linearly \mathcal{D} -dependent, for all $v \in \mathcal{V}$.

Step 2. We show here that there exists $\alpha \in \mathcal{D}$ such that $qv = v\alpha$, for any $v \in \mathcal{V}$. Now choose $v, w \in \mathcal{V}$ linearly independent. By Step 1, there exist $\alpha_v, \alpha_w, \alpha_{v+w} \in \mathcal{D}$ such that

$$qv = v\alpha_v, \ qw = w\alpha_w, \ q(v+w) = (v+w)\alpha_{v+w}$$

Moreover,

$$v\alpha_v + w\alpha = (v+w)\alpha_{v+w}.$$

Hence

$$v(\alpha_v - \alpha_{v+w}) + w(\alpha_w - \alpha_{v+w}) = 0,$$

and because v, w are linearly \mathcal{D} -independent, we have $\alpha_v = \alpha_w = \alpha_{v+w}$, that is, α does not depend on the choice of v. This completes the proof of Step 2.

Let now for $r \in R, v \in \mathcal{V}$. By Step 2, $qv = v\alpha$, $r(qv) = r(v\alpha)$, and also $q(rv) = (rv)\alpha$. Thus 0 = [q, r]v, for any $v \in \mathcal{V}$, that is $[q, r]\mathcal{V} = 0$. Since \mathcal{V} is a left faithful irreducible *R*-module, hence [q, r] = 0, for all $r \in R$, i.e., $q \in Z(R)$ and d = 0, which contradicts our hypothesis.

Therefore $\dim_{\mathcal{D}}\mathcal{V}$ must be ≤ 2 . In this case R is a simple GPI-ring with 1, and so it is a central simple algebra finite dimensional over its center. By Lanski [15, Lemma 2], it follows that there exists a suitable filed \mathbb{F} such that $R \subseteq M_t(\mathbb{F})$, the ring of all $t \times t$ matrices over \mathbb{F} , and moreover, $M_t(\mathbb{F})$ satisfies the same generalized polynomial identity of R.

If we assume $t \ge 3$, then by the same argument as in Steps 1 and 2, we get a contradiction. Obviously if t = 1, then R is commutative. Thus we may assume that t = 2, i.e., $R \subseteq M_2(\mathbb{F})$, where $M_2(\mathbb{F})$ satisfies $([q, [x, y]_k])^n = [x, y]_k$. Denote by e_{ij} the usual unit matrix with 1 in (i, j)-entry and zero elsewhere. Since by choosing $x = e_{12}, y = e_{22}$. In this case we have $(qe_{12} - e_{12}q)^n = e_{12}$. Right multiplying by e_{12} , we get $(-1)^n(e_{12}q)^n e_{12} = (qe_{12} - e_{12}q)^n = e_{12}e_{12} = 0$. Now set $q = \begin{pmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{pmatrix}$. By calculation, we find that $(-1)^n \begin{pmatrix} 0 & q_{21}^n \\ 0 & 0 \end{pmatrix} = 0$, which implies that $q_{21} = 0$. In the same manner, we can see that $q_{12} = 0$. Thus we conclude that q is a diagonal matrix in $M_2(\mathbb{F})$. Let $\chi \in Aut(M_2(\mathbb{F}))$.

Since $([\chi(q), [\chi(x), \chi(y)]_k])^n = [\chi(x), \chi(y)]_k$, then $\chi(q)$ must be diagonal matrix in $M_2(\mathbb{F})$. In particular, let $\chi(x) = (1 - e_{ij})x(1 + e_{ij})$ for $i \neq j$. Then $\chi(q) = q + (q_{ii} - q_{jj})e_{ij}$, that is $q_{ii} = q_{jj}$ for $i \neq j$. This implies that q is central in $M_2(\mathbb{F})$, which leads to d = 0, a contradiction. Thus t = 1, that is R is commutative. This completes the proof of the proposition.

Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R and n, k be two fixed positive integers. If R admits a derivation d such that $d([x, y]_k)^n = [x, y]_k$ for all $x, y \in I$, then R is commutative.

Proof. If d = 0, then $[x, y]_k = 0$ which is rewritten as $[I_x(y), y]_{k-1} = 0$ for all $x, y \in I$. By Lanski [15, Theorem 1], either R is commutative or $I_x = 0$ i.e., $I \subseteq Z(R)$ in which case R is also commutative by Mayne [18, Lemma 3]. Now we assume that $d \neq 0$ and $d([x, y]_k)^n = [x, y]_k$ for all $x, y \in I$, that is I satisfies the differential identity

$$\left(\sum_{m=0}^{k} (-1)^{m} \binom{k}{m} \left(\sum_{i+j=m-1} y^{i} d(y) y^{j} \right) x y^{k-m} + \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} d(x) y^{k-m} + \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} x (\sum_{r+s=k-m-1} y^{r} d(y) y^{s}) \right)^{n} = \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} x y^{k-m}.$$
(2.1)

In the light of Kharchenko's theory [14], we split the proof into two cases:

Firstly we assume that *d* is an inner derivation induced by an element $q \in Q$ such that d(x) = [q, x] for all $x \in R$. Therefore from (2.1), we have

$$\begin{split} \Big(\sum_{m=0}^{k} (-1)^{m} \binom{k}{m} (\sum_{i+j=m-1} y^{i}([q,y])y^{j})xy^{k-m} \\ &+ \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m}([q,x])y^{k-m} \\ &+ \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m}x(\sum_{r+s=k-m-1} y^{r}([q,y])y^{s}) \Big)^{n} \\ &= \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m}xy^{k-m} \text{ for all } x, y \in I. \end{split}$$

It can be easily seen that

,

$$\begin{split} \left(q(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m}y^{m}xy^{k-m}) - (\sum_{m=0}^{k}(-1)^{m}\binom{k}{m}y^{m}xy^{k-m})q\right)^{n} \\ &= \sum_{m=0}^{k}(-1)^{m}\binom{k}{m}y^{m}xy^{k-m}. \end{split}$$

And hence we can write $([q, [x, y]_k])^n = [x, y]_k$ for all $x, y \in I$. In this case we are done from Proposition 2.1.

Secondly we now assume that *d* is an outer derivation on *Q*. Now by Kharchencko's theorem [14], *I* satisfy the generalized polynomial identity

$$\begin{split} \Big(\sum_{m=0}^{k} (-1)^{m} \binom{k}{m} (\sum_{i+j=m-1} y^{i} z y^{j}) x y^{k-m} \\ &+ \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} w y^{k-m} \\ &+ \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} x (\sum_{r+s=k-m-1} y^{r} z y^{s}) \Big)^{n} \\ &= \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} x y^{k-m}, \end{split}$$

and in particular I satisfy the polynomial identity

$$\sum_{m=0}^{k} (-1)^m \binom{k}{m} y^m x y^{k-m} = 0 \text{ for all } x, y \in I.$$

That is $[x, y]_k = 0$ for all $x, y \in I$, and hence R is commutative by the same argument presented above. This completes the proof of the theorem.

We immediately get the following corollary from the above theorem:

Corollary 2.1. Let R be a prime ring, I a nonzero ideal of R and k be a fixed positive integer. If R admits a derivation d such that $d([x, y]_k) = [x, y]_k$ for all $x, y \in I$, then R is commutative.

Theorem 2.2. Let R be a prime ring of characteristic different from 2 with center Z(R), I a nonzero ideal of R and k be a fixed positive integer. If R admits a derivation d such that $d([x, y]_k) - [x, y]_k \in Z(R)$ for all $x, y \in I$, then R satisfies s_4 , the standard identity in four variables.

Proof. If d = 0, then $[x, y]_k \in Z(R)$ for all $x, y \in I$ and hence R satisfies the same identities. In this case the identity is a polynomial so that there exists a field \mathbb{F} such that R and \mathbb{F}_t satisfy the same identities. Thus pick $x = e_{31}, y = e_{11} - e_{22}$, we see that $[x, y]_k = e_{31} \notin Z(R)$, a contradiction. Therefore $t \leq 2$ and R satisfies s_4 . Now, we assume that $d \neq 0$.

If $d([x, y]_k) = [x, y]_k$ for all $x, y \in I$, then R is commutative by Corollary 2.1. Otherwise we have $I \cap Z(R) \neq 0$ by our assumptions. Let now J be a nonzero two-sided ideal of R_Z , the ring of the central quotient of R. Since $J \cap R$ is an ideal of R, then $J \cap R \cap Z(R) \neq 0$. That is J contains an invertible element in R_Z , and so R_Z is simple with 1. By the hypothesis for any $x, y \in I$ and $r \in R$, thus I satisfies the differential identity $[d([x, y]_k) - [x, y]_k, r] = 0$. Which can be rewritten as, that is, I satisfy the polynomial identity

$$\begin{split} f(x,y,r,d(x),d(y)) = & \left[\sum_{m=0}^{k} (-1)^m \binom{k}{m} \left(\sum_{i+j=m-1} y^i d(y) y^j\right) x y^{k-m} \right. \\ & + \sum_{m=0}^{k} (-1)^m \binom{k}{m} y^m d(x) y^{k-m} \\ & + \sum_{m=0}^{k} (-1)^m \binom{k}{m} y^m x (\sum_{r+s=k-m-1} y^r d(y) y^s) \\ & - \sum_{m=0}^{k} (-1)^m \binom{k}{m} y^m x y^{k-m}, r \right] = 0. \end{split}$$

If *d* is not an inner derivation, then *I* satisfies the polynomial identity

$$\begin{split} f(x,y,r,w,z) = & \left[\sum_{m=0}^{k} (-1)^m \binom{k}{m} \big(\sum_{i+j=m-1} y^i z y^j \big) x y^{k-m} \right. \\ & + \sum_{m=0}^{k} (-1)^m \binom{k}{m} y^m w y^{k-m} \\ & + \sum_{m=0}^{k} (-1)^m \binom{k}{m} y^m x (\sum_{r+s=k-m-1} y^r z y^s) \\ & - \sum_{m=0}^{k} (-1)^m \binom{k}{m} y^m x y^{k-m}, r \right] = 0. \end{split}$$

By Kharchenko's theorem [14], and setting z = w = 0 yields the identity

$$\left[\sum_{m=0}^{k} (-1)^m \binom{k}{m} y^m x y^{k-m}, r\right] = 0$$

In this case it is well known that there exists a field \mathbb{F} such that R and \mathbb{F}_t satisfy the same polynomial identities. Thus $\sum_{m=0}^{k} (-1)^m {k \choose m} y^m x y^{k-m}$ is central in \mathbb{F}_t . Suppose $t \ge 3$ and choose $x = e_{31}, y = e_{33}$. Then $\sum_{m=0}^{k} (-1)^m {k \choose m} y^m x y^{k-m} = (-1)^k e_{31} \notin Z(\mathbb{F}_3)$, contrary to our assumptions. This forces $t \le 2$, i.e., R satisfies s_4 . Notice that in this case t = 1, then *R* is commutative. But if $t \ge 2$ and $x = e_{12}$, $y = e_{22}$, we get the contradiction $\sum_{m=0}^{k} (-1)^m {k \choose m} y^m x y^{k-m} = e_{12} \notin Z(\mathbb{F}_2).$

Now let *d* be an inner derivation induced by an element $q \in Q$, that is , d(x) = [q, x] for all $x \in R$. Since $d \neq 0$, we may assume that $q \notin Z(R)$. By localizing *R* at Z(R) it is easy to see that

$$\begin{split} \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} \Big(\sum_{i+j=m-1} y^{i}[q, y] y^{j} \Big) x y^{k-m} + \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m}[q, x] y^{k-m} \\ &+ \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} x \Big(\sum_{r+s=k-m-1} y^{r}[q, y] y^{s} \Big) \\ &- \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} x y^{k-m} \in Z(R_{Z}), \quad \text{ for any } x, y \in R_{Z}. \end{split}$$

Since R and R_Z satisfy the same polynomial identities, in order to prove that R is commutative, we may assume that R is simple with 1. In this case,

$$\begin{split} \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} & (\sum_{i+j=m-1} y^{i}[q, y] y^{j}) x y^{k-m} \\ &+ \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m}[q, x] y^{k-m} \\ &+ \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} x (\sum_{r+s=k-m-1} y^{r}[q, y] y^{s}) \\ &- \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} x y^{k-m} \in Z(R), \text{ for all } x, y \in R. \end{split}$$

Therefore R satisfies a generalized polynomial identity and it is simple with 1, which implies that Q = RC = R and R has a minimal right ideal. Thus $q \in R = Q$ and Ris simple artinian, that is, $R = D_t$, where D is a division ring finite dimensional over Z(R) by [17]. From [15, Lemma 2], it follows that there exists a suitable field \mathbb{F} such that $R \subseteq M_t(\mathbb{F})$, the ring of all $t \times t$ matrices over \mathbb{F} , and moreover $M_t(\mathbb{F})$ satisfies the generalized polynomial identity

$$\begin{split} \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} \Big(\sum_{i+j=m-1} y^{i}[q,y]y^{j} \Big) xy^{k-m} \\ &+ \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m}[q,x]y^{k-m} \\ &+ \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} x (\sum_{r+s=k-m-1} y^{r}[q,y]y^{s}) \\ &- \sum_{m=0}^{k} (-1)^{m} \binom{k}{m} y^{m} xy^{k-m}, r \Big] = 0 \text{ for all } x, y, r \in M_{t}(\mathbb{F}). \end{split}$$

In this case, as already see in Theorem 2.1, we have $[q, [x, y]_k] - [x, y]_k$ is central in $M_t(\mathbb{F})$. Suppose that $t \ge 3$ and $M_t(\mathbb{F})$ satisfy

$$[[q, [x, y]_k] - [x, y]_k, r] = 0 \text{ for all } x, y, r \in M_t(\mathbb{F}).$$
(2.2)

Let $q = \sum_{t} a_{tt}e_{tt}$, with $a_t \in \mathbb{F}$, and choose $x = e_{ij}$, $y = e_{jj}$, and $r = e_{ij}$, where $i \neq j$. Then by using the same argument presented in Theorem 2.1, we get

$$[[q, [x, y]_k] - [x, y]_k, r] = -2e_{ij}qe_{ij},$$

which has rank 1 and so it cannot be central in $M_t(\mathbb{F})$, with $t \ge 3$. This implies that $t \le 2$ and R satisfy s_4 . Now let e and f be any two orthogonal idempotent elements in $M_t(\mathbb{F})$. Now, we replace x with exf, y with e, and r by exf in (2.2) and let $Y = [q, [exf, e]_k] - [e, exf]_k$. Then we compute

$$[x, y]_k = [exf, e]_k = (-1)^k exf$$

$$Ye = ([q, (-1)^k exf] - (-1)^k exf)e$$

= (-1)^(k+1)(exfq)e.

And

$$fY = f([q, (-1)^k exf] - (-1)^k exf)$$
$$= (-1)^k (fqex)f.$$

Hence

$$\begin{aligned} 0 &= [[q, [exf, e]_k] - [e, exf]_k, exf] \\ &= [Y, exf] \\ &= (-1)^{k+1} 2(exfq) exf. \end{aligned}$$

Since $char(R) \neq 2$, this implies that $(fqex)^3 = 0$ for all $x \in M_t(\mathbb{F})$. By Levitzki's lemma [11, Lemma 1.1], fqex = 0 for all $x \in M_t(\mathbb{F})$ and by primeness of R, we get fqe = 0. Since f and e are any two orthogonal idempotent elements in $M_t(\mathbb{F})$, we have for any idempotent e in $M_t(\mathbb{F})$, (1 - e)qe = 0 = eq(1 - e), that is, eq = eqe = qe. Which implies [q, e] = 0. Since q commutes with all idempotents in $M_t(\mathbb{F})$, $q \in C$ and hence d = 0, a contradiction. This completes the proof.

The following example shows that the main results are not true in the case of arbitrary rings.

Example 2.1. Let *S* be any non-commutative ring. Consider $R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in S \right\}$ and $I = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} : a \in S \right\}$. Clearly, *R* is a ring with identity under the natural operations which is not prime. Define the maps on *R* as follows $d(x) = [e_{11}, x]$, for all $x \in R$. Then, it is easy to see that *I* is a nonzero ideal of *R*, *d* is a nonzero ideal of *R* and *d* satisfies the requirements of Theorems 2.1 and 2.2 but *R* is not prime.

Hence, the hypothesis of primeness is crucial.

Example 2.2. Let $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in S \right\}$ and $I = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} : a \in S \right\}$. Clearly, *R* is a ring with identity which is not prime and *I* is a nonzero ideal of *R*. Define $d : R \to R$ such that $d(x) = [x, e_{11} + e_{22}]$. Then, it is easy to see that *d* is a nonzero derivation of *R*. Further,

for any $x, y \in R$ the following conditions: $d([x, y]_k)^n = [x, y]_k$ and $d([x, y]_k) - [x, y]_k \in Z(R)$ are satisfied, where n, k are fixed positive integer.

Hence, in Theorems 2.1 and 2.2, the hypothesis of primeness cannot be omitted.

3. DERIVATIONS IN SEMIPRIME RINGS

From now on, R is a semiprime ring and U is the left Utumi quotient ring of R. In order to prove the main results of this section we will make use of the following facts:

Fact 3.1 ([3, Proposition 2.5.1]). Any derivation of a semiprime ring R can be uniquely extended to a derivation of its left Utumi quotient ring U, and so any derivation of R can be defined on the whole U.

Fact 3.2 ([6, p.38]). If R is semiprime, then so is its left Utumi quotient ring. The extended centroid C of a semiprime ring coincides with the center of its left Utumi quotient ring.

Fact 3.3 ([6, p.42]). Let B be the set of all the idempotents in C, the extended centroid of R. Suppose that R is an orthogonally complete B-algebra. For any maximal ideal P of B, PR forms a minimal prime ideal of R, which is invariant under any derivation of R.

Now we are ready to prove the following:

Theorem 3.3. Let R be a semiprime ring, U the left Utumi quotient ring of R and k be a fixed positive integer. If R admits a nonzero derivation d such that $d([x, y]_k)^n = [x, y]_k$ for all $x, y \in R$, then there exists a central idempotent element e in U such that on the direct sum decomposition $U = eU \oplus (1 - e)U$, d vanishes identically on eU and the ring (1 - e)U is commutative.

Proof. Since *R* is semiprime and *d* is a derivation of *R*, we have given that $d([x, y]_k)^n = [x, y]_k$ for all $x, y \in R$. By Fact 3.2, Z(U) = C, the extended centroid of *R*, and, by Fact 3.1, the derivation *d* can be uniquely extended on *U*. As we know that *R* and *U* satisfy the same differential identities [16], therefore *R* satisfies $d([x, y]_k)^n = [x, y]_k$. Let *B* be the complete Boolean algebra of idempotents in *C* and *M* be any maximal ideal of *B*. Since *U* is an orthogonally complete *B*-algebra [6, p.42], thus by Fact 3.3, *MU* is a prime ideal of *U*, which is *d*-invariant. Denote $\overline{U} = U/MU$ and \overline{d} the derivation induced by *d* on \overline{U} , i.e., $\overline{d}(\overline{u}) = \overline{d(u)}$ for all $u \in U$. For any $\overline{x}, \overline{y} \in \overline{U}, \overline{d}([\overline{x}, \overline{y}]_k)^n = [\overline{x}, \overline{y}]_k$. It is obvious that \overline{U} is prime. Therefore, by Theorem 2.1, we have either \overline{U} is commutative or $\overline{d} = 0$ in \overline{U} . This implies that, for any maximal ideal *M* of *B*, $d(U) \subseteq MU$ or $[U, U] \subseteq MU$, where *MU* runs over all minimal prime ideals of *U*. In any case $d(U)[U, U] \subseteq MU = 0$, for all *M*. Therefore $d(U)[U, U] \subseteq \bigcap_M MU = 0$.

By using the theory of orthogonal completion for semiprime rings [3, Chapter 3], it is clear that there exists a central idempotent element e in U such that on the direct sum decomposition $U = eU \oplus (1 - e)U$, d vanishes identically on eU and the ring (1 - e)U is commutative. With this completes the proof.

We come now to our last result of this section:

Theorem 3.4. Let R be a semiprime ring of characteristic different from 2 with center Z(R), U the left Utumi quotient ring of R and k be a fixed positive integer. If R admits a nonzero derivation d such that $d([x, y]_k) - [x, y]_k \in Z(R)$ for all $x, y \in R$, then there exists a central idempotent element e in U such that on the direct sum decomposition $U = eU \oplus (1 - e)U$, d vanishes identically on eU and the ring (1 - e)U satisfies s_4 , the standard identity in four variables.

Proof. By Fact 3.2, Z(U) = C, the extended centroid of R, and by Fact 3.1, the derivation d can be uniquely extended on U. Since R and U satisfy the same differential identities, then $d([x, y]_k)^n - [x, y]_k \in C$ for all $x, y \in U$. Let B be the complete Boolean algebra of

idempotents in *C* and *M* be any maximal ideal of *B*. As already pointed out in the proof of Theorem 3.3, *U* is an orthogonally complete *B*-algebra, and by Fact 3.3, *MU* is a prime ideal of *U*, which is *d*-invariant. Let \overline{d} be the derivation induced by *d* on $\overline{U} = U/MU$. Since $Z(\overline{U}) = (C + MU)/MU = C/MU$, then $d([x, y]_k)^n - [x, y]_k \in (C + MU)/MU$, for all $x, y \in \overline{U}$. Moreover \overline{U} is prime, hence we may conclude, by Theorem 2.2, either $\overline{d} = 0$ in \overline{U} or \overline{U} satisfies s_4 . This implies that, for any maximal ideal *M* of *B*, either $d(U) \subseteq MU$ or $s_4(x_1, x_2, x_3, x_4) \subseteq MU$, for all $x_1, x_2, x_3, x_4 \in U$. In any case $d(U)s_4(x_1, x_2, x_3, x_4) \subseteq \bigcap_M MU = 0$. From [3, Chapter 3], there exists a central idempotent element *e* of *U*, the left Utumi quotient ring of *R* such that on the direct sum decomposition $U = eU \oplus (1 - e)U$, d(eU) = 0 and the ring (1 - e)U satisfies s_4 . This completes the proof of the theorem. \Box

According to Theorem 2.1 and Theorem 2.2, we conclude with the following conjecture.

Conjecture 3.1. Let R be a prime or semiprime ring with suitable torsion free restriction, Z(R) be the center of R, I be a nonzero ideal of R, and n, k be the fixed positive integers. If R admits a derivation d such that $d([x, y]_k)^n - [x, y]_k \in Z(R)$ for all $x, y \in I$, then R is commutative (or satisfies s_4).

Acknowledgement. The authors wish to thank the referee for his/her suggestions which improve the quality of the paper.

REFERENCES

- [1] Ali, S. and Huang, S., On derivations in semiprime rings, Algebr. Represent. Theory, 15 (2012), 1023–1033
- [2] Ashraf, M. and Rehman, N., On commutativity of rings with derivations, Result. Math., 42 (2002), 3-8
- [3] Beidar, K. I., Martindale III, W. S. and Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics, Marcel Dekker 196, New York, 1996
- [4] Bell, H. E. and Daif, M. N., On derivations and commutativity in prime rings, Acta Math. Hung., 66 (1995), 337–343
- [5] Chuang, C. L., GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728
- [6] Chuang, C. L., Hypercentral derivations, J. Algebra, 166 (1994), 34-71
- [7] Daif, M. N. and Bell, H. E., Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15 (1992), 205–206
- [8] Dhara, B. and Sharma, R. K., Vanishing power values of commutators with derivations, Sib. Math. J., 50 (2009), 60–65
- [9] Erickson, T. S., Martindale III, W. S. and Osborn J. M., Prime nonassociative algebras, Pacific J. Math., 60 (1975), 49–63
- [10] Giambruno, A., Goncalves, J. Z. and Mandel, A., Rings with algebraic n-Engel elements, Comm. Algebra, 22 (1994), No. 5, 1685–1701
- [11] Herstein, I. N., Topics in ring theory, Univ. Chicago Press, 1969
- [12] Huang, S., Derivations with Engel conditions in prime and semiprime rings, Czechoslovak Math. J., 61 (2011), No. 136, 1135–1140
- [13] Jacobson, N., Structure of Rings, Colloquium Publications 37, Amer. Math. Soc. VII, Provindence, RI, 1956
- [14] Kharchenko, V. K., Differential identities of prime rings, Algebra Logic, 17 (1979), 155–168
- [15] Lanski, C., An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993), 731–734
- [16] Lee, T. K., Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin., 20 (1992), 27-38
- [17] Martindale III, W. S., Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584
- [18] Mayne, J. H., Centralizing mappings of prime rings, Cand. Math. Bull., 27 (1984), 122–126
- [19] Posner, E. C., Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1958), 1093–1100

DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH-202002, INDIA *Email address*: arifraza03@gmail.com

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE TAIBAH UNIVERSITY, AL-MADINAH, KSA *Email address*: rehman100@gmail.com