A note on an Engel condition with derivations in rings

Mohd Arif Raza and Nadeem ur Rehman

Abstract

Let R be a prime ring with center $Z(R), C$ the extended centroid of R, d a derivation of R and n, k be two fixed positive integers. In the present paper we investigate the behavior of a prime ring R satisfying any one of the properties (i) $d\left([x, y]_{k}\right)^{n}=[x, y]_{k}$ (ii) if $\operatorname{char}(R) \neq 2, d\left([x, y]_{k}\right)-[x, y]_{k} \in Z(R)$ for all x, y in some appropriate subset of R. Moreover, we also examine the case when R is a semiprime ring.

1. Introduction, notation and statements of the results

Throughout this paper, unless specifically stated, R is a (semi)-prime ring, $Z(R)$ is the center of R, Q is the Martindale quotient ring of R and U is the Utumi quotient ring of R. The center of U, denoted by C, is called the extended centroid of R (we refer the reader to [3], for the definitions and related properties of these objects). For each $x, y \in R$ and each $k \geq 0$, define $[x, y]_{k}$ inductively by $[x, y]_{0}=x,[x, y]_{1}=x y-y x$ and $[x, y]_{k}=\left[[x, y]_{k-1}, y\right]$ for $k>1$. The ring R is said to satisfy an Engel condition if there exists a positive integer k such that $[x, y]_{k}=0$. Note that an Engel condition is a polynomial $[x, y]_{k}=\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}$ in non-commuting indeterminates x, y and $[x+z, y]_{k}=[x, y]_{k}+[z, y]_{k}$. Recall that a ring R is prime if for any $a, b \in R, a R b=\{0\}$ implies $a=0$ or $b=0$, and is semiprime if for any $a \in R, a R a=\{0\}$ implies $a=0$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. In particular, d is an inner derivation induced by an element $a \in R$, if $d(x)=[a, x]$ for all $x \in R$.

Many results in literature indicate that the global structure of a ring R is often tightly connected to the behavior of additive mappings defined on R. During the past few decades, there has been an ongoing interest concerning the relationship between the commutativity of a ring and the existence of certain specific types of derivations. Derivation with certain properties investigated in various paper (see [1, 2, 4, 7, 19] and references therein). Starting from these results, many author studied derivations in the context of prime and semiprime rings. The Engel type identity with derivation appeared in the wellknown paper of Posner [19], who proved that a prime ring admitting a nonzero derivation d such that $[d(x), x] \in Z(R)$ for all $x \in R$, must be commutative. Since then several authors have studied this kind of identities with derivations acting on one-sided, two-sided and Lie ideals of prime and semiprime rings (see [8], for a partial bibliography).

In 1992, Daif and Bell [7, Theorem 3], showed that if in a semiprime ring R there exists a nonzero ideal I of R and a derivation d such that $d([x, y])=[x, y]$ for all $x, y \in I$, then $I \subseteq Z(R)$. If R is a prime ring, this implies that R is commutative. Recently in 2011, Huang [12] generalized Daif and Bell result. More precisely he prove that, if R is a prime ring, I is a nonzero ideal of R, m, n are two fixed positive integers and d a derivation of R

[^0]satisfy $d([x, y])^{m}=[x, y]_{n}$ for all $x, y \in I$, then R is commutative. In 1994, Giambruno et. al. [10] established that a ring must be commutative if it satisfy $[x, y]_{k}^{n}=[x, y]_{k}$.

It is natural to ask what we can say about the commutativity of R satisfying any of the following conditions: $\left(P_{1}\right) d\left([x, y]_{k}\right)^{n}=[x, y]_{k}\left(P_{2}\right) d\left([x, y]_{k}\right)-[x, y]_{k} \in Z(R)$ for all $x, y \in I$. This result generalized a theorem of Huang [12], and for derivation Giambruno theorem [10].

2. Derivations in prime rings

We have started with the following proposition which is very crucial for developing the proof of our main result.

Proposition 2.1. Let R be a prime ring, Q the Martindale quotient ring of R, I a nonzero ideal of R and n, k be two fixed positive integers. If d is a nonzero inner derivation on Q, in the sense that there exists $q \in Q$ such that $d(x)=[q, x]$ for all $x \in R$, and I satisfies $\left(\left[q,[x, y]_{k}\right]\right)^{n}=[x, y]_{k}$ for all $x, y \in I$, then R is commutative.
Proof. Assume that R is non-commutative. We have given that $\left(\left[q,[x, y]_{k}\right]\right)^{n}=[x, y]_{k}$ for all $x, y \in I$. Since $d \neq 0, q \notin Z(R)$ and hence I satisfied generalized polynomial identity(GPI). By Chuang [5, Theorem 2], I and Q satisfy the same generalized polynomial identities, thus we have

$$
\left(\left[q,[x, y]_{k}\right]\right)^{n}=[x, y]_{k} \text { for all } x, y \in Q
$$

In case the center C of Q is infinite, we have

$$
\left(\left[q,[x, y]_{k}\right]\right)^{n}=[x, y]_{k} \text { for all } x, y \in Q \otimes_{C} \bar{C}
$$

where \bar{C} is algebraic closure of C. Since both Q and $Q \otimes_{C} \bar{C}$ are prime and centrally closed [9, Theorems 2.5 and 3.5], we may replace R by Q or $Q \otimes_{C} \bar{C}$ according as C is finite or infinite. Thus we may assume that R is centrally closed over C (i.e., $R C=R$) which is either finite or algebraically closed and $\left(\left[q,[x, y]_{k}\right]\right)^{n}=[x, y]_{k}$ for all $x, y \in R$. By Martindale [17, Theorem 3], $R C$ (and so R) is a primitive ring having nonzero socle H with \mathcal{D} as the associated division ring.

Hence by Jacobson's theorem [13, p.75], R is isomorphic to a dense ring of linear transformations of some vector space \mathcal{V} over \mathcal{D} and H consists of the finite rank linear transformations in R. If \mathcal{V} is a finite dimensional over \mathcal{D}, then the density of R on \mathcal{V} implies that $R \cong M_{t}(\mathcal{D})$, where $t=\operatorname{dim}_{\mathcal{D}} \mathcal{V}$. Assume first that $\operatorname{dim}_{\mathcal{D}} \mathcal{V} \geq 3$.

Step 1. We want to show that, for any $v \in \mathcal{V}, v$ and $q v$ are linearly \mathcal{D}-dependent. If $v=0$, then $\{v, q v\}$ is linearly \mathcal{D}-dependent. Now let $v \neq 0$ and $\{v, q v\}$ is linearly \mathcal{D} independent, since $\operatorname{dim}_{\mathcal{D}} \mathcal{V} \geq 3$, then there exists $w \in \mathcal{V}$ such that $\{v, q v, w\}$ is also linearly \mathcal{D}-independent. By the density of R, there exist $x, y \in R$ such that:

$$
\begin{array}{lll}
x v=v, & x q v=0, & x w=v \\
y v=0, & y q v=w, & y w=w .
\end{array}
$$

These imply that $(-1)^{n} v=\left(\left[q,[x, y]_{k}\right]\right)^{n} v-\left([x, y]_{k}\right) v=0$, a contradiction. So, we conclude that $\{v, q v\}$ is linearly \mathcal{D}-dependent, for all $v \in \mathcal{V}$.

Step 2. We show here that there exists $\alpha \in \mathcal{D}$ such that $q v=v \alpha$, for any $v \in \mathcal{V}$. Now choose $v, w \in \mathcal{V}$ linearly independent. By Step 1 , there exist $\alpha_{v}, \alpha_{w}, \alpha_{v+w} \in \mathcal{D}$ such that

$$
q v=v \alpha_{v}, q w=w \alpha_{w}, q(v+w)=(v+w) \alpha_{v+w}
$$

Moreover,

$$
v \alpha_{v}+w \alpha=(v+w) \alpha_{v+w} .
$$

Hence

$$
v\left(\alpha_{v}-\alpha_{v+w}\right)+w\left(\alpha_{w}-\alpha_{v+w}\right)=0
$$

and because v, w are linearly \mathcal{D}-independent, we have $\alpha_{v}=\alpha_{w}=\alpha_{v+w}$, that is, α does not depend on the choice of v. This completes the proof of Step 2.

Let now for $r \in R, v \in \mathcal{V}$. By Step 2, $q v=v \alpha, r(q v)=r(v \alpha)$, and also $q(r v)=(r v) \alpha$. Thus $0=[q, r] v$, for any $v \in \mathcal{V}$, that is $[q, r] \mathcal{V}=0$. Since \mathcal{V} is a left faithful irreducible R-module, hence $[q, r]=0$, for all $r \in R$, i.e., $q \in Z(R)$ and $d=0$, which contradicts our hypothesis.

Therefore $\operatorname{dim}_{\mathcal{D}} \mathcal{V}$ must be ≤ 2. In this case R is a simple GPI-ring with 1 , and so it is a central simple algebra finite dimensional over its center. By Lanski [15, Lemma 2], it follows that there exists a suitable filed \mathbb{F} such that $R \subseteq M_{t}(\mathbb{F})$, the ring of all $t \times t$ matrices over \mathbb{F}, and moreover, $M_{t}(\mathbb{F})$ satisfies the same generalized polynomial identity of R.

If we assume $t \geq 3$, then by the same argument as in Steps 1 and 2 , we get a contradiction. Obviously if $t=1$, then R is commutative. Thus we may assume that $t=2$, i.e., $R \subseteq M_{2}(\mathbb{F})$, where $M_{2}(\mathbb{F})$ satisfies $\left(\left[q,[x, y]_{k}\right]\right)^{n}=[x, y]_{k}$. Denote by $e_{i j}$ the usual unit matrix with 1 in (i, j)-entry and zero elsewhere. Since by choosing $x=e_{12}, y=e_{22}$. In this case we have $\left(q e_{12}-e_{12} q\right)^{n}=e_{12}$. Right multiplying by e_{12}, we get $(-1)^{n}\left(e_{12} q\right)^{n} e_{12}=$ $\left(q e_{12}-e_{12} q\right)^{n}=e_{12} e_{12}=0$. Now set $q=\left(\begin{array}{ll}q_{11} & q_{12} \\ q_{21} & q_{22}\end{array}\right)$. By calculation, we find that $(-1)^{n}\left(\begin{array}{cc}0 & q_{21}^{n} \\ 0 & 0\end{array}\right)=0$, which implies that $q_{21}=0$. In the same manner, we can see that $q_{12}=0$. Thus we conclude that q is a diagonal matrix in $M_{2}(\mathbb{F})$. Let $\chi \in \operatorname{Aut}\left(M_{2}(\mathbb{F})\right)$. Since $\left(\left[\chi(q),[\chi(x), \chi(y)]_{k}\right]\right)^{n}=[\chi(x), \chi(y)]_{k}$, then $\chi(q)$ must be diagonal matrix in $M_{2}(\mathbb{F})$. In particular, let $\chi(x)=\left(1-e_{i j}\right) x\left(1+e_{i j}\right)$ for $i \neq j$. Then $\chi(q)=q+\left(q_{i i}-q_{j j}\right) e_{i j}$, that is $q_{i i}=q_{j j}$ for $i \neq j$. This implies that q is central in $M_{2}(\mathbb{F})$, which leads to $d=0$, a contradiction. Thus $t=1$, that is R is commutative. This completes the proof of the proposition.

Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R and n, k be two fixed positive integers. If R admits a derivation d such that $d\left([x, y]_{k}\right)^{n}=[x, y]_{k}$ for all $x, y \in I$, then R is commutative.

Proof. If $d=0$, then $[x, y]_{k}=0$ which is rewritten as $\left[I_{x}(y), y\right]_{k-1}=0$ for all $x, y \in I$. By Lanski [15, Theorem 1], either R is commutative or $I_{x}=0$ i.e., $I \subseteq Z(R)$ in which case R is also commutative by Mayne [18, Lemma 3]. Now we assume that $d \neq 0$ and $d\left([x, y]_{k}\right)^{n}=[x, y]_{k}$ for all $x, y \in I$, that is I satisfies the differential identity

$$
\begin{align*}
\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m}\right. & \left(\sum_{i+j=m-1} y^{i} d(y) y^{j}\right) x y^{k-m} \tag{2.1}\\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} d(x) y^{k-m} \\
& \left.+\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x\left(\sum_{r+s=k-m-1} y^{r} d(y) y^{s}\right)\right)^{n} \\
& =\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}
\end{align*}
$$

In the light of Kharchenko's theory [14], we split the proof into two cases:

Firstly we assume that d is an inner derivation induced by an element $q \in Q$ such that $d(x)=[q, x]$ for all $x \in R$. Therefore from (2.1), we have

$$
\begin{aligned}
\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m}\right. & \left(\sum_{i+j=m-1} y^{i}([q, y]) y^{j}\right) x y^{k-m} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m}([q, x]) y^{k-m} \\
& \left.+\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x\left(\sum_{r+s=k-m-1} y^{r}([q, y]) y^{s}\right)\right)^{n} \\
& =\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m} \text { for all } x, y \in I .
\end{aligned}
$$

It can be easily seen that

$$
\begin{aligned}
\left(q\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}\right)-\right. & \left.\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}\right) q\right)^{n} \\
& =\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}
\end{aligned}
$$

And hence we can write $\left(\left[q,[x, y]_{k}\right]\right)^{n}=[x, y]_{k}$ for all $x, y \in I$. In this case we are done from Proposition 2.1.

Secondly we now assume that d is an outer derivation on Q. Now by Kharchencko's theorem [14], I satisfy the generalized polynomial identity

$$
\begin{aligned}
\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m}\right. & \left(\sum_{i+j=m-1} y^{i} z y^{j}\right) x y^{k-m} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} w y^{k-m} \\
& \left.+\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x\left(\sum_{r+s=k-m-1} y^{r} z y^{s}\right)\right)^{n} \\
& =\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}
\end{aligned}
$$

and in particular I satisfy the polynomial identity

$$
\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}=0 \text { for all } x, y \in I
$$

That is $[x, y]_{k}=0$ for all $x, y \in I$, and hence R is commutative by the same argument presented above. This completes the proof of the theorem.

We immediately get the following corollary from the above theorem:
Corollary 2.1. Let R be a prime ring, I a nonzero ideal of R and k be a fixed positive integer. If R admits a derivation d such that $d\left([x, y]_{k}\right)=[x, y]_{k}$ for all $x, y \in I$, then R is commutative.

Theorem 2.2. Let R be a prime ring of characteristic different from 2 with center $Z(R), I$ a nonzero ideal of R and k be a fixed positive integer. If R admits a derivation d such that $d\left([x, y]_{k}\right)-$ $[x, y]_{k} \in Z(R)$ for all $x, y \in I$, then R satisfies s_{4}, the standard identity in four variables.

Proof. If $d=0$, then $[x, y]_{k} \in Z(R)$ for all $x, y \in I$ and hence R satisfies the same identities. In this case the identity is a polynomial so that there exists a field \mathbb{F} such that R and \mathbb{F}_{t} satisfy the same identities. Thus pick $x=e_{31}, y=e_{11}-e_{22}$, we see that $[x, y]_{k}=e_{31} \notin$ $Z(R)$, a contradiction. Therefore $t \leq 2$ and R satisfies s_{4}. Now, we assume that $d \neq 0$.

If $d\left([x, y]_{k}\right)=[x, y]_{k}$ for all $x, y \in I$, then R is commutative by Corollary 2.1. Otherwise we have $I \cap Z(R) \neq 0$ by our assumptions. Let now J be a nonzero two-sided ideal of R_{Z}, the ring of the central quotient of R. Since $J \cap R$ is an ideal of R, then $J \cap R \cap Z(R) \neq 0$. That is J contains an invertible element in R_{Z}, and so R_{Z} is simple with 1 . By the hypothesis for any $x, y \in I$ and $r \in R$, thus I satisfies the differential identity $\left[d\left([x, y]_{k}\right)-[x, y]_{k}, r\right]=0$. Which can be rewritten as, that is, I satisfy the polynomial identity

$$
\begin{aligned}
f(x, y, r, d(x), d(y))= & {\left[\sum_{m=0}^{k}(-1)^{m}\binom{k}{m}\left(\sum_{i+j=m-1} y^{i} d(y) y^{j}\right) x y^{k-m}\right.} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} d(x) y^{k-m} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x\left(\sum_{r+s=k-m-1} y^{r} d(y) y^{s}\right) \\
& \left.-\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}, r\right]=0
\end{aligned}
$$

If d is not an inner derivation, then I satisfies the polynomial identity

$$
\begin{aligned}
f(x, y, r, w, z)= & {\left[\sum_{m=0}^{k}(-1)^{m}\binom{k}{m}\left(\sum_{i+j=m-1} y^{i} z y^{j}\right) x y^{k-m}\right.} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} w y^{k-m} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x\left(\sum_{r+s=k-m-1} y^{r} z y^{s}\right) \\
& \left.-\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}, r\right]=0 .
\end{aligned}
$$

By Kharchenko's theorem [14], and setting $z=w=0$ yields the identity

$$
\left[\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}, r\right]=0
$$

In this case it is well known that there exists a field \mathbb{F} such that R and \mathbb{F}_{t} satisfy the same polynomial identities. Thus $\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}$ is central in \mathbb{F}_{t}. Suppose $t \geq 3$ and choose $x=e_{31}, y=e_{33}$. Then $\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}=(-1)^{k} e_{31} \notin Z\left(\mathbb{F}_{3}\right)$, contrary to our assumptions. This forces $t \leq 2$, i.e., R satisfies s_{4}. Notice that in this case $t=1$,
then R is commutative. But if $t \geq 2$ and $x=e_{12}, y=e_{22}$, we get the contradiction $\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}=e_{12} \notin Z\left(\mathbb{F}_{2}\right)$.

Now let d be an inner derivation induced by an element $q \in Q$, that is, $d(x)=[q, x]$ for all $x \in R$. Since $d \neq 0$, we may assume that $q \notin Z(R)$. By localizing R at $Z(R)$ it is easy to see that

$$
\begin{aligned}
\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} & \left(\sum_{i+j=m-1} y^{i}[q, y] y^{j}\right) x y^{k-m}+\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m}[q, x] y^{k-m} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x\left(\sum_{r+s=k-m-1} y^{r}[q, y] y^{s}\right) \\
- & \sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m} \in Z\left(R_{Z}\right), \quad \text { for any } x, y \in R_{Z}
\end{aligned}
$$

Since R and R_{Z} satisfy the same polynomial identities, in order to prove that R is commutative, we may assume that R is simple with 1 . In this case,

$$
\begin{aligned}
\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} & \left(\sum_{i+j=m-1} y^{i}[q, y] y^{j}\right) x y^{k-m} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m}[q, x] y^{k-m} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x\left(\sum_{r+s=k-m-1} y^{r}[q, y] y^{s}\right) \\
& -\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m} \in Z(R), \text { for all } x, y \in R .
\end{aligned}
$$

Therefore R satisfies a generalized polynomial identity and it is simple with 1 , which implies that $Q=R C=R$ and R has a minimal right ideal. Thus $q \in R=Q$ and R is simple artinian, that is, $R=\mathcal{D}_{t}$, where \mathcal{D} is a division ring finite dimensional over $Z(R)$ by [17]. From [15, Lemma 2], it follows that there exists a suitable field \mathbb{F} such that $R \subseteq M_{t}(\mathbb{F})$, the ring of all $t \times t$ matrices over \mathbb{F}, and moreover $M_{t}(\mathbb{F})$ satisfies the generalized polynomial identity

$$
\begin{aligned}
{\left[\sum_{m=0}^{k}(-1)^{m}\binom{k}{m}\right.} & \left(\sum_{i+j=m-1} y^{i}[q, y] y^{j}\right) x y^{k-m} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m}[q, x] y^{k-m} \\
& +\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x\left(\sum_{r+s=k-m-1} y^{r}[q, y] y^{s}\right) \\
& \left.-\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}, r\right]=0 \text { for all } x, y, r \in M_{t}(\mathbb{F})
\end{aligned}
$$

In this case, as already see in Theorem 2.1, we have $\left[q,[x, y]_{k}\right]-[x, y]_{k}$ is central in $M_{t}(\mathbb{F})$. Suppose that $t \geq 3$ and $M_{t}(\mathbb{F})$ satisfy

$$
\begin{equation*}
\left[\left[q,[x, y]_{k}\right]-[x, y]_{k}, r\right]=0 \text { for all } x, y, r \in M_{t}(\mathbb{F}) . \tag{2.2}
\end{equation*}
$$

Let $q=\sum_{t} a_{t t} e_{t t}$, with $a_{t} \in \mathbb{F}$, and choose $x=e_{i j}, y=e_{j j}$, and $r=e_{i j}$, where $i \neq j$. Then by using the same argument presented in Theorem 2.1, we get

$$
\left[\left[q,[x, y]_{k}\right]-[x, y]_{k}, r\right]=-2 e_{i j} q e_{i j}
$$

which has rank 1 and so it cannot be central in $M_{t}(\mathbb{F})$, with $t \geq 3$. This implies that $t \leq 2$ and R satisfy s_{4}. Now let e and f be any two orthogonal idempotent elements in $M_{t}(\mathbb{F})$. Now, we replace x with exf, y with e, and r by $e x f$ in (2.2) and let $Y=\left[q,[e x f, e]_{k}\right]-$ $[e, e x f]_{k}$. Then we compute

$$
\begin{gathered}
{[x, y]_{k}=[e x f, e]_{k}=(-1)^{k} e x f} \\
Y e=\left(\left[q,(-1)^{k} e x f\right]-(-1)^{k} e x f\right) e \\
=(-1)^{(k+1)}(e x f q) e .
\end{gathered}
$$

And

$$
\begin{aligned}
f Y & =f\left(\left[q,(-1)^{k} e x f\right]-(-1)^{k} e x f\right) \\
& =(-1)^{k}(\text { fqex }) f
\end{aligned}
$$

Hence

$$
\begin{aligned}
0 & =\left[\left[q,[e x f, e]_{k}\right]-[e, e x f]_{k}, e x f\right] \\
& =[Y, e x f] \\
& =(-1)^{k+1} 2(e x f q) e x f .
\end{aligned}
$$

Since $\operatorname{char}(R) \neq 2$, this implies that $(f q e x)^{3}=0$ for all $x \in M_{t}(\mathbb{F})$. By Levitzki's lemma [11, Lemma 1.1], fqex $=0$ for all $x \in M_{t}(\mathbb{F})$ and by primeness of R, we get $f q e=0$. Since f and e are any two orthogonal idempotent elements in $M_{t}(\mathbb{F})$, we have for any idempotent e in $M_{t}(\mathbb{F}),(1-e) q e=0=e q(1-e)$, that is, $e q=e q e=q e$. Which implies $[q, e]=0$. Since q commutes with all idempotents in $M_{t}(\mathbb{F}), q \in C$ and hence $d=0$, a contradiction. This completes the proof.

The following example shows that the main results are not true in the case of arbitrary rings.

Example 2.1. Let S be any non-commutative ring. Consider $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right): a, b \in S\right\}$ and $I=\left\{\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right): a \in S\right\}$. Clearly, R is a ring with identity under the natural operations which is not prime. Define the maps on R as follows $d(x)=\left[e_{11}, x\right]$, for all $x \in R$. Then, it is easy to see that I is a nonzero ideal of R, d is a nonzero ideal of R and d satisfies the requirements of Theorems 2.1 and 2.2 but R is not prime.

Hence, the hypothesis of primeness is crucial.
Example 2.2. Let $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a, b, c \in S\right\}$ and $I=\left\{\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right): a \in S\right\}$. Clearly, R is a ring with identity which is not prime and I is a nonzero ideal of R. Define $d: R \rightarrow R$ such that $d(x)=\left[x, e_{11}+e_{22}\right]$. Then, it is easy to see that d is a nonzero derivation of R. Further,
for any $x, y \in R$ the following conditions: $d\left([x, y]_{k}\right)^{n}=[x, y]_{k}$ and $d\left([x, y]_{k}\right)-[x, y]_{k} \in$ $Z(R)$ are satisfied, where n, k are fixed positive integer.

Hence, in Theorems 2.1 and 2.2, the hypothesis of primeness cannot be omitted.

3. Derivations in semiprime rings

From now on, R is a semiprime ring and U is the left Utumi quotient ring of R. In order to prove the main results of this section we will make use of the following facts:
Fact 3.1 ([3, Proposition 2.5.1]). Any derivation of a semiprime ring R can be uniquely extended to a derivation of its left Utumi quotient ring U, and so any derivation of R can be defined on the whole U.

Fact 3.2 ([6, p.38]). If R is semiprime, then so is its left Utumi quotient ring. The extended centroid C of a semiprime ring coincides with the center of its left Utumi quotient ring.
Fact 3.3 ([6, p.42]). Let B be the set of all the idempotents in C, the extended centroid of R. Suppose that R is an orthogonally complete B-algebra. For any maximal ideal P of $B, P R$ forms a minimal prime ideal of R, which is invariant under any derivation of R.

Now we are ready to prove the following:
Theorem 3.3. Let R be a semiprime ring, U the left Utumi quotient ring of R and k be a fixed positive integer. If R admits a nonzero derivation d such that $d\left([x, y]_{k}\right)^{n}=[x, y]_{k}$ for all $x, y \in R$, then there exists a central idempotent element e in U such that on the direct sum decomposition $U=e U \oplus(1-e) U, d$ vanishes identically on $e U$ and the ring $(1-e) U$ is commutative.
Proof. Since R is semiprime and d is a derivation of R, we have given that $d\left([x, y]_{k}\right)^{n}=$ $[x, y]_{k}$ for all $x, y \in R$. By Fact $3.2, Z(U)=C$, the extended centroid of R, and, by Fact 3.1, the derivation d can be uniquely extended on U. As we know that R and U satisfy the same differential identities [16], therefore R satisfies $d\left([x, y]_{k}\right)^{n}=[x, y]_{k}$. Let B be the complete Boolean algebra of idempotents in C and M be any maximal ideal of B. Since U is an orthogonally complete B-algebra [6, p.42], thus by Fact 3.3, $M U$ is a prime ideal of U, which is d-invariant. Denote $\bar{U}=U / M U$ and \bar{d} the derivation induced by d on \bar{U}, i.e., $\bar{d}(\bar{u})=\overline{d(u)}$ for all $u \in U$. For any $\bar{x}, \bar{y} \in \bar{U}, \bar{d}\left([\bar{x}, \bar{y}]_{k}\right)^{n}=[\bar{x}, \bar{y}]_{k}$. It is obvious that \bar{U} is prime. Therefore, by Theorem 2.1, we have either \bar{U} is commutative or $\bar{d}=0$ in \bar{U}. This implies that, for any maximal ideal M of $B, d(U) \subseteq M U$ or $[U, U] \subseteq M U$, where $M U$ runs over all minimal prime ideals of U. In any case $d(U)[U, U] \subseteq M U=0$, for all M. Therefore $d(U)[U, U] \subseteq \bigcap_{M} M U=0$.

By using the theory of orthogonal completion for semiprime rings [3, Chapter 3], it is clear that there exists a central idempotent element e in U such that on the direct sum decomposition $U=e U \oplus(1-e) U, d$ vanishes identically on $e U$ and the ring $(1-e) U$ is commutative. With this completes the proof.

We come now to our last result of this section:
Theorem 3.4. Let R be a semiprime ring of characteristic different from 2 with center $Z(R), U$ the left Utumi quotient ring of R and k be a fixed positive integer. If R admits a nonzero derivation d such that $d\left([x, y]_{k}\right)-[x, y]_{k} \in Z(R)$ for all $x, y \in R$, then there exists a central idempotent element e in U such that on the direct sum decomposition $U=e U \oplus(1-e) U, d$ vanishes identically on $e U$ and the ring $(1-e) U$ satisfies s_{4}, the standard identity in four variables.
Proof. By Fact 3.2, $Z(U)=C$, the extended centroid of R, and by Fact 3.1, the derivation d can be uniquely extended on U. Since R and U satisfy the same differential identities, then $d\left([x, y]_{k}\right)^{n}-[x, y]_{k} \in C$ for all $x, y \in U$. Let B be the complete Boolean algebra of
idempotents in C and M be any maximal ideal of B. As already pointed out in the proof of Theorem 3.3, U is an orthogonally complete B-algebra, and by Fact 3.3, $M U$ is a prime ideal of U, which is d-invariant. Let \bar{d} be the derivation induced by d on $\bar{U}=U / M U$. Since $Z(\bar{U})=(C+M U) / M U=C / M U$, then $d\left([x, y]_{k}\right)^{n}-[x, y]_{k} \in(C+M U) / M U$, for all $x, y \in \bar{U}$. Moreover \bar{U} is prime, hence we may conclude, by Theorem 2.2, either $\bar{d}=0$ in \bar{U} or \bar{U} satisfies s_{4}. This implies that, for any maximal ideal M of B, either $d(U) \subseteq M U$ or $s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \subseteq M U$, for all $x_{1}, x_{2}, x_{3}, x_{4} \in U$. In any case $d(U) s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \subseteq$ $\bigcap_{M} M U=0$. From [3, Chapter 3], there exists a central idempotent element e of U, the left Utumi quotient ring of R such that on the direct sum decomposition $U=e U \oplus(1-e) U$, $d(e U)=0$ and the ring $(1-e) U$ satisfies s_{4}. This completes the proof of the theorem.

According to Theorem 2.1 and Theorem 2.2, we conclude with the following conjecture.
Conjecture 3.1. Let R be a prime or semiprime ring with suitable torsion free restriction, $Z(R)$ be the center of R, I be a nonzero ideal of R, and n, k be the fixed positive integers. If R admits a derivation d such that $d\left([x, y]_{k}\right)^{n}-[x, y]_{k} \in Z(R)$ for all $x, y \in I$, then R is commutative (or satisfies s_{4}).
Acknowledgement. The authors wish to thank the referee for his/her suggestions which improve the quality of the paper.

References

[1] Ali, S. and Huang, S., On derivations in semiprime rings, Algebr. Represent. Theory, 15 (2012), 1023-1033
[2] Ashraf, M. and Rehman, N., On commutativity of rings with derivations, Result. Math., 42 (2002), 3-8
[3] Beidar, K. I., Martindale III, W. S. and Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics, Marcel Dekker 196, New York, 1996
[4] Bell, H. E. and Daif, M. N., On derivations and commutativity in prime rings, Acta Math. Hung., 66 (1995), 337-343
[5] Chuang, C. L., GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728
[6] Chuang, C. L., Hypercentral derivations, J. Algebra, 166 (1994), 34-71
[7] Daif, M. N. and Bell, H. E., Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15 (1992), 205-206
[8] Dhara, B. and Sharma, R. K., Vanishing power values of commutators with derivations, Sib. Math. J., 50 (2009), 60-65
[9] Erickson, T. S., Martindale III, W. S. and Osborn J. M., Prime nonassociative algebras, Pacific J. Math., 60 (1975), 49-63
[10] Giambruno, A., Goncalves, J. Z. and Mandel, A., Rings with algebraic n-Engel elements, Comm. Algebra, 22 (1994), No. 5, 1685-1701
[11] Herstein, I. N., Topics in ring theory, Univ. Chicago Press, 1969
[12] Huang, S., Derivations with Engel conditions in prime and semiprime rings, Czechoslovak Math. J., 61 (2011), No. 136, 1135-1140
[13] Jacobson, N., Structure of Rings, Colloquium Publications 37, Amer. Math. Soc. VII, Provindence, RI, 1956
[14] Kharchenko, V. K., Differential identities of prime rings, Algebra Logic, 17 (1979), 155-168
[15] Lanski, C., An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993), 731-734
[16] Lee, T. K., Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin., 20 (1992), 27-38
[17] Martindale III, W. S., Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584
[18] Mayne, J. H., Centralizing mappings of prime rings, Cand. Math. Bull., 27 (1984), 122-126
[19] Posner, E. C., Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1958), 1093-1100

Department of Mathematics

Aligarh Muslim University
ALIGARH-202002, INDIA
Email address: arifraza03@gmail.com
Department of Mathematics
Faculty of Science
Taibah University, Al-Madinah, KSA
Email address: rehman100@gmail.com

[^0]: Received: 24.03.2016. In revised form: 01.07.2016. Accepted: 15.07.2016
 2010 Mathematics Subject Classification. 16N60, 16U80, 16W25.
 Key words and phrases. Prime and semiprime rings, derivation, maximal right ring of quotient, generalized polynomial identity (GPI), ideal.

 Corresponding author: Mohd Arif Raza; arifraza03@gmail.com

