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A note on an Engel condition with derivations in rings

MOHD ARIF RAZA and NADEEM UR REHMAN

ABSTRACT. Let R be a prime ring with center Z(R), C the extended centroid of R, d a derivation of R and
n, k be two fixed positive integers. In the present paper we investigate the behavior of a prime ring R satisfying
any one of the properties (i) d([x, y]k)n = [x, y]k (ii) if char(R) 6= 2, d([x, y]k) − [x, y]k ∈ Z(R) for all x, y in
some appropriate subset of R. Moreover, we also examine the case when R is a semiprime ring.

1. INTRODUCTION, NOTATION AND STATEMENTS OF THE RESULTS

Throughout this paper, unless specifically stated, R is a (semi)-prime ring, Z(R) is the
center of R, Q is the Martindale quotient ring of R and U is the Utumi quotient ring
of R. The center of U , denoted by C, is called the extended centroid of R (we refer
the reader to [3], for the definitions and related properties of these objects). For each
x, y ∈ R and each k ≥ 0, define [x, y]k inductively by [x, y]0 = x, [x, y]1 = xy − yx and
[x, y]k = [[x, y]k−1, y] for k > 1. The ring R is said to satisfy an Engel condition if there
exists a positive integer k such that [x, y]k = 0. Note that an Engel condition is a poly-
nomial [x, y]k =

∑k
m=0(−1)m

(
k
m

)
ymxyk−m in non-commuting indeterminates x, y and

[x + z, y]k = [x, y]k + [z, y]k. Recall that a ring R is prime if for any a, b ∈ R, aRb = {0}
implies a = 0 or b = 0, and is semiprime if for any a ∈ R, aRa = {0} implies a = 0.
An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y) holds
for all x, y ∈ R. In particular, d is an inner derivation induced by an element a ∈ R, if
d(x) = [a, x] for all x ∈ R.

Many results in literature indicate that the global structure of a ring R is often tightly
connected to the behavior of additive mappings defined on R. During the past few
decades, there has been an ongoing interest concerning the relationship between the com-
mutativity of a ring and the existence of certain specific types of derivations. Derivation
with certain properties investigated in various paper (see [1, 2, 4, 7, 19] and references
therein). Starting from these results, many author studied derivations in the context of
prime and semiprime rings. The Engel type identity with derivation appeared in the well-
known paper of Posner [19], who proved that a prime ring admitting a nonzero derivation
d such that [d(x), x] ∈ Z(R) for all x ∈ R, must be commutative. Since then several au-
thors have studied this kind of identities with derivations acting on one-sided, two-sided
and Lie ideals of prime and semiprime rings (see [8], for a partial bibliography).

In 1992, Daif and Bell [7, Theorem 3], showed that if in a semiprime ring R there exists
a nonzero ideal I of R and a derivation d such that d([x, y]) = [x, y] for all x, y ∈ I , then
I ⊆ Z(R). If R is a prime ring, this implies that R is commutative. Recently in 2011,
Huang [12] generalized Daif and Bell result. More precisely he prove that, if R is a prime
ring, I is a nonzero ideal of R, m,n are two fixed positive integers and d a derivation of R
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satisfy d([x, y])m = [x, y]n for all x, y ∈ I , then R is commutative. In 1994, Giambruno et.
al. [10] established that a ring must be commutative if it satisfy [x, y]nk = [x, y]k.

It is natural to ask what we can say about the commutativity of R satisfying any of
the following conditions: (P1) d([x, y]k)

n = [x, y]k (P2) d([x, y]k) − [x, y]k ∈ Z(R) for all
x, y ∈ I . This result generalized a theorem of Huang [12], and for derivation Giambruno
theorem [10].

2. DERIVATIONS IN PRIME RINGS

We have started with the following proposition which is very crucial for developing
the proof of our main result.

Proposition 2.1. Let R be a prime ring, Q the Martindale quotient ring of R, I a nonzero ideal of
R and n, k be two fixed positive integers. If d is a nonzero inner derivation on Q, in the sense that
there exists q ∈ Q such that d(x) = [q, x] for all x ∈ R, and I satisfies ([q, [x, y]k])n = [x, y]k for
all x, y ∈ I , then R is commutative.

Proof. Assume that R is non-commutative. We have given that ([q, [x, y]k])
n = [x, y]k

for all x, y ∈ I . Since d 6= 0, q /∈ Z(R) and hence I satisfied generalized polynomial
identity(GPI). By Chuang [5, Theorem 2], I andQ satisfy the same generalized polynomial
identities, thus we have

([q, [x, y]k])
n = [x, y]k for all x, y ∈ Q.

In case the center C of Q is infinite, we have

([q, [x, y]k])
n = [x, y]k for all x, y ∈ Q⊗C C,

where C is algebraic closure of C. Since both Q and Q ⊗C C are prime and centrally
closed [9, Theorems 2.5 and 3.5], we may replace R by Q or Q ⊗C C according as C is
finite or infinite. Thus we may assume that R is centrally closed over C (i.e., RC = R)
which is either finite or algebraically closed and ([q, [x, y]k])

n = [x, y]k for all x, y ∈ R. By
Martindale [17, Theorem 3], RC (and so R) is a primitive ring having nonzero socle H
with D as the associated division ring.

Hence by Jacobson’s theorem [13, p.75], R is isomorphic to a dense ring of linear trans-
formations of some vector space V over D and H consists of the finite rank linear trans-
formations in R. If V is a finite dimensional over D, then the density of R on V implies
that R ∼=Mt(D), where t = dimDV . Assume first that dimDV ≥ 3.

Step 1. We want to show that, for any v ∈ V , v and qv are linearly D-dependent. If
v = 0, then {v, qv} is linearly D-dependent. Now let v 6= 0 and {v, qv} is linearly D-
independent, since dimDV ≥ 3, then there exists w ∈ V such that {v, qv, w} is also linearly
D-independent. By the density of R, there exist x, y ∈ R such that:

xv = v, xqv = 0, xw = v
yv = 0, yqv = w, yw = w.

These imply that (−1)nv = ([q, [x, y]k])
nv−([x, y]k)v = 0, a contradiction. So, we conclude

that {v, qv} is linearly D-dependent, for all v ∈ V .

Step 2. We show here that there exists α ∈ D such that qv = vα, for any v ∈ V. Now
choose v, w ∈ V linearly independent. By Step 1, there exist αv, αw, αv+w ∈ D such that

qv = vαv, qw = wαw, q(v + w) = (v + w)αv+w

Moreover,
vαv + wα = (v + w)αv+w.
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Hence
v(αv − αv+w) + w(αw − αv+w) = 0,

and because v, w are linearly D-independent, we have αv = αw = αv+w, that is, α does
not depend on the choice of v. This completes the proof of Step 2.

Let now for r ∈ R, v ∈ V . By Step 2, qv = vα, r(qv) = r(vα), and also q(rv) = (rv)α.
Thus 0 = [q, r]v, for any v ∈ V , that is [q, r]V = 0. Since V is a left faithful irreducible
R-module, hence [q, r] = 0, for all r ∈ R, i.e., q ∈ Z(R) and d = 0, which contradicts our
hypothesis.

Therefore dimDV must be ≤ 2. In this case R is a simple GPI-ring with 1, and so it
is a central simple algebra finite dimensional over its center. By Lanski [15, Lemma 2], it
follows that there exists a suitable filed F such thatR ⊆Mt(F), the ring of all t× tmatrices
over F, and moreover, Mt(F) satisfies the same generalized polynomial identity of R.

If we assume t ≥ 3, then by the same argument as in Steps 1 and 2, we get a contra-
diction. Obviously if t = 1, then R is commutative. Thus we may assume that t = 2,
i.e., R ⊆M2(F), where M2(F) satisfies ([q, [x, y]k])n = [x, y]k. Denote by eij the usual unit
matrix with 1 in (i, j)-entry and zero elsewhere. Since by choosing x = e12, y = e22. In this
case we have (qe12 − e12q)n = e12. Right multiplying by e12, we get (−1)n(e12q)ne12 =

(qe12 − e12q)
n = e12e12 = 0. Now set q =

(
q11 q12
q21 q22

)
. By calculation, we find that

(−1)n
(
0 qn21
0 0

)
= 0, which implies that q21 = 0. In the same manner, we can see that

q12 = 0. Thus we conclude that q is a diagonal matrix in M2(F). Let χ ∈ Aut(M2(F)).
Since ([χ(q), [χ(x), χ(y)]k])

n = [χ(x), χ(y)]k, then χ(q) must be diagonal matrix in M2(F).
In particular, let χ(x) = (1 − eij)x(1 + eij) for i 6= j. Then χ(q) = q + (qii − qjj)eij ,
that is qii = qjj for i 6= j. This implies that q is central in M2(F), which leads to d = 0,
a contradiction. Thus t = 1, that is R is commutative. This completes the proof of the
proposition. �

Theorem 2.1. LetR be a prime ring, I a nonzero ideal ofR and n, k be two fixed positive integers.
If R admits a derivation d such that d([x, y]k)n = [x, y]k for all x, y ∈ I , then R is commutative.

Proof. If d = 0, then [x, y]k = 0 which is rewritten as [Ix(y), y]k−1 = 0 for all x, y ∈ I .
By Lanski [15, Theorem 1], either R is commutative or Ix = 0 i.e., I ⊆ Z(R) in which
case R is also commutative by Mayne [18, Lemma 3]. Now we assume that d 6= 0 and
d([x, y]k)

n = [x, y]k for all x, y ∈ I , that is I satisfies the differential identity(
k∑

m=0

(−1)m
(
k

m

)( ∑
i+j=m−1

yid(y)yj)xyk−m (2.1)

+

k∑
m=0

(−1)m
(
k

m

)
ymd(x)yk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymx(

∑
r+s=k−m−1

yrd(y)ys
))n

=

k∑
m=0

(−1)m
(
k

m

)
ymxyk−m.

In the light of Kharchenko’s theory [14], we split the proof into two cases:
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Firstly we assume that d is an inner derivation induced by an element q ∈ Q such that
d(x) = [q, x] for all x ∈ R. Therefore from (2.1), we have( k∑

m=0

(−1)m
(
k

m

)
(
∑

i+j=m−1
yi([q, y])yj)xyk−m

+

k∑
m=0

(−1)m
(
k

m

)
ym([q, x])yk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymx(

∑
r+s=k−m−1

yr([q, y])ys)

)n

=

k∑
m=0

(−1)m
(
k

m

)
ymxyk−m for all x, y ∈ I.

It can be easily seen that(
q(

k∑
m=0

(−1)m
(
k

m

)
ymxyk−m)−(

k∑
m=0

(−1)m
(
k

m

)
ymxyk−m)q

)n

=

k∑
m=0

(−1)m
(
k

m

)
ymxyk−m.

And hence we can write ([q, [x, y]k])
n = [x, y]k for all x, y ∈ I . In this case we are done

from Proposition 2.1.

Secondly we now assume that d is an outer derivation on Q. Now by Kharchencko’s
theorem [14], I satisfy the generalized polynomial identity( k∑

m=0

(−1)m
(
k

m

)
(
∑

i+j=m−1
yizyj)xyk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymwyk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymx(

∑
r+s=k−m−1

yrzys)

)n

=

k∑
m=0

(−1)m
(
k

m

)
ymxyk−m,

and in particular I satisfy the polynomial identity

k∑
m=0

(−1)m
(
k

m

)
ymxyk−m = 0 for all x, y ∈ I.

That is [x, y]k = 0 for all x, y ∈ I , and hence R is commutative by the same argument
presented above. This completes the proof of the theorem. �

We immediately get the following corollary from the above theorem:

Corollary 2.1. Let R be a prime ring, I a nonzero ideal of R and k be a fixed positive integer. If
R admits a derivation d such that d([x, y]k) = [x, y]k for all x, y ∈ I , then R is commutative.
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Theorem 2.2. Let R be a prime ring of characteristic different from 2 with center Z(R), I a
nonzero ideal ofR and k be a fixed positive integer. IfR admits a derivation d such that d([x, y]k)−
[x, y]k ∈ Z(R) for all x, y ∈ I , then R satisfies s4, the standard identity in four variables.

Proof. If d = 0, then [x, y]k ∈ Z(R) for all x, y ∈ I and henceR satisfies the same identities.
In this case the identity is a polynomial so that there exists a field F such that R and Ft

satisfy the same identities. Thus pick x = e31, y = e11 − e22 , we see that [x, y]k = e31 /∈
Z(R), a contradiction. Therefore t ≤ 2 and R satisfies s4. Now, we assume that d 6= 0.

If d([x, y]k) = [x, y]k for all x, y ∈ I , then R is commutative by Corollary 2.1. Otherwise
we have I ∩Z(R) 6= 0 by our assumptions. Let now J be a nonzero two-sided ideal ofRZ ,
the ring of the central quotient ofR. Since J∩R is an ideal ofR, then J∩R∩Z(R) 6= 0. That
is J contains an invertible element inRZ , and soRZ is simple with 1. By the hypothesis for
any x, y ∈ I and r ∈ R, thus I satisfies the differential identity [d([x, y]k) − [x, y]k, r] = 0.
Which can be rewritten as, that is, I satisfy the polynomial identity

f(x, y, r, d(x), d(y)) =

[ k∑
m=0

(−1)m
(
k

m

)( ∑
i+j=m−1

yid(y)yj
)
xyk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymd(x)yk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymx(

∑
r+s=k−m−1

yrd(y)ys)

−
k∑

m=0

(−1)m
(
k

m

)
ymxyk−m, r

]
= 0.

If d is not an inner derivation, then I satisfies the polynomial identity

f(x, y, r, w, z) =

[ k∑
m=0

(−1)m
(
k

m

)( ∑
i+j=m−1

yizyj
)
xyk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymwyk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymx(

∑
r+s=k−m−1

yrzys)

−
k∑

m=0

(−1)m
(
k

m

)
ymxyk−m, r

]
= 0.

By Kharchenko’s theorem [14], and setting z = w = 0 yields the identity[ k∑
m=0

(−1)m
(
k

m

)
ymxyk−m, r

]
= 0.

In this case it is well known that there exists a field F such that R and Ft satisfy the same

polynomial identities. Thus
k∑

m=0
(−1)m

(
k
m

)
ymxyk−m is central in Ft. Suppose t ≥ 3 and

choose x = e31, y = e33. Then
k∑

m=0
(−1)m

(
k
m

)
ymxyk−m = (−1)ke31 /∈ Z(F3), contrary to

our assumptions. This forces t ≤ 2, i.e., R satisfies s4. Notice that in this case t = 1,
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then R is commutative. But if t ≥ 2 and x = e12, y = e22, we get the contradiction
k∑

m=0
(−1)m

(
k
m

)
ymxyk−m = e12 /∈ Z(F2).

Now let d be an inner derivation induced by an element q ∈ Q, that is , d(x) = [q, x] for
all x ∈ R. Since d 6= 0, we may assume that q /∈ Z(R). By localizing R at Z(R) it is easy to
see that

k∑
m=0

(−1)m
(
k

m

)( ∑
i+j=m−1

yi[q, y]yj
)
xyk−m +

k∑
m=0

(−1)m
(
k

m

)
ym[q, x]yk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymx

( ∑
r+s=k−m−1

yr[q, y]ys
)

−
k∑

m=0

(−1)m
(
k

m

)
ymxyk−m ∈ Z(RZ), for any x, y ∈ RZ .

Since R and RZ satisfy the same polynomial identities, in order to prove that R is
commutative, we may assume that R is simple with 1. In this case,

k∑
m=0

(−1)m
(
k

m

)
(
∑

i+j=m−1
yi[q, y]yj)xyk−m

+

k∑
m=0

(−1)m
(
k

m

)
ym[q, x]yk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymx(

∑
r+s=k−m−1

yr[q, y]ys)

−
k∑

m=0

(−1)m
(
k

m

)
ymxyk−m ∈ Z(R), for all x, y ∈ R.

Therefore R satisfies a generalized polynomial identity and it is simple with 1, which
implies that Q = RC = R and R has a minimal right ideal. Thus q ∈ R = Q and R
is simple artinian, that is, R = Dt, where D is a division ring finite dimensional over
Z(R) by [17]. From [15, Lemma 2], it follows that there exists a suitable field F such
that R ⊆ Mt(F), the ring of all t × t matrices over F, and moreover Mt(F) satisfies the
generalized polynomial identity

[ k∑
m=0

(−1)m
(
k

m

)( ∑
i+j=m−1

yi[q, y]yj
)
xyk−m

+

k∑
m=0

(−1)m
(
k

m

)
ym[q, x]yk−m

+

k∑
m=0

(−1)m
(
k

m

)
ymx(

∑
r+s=k−m−1

yr[q, y]ys)

−
k∑

m=0

(−1)m
(
k

m

)
ymxyk−m, r

]
= 0 for all x, y, r ∈Mt(F).
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In this case, as already see in Theorem 2.1, we have [q, [x, y]k]− [x, y]k is central in Mt(F).
Suppose that t ≥ 3 and Mt(F) satisfy

[[q, [x, y]k]− [x, y]k, r] = 0 for all x, y, r ∈Mt(F). (2.2)

Let q =
∑

t attett, with at ∈ F, and choose x = eij , y = ejj , and r = eij , where i 6= j. Then
by using the same argument presented in Theorem 2.1, we get

[[q, [x, y]k]− [x, y]k, r] = −2eijqeij ,

which has rank 1 and so it cannot be central in Mt(F), with t ≥ 3. This implies that t ≤ 2
and R satisfy s4. Now let e and f be any two orthogonal idempotent elements in Mt(F).
Now, we replace x with exf , y with e, and r by exf in (2.2) and let Y = [q, [exf, e]k] −
[e, exf ]k. Then we compute

[x, y]k = [exf, e]k = (−1)kexf

Y e =
(
[q, (−1)kexf ]− (−1)kexf

)
e

= (−1)(k+1)(exfq)e.

And

fY = f
(
[q, (−1)kexf ]− (−1)kexf

)
= (−1)k(fqex)f.

Hence
0 = [[q, [exf, e]k]− [e, exf ]k, exf ]

= [Y, exf ]

= (−1)k+12(exfq)exf.

Since char(R) 6= 2, this implies that (fqex)3 = 0 for all x ∈ Mt(F). By Levitzki’s lemma
[11, Lemma 1.1], fqex = 0 for all x ∈ Mt(F) and by primeness of R, we get fqe = 0.
Since f and e are any two orthogonal idempotent elements in Mt(F), we have for any
idempotent e in Mt(F), (1 − e)qe = 0 = eq(1 − e) , that is, eq = eqe = qe. Which implies
[q, e] = 0. Since q commutes with all idempotents in Mt(F), q ∈ C and hence d = 0, a
contradiction. This completes the proof. �

The following example shows that the main results are not true in the case of arbitrary
rings.

Example 2.1. Let S be any non-commutative ring. Consider R =

{(
a b
0 0

)
: a, b ∈ S

}
and I =

{(
0 a
0 0

)
: a ∈ S

}
. Clearly,R is a ring with identity under the natural operations

which is not prime. Define the maps on R as follows d(x) = [e11, x], for all x ∈ R. Then,
it is easy to see that I is a nonzero ideal of R, d is a nonzero ideal of R and d satisfies the
requirements of Theorems 2.1 and 2.2 but R is not prime.

Hence, the hypothesis of primeness is crucial.

Example 2.2. Let R =

{(
a b
0 c

)
: a, b, c ∈ S

}
and I =

{(
0 a
0 0

)
: a ∈ S

}
. Clearly, R is a

ring with identity which is not prime and I is a nonzero ideal ofR. Define d : R→ R such
that d(x) = [x, e11+e22]. Then, it is easy to see that d is a nonzero derivation ofR. Further,
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for any x, y ∈ R the following conditions: d([x, y]k)n = [x, y]k and d([x, y]k) − [x, y]k ∈
Z(R) are satisfied, where n, k are fixed positive integer.

Hence, in Theorems 2.1 and 2.2, the hypothesis of primeness cannot be omitted.

3. DERIVATIONS IN SEMIPRIME RINGS

From now on,R is a semiprime ring and U is the left Utumi quotient ring ofR. In order
to prove the main results of this section we will make use of the following facts:

Fact 3.1 ([3, Proposition 2.5.1]). Any derivation of a semiprime ringR can be uniquely extended
to a derivation of its left Utumi quotient ring U , and so any derivation of R can be defined on the
whole U .

Fact 3.2 ([6, p.38]). If R is semiprime, then so is its left Utumi quotient ring. The extended
centroid C of a semiprime ring coincides with the center of its left Utumi quotient ring.

Fact 3.3 ([6, p.42]). Let B be the set of all the idempotents in C, the extended centroid of R.
Suppose that R is an orthogonally complete B-algebra. For any maximal ideal P of B, PR forms
a minimal prime ideal of R, which is invariant under any derivation of R.

Now we are ready to prove the following:

Theorem 3.3. Let R be a semiprime ring, U the left Utumi quotient ring of R and k be a fixed
positive integer. IfR admits a nonzero derivation d such that d([x, y]k)n = [x, y]k for all x, y ∈ R,
then there exists a central idempotent element e in U such that on the direct sum decomposition
U = eU ⊕ (1− e)U , d vanishes identically on eU and the ring (1− e)U is commutative.

Proof. Since R is semiprime and d is a derivation of R, we have given that d([x, y]k)n =
[x, y]k for all x, y ∈ R. By Fact 3.2, Z(U) = C, the extended centroid of R, and, by Fact
3.1, the derivation d can be uniquely extended on U . As we know that R and U satisfy
the same differential identities [16], therefore R satisfies d([x, y]k)n = [x, y]k. Let B be the
complete Boolean algebra of idempotents in C and M be any maximal ideal of B. Since
U is an orthogonally complete B-algebra [6, p.42], thus by Fact 3.3, MU is a prime ideal
of U , which is d-invariant. Denote U = U/MU and d the derivation induced by d on U ,
i.e., d(u) = d(u) for all u ∈ U . For any x, y ∈ U , d([x, y]k)n = [x, y]k. It is obvious that
U is prime. Therefore, by Theorem 2.1, we have either U is commutative or d = 0 in U .
This implies that, for any maximal ideal M of B, d(U) ⊆MU or [U,U ] ⊆MU , where MU
runs over all minimal prime ideals of U . In any case d(U)[U,U ] ⊆ MU = 0, for all M .
Therefore d(U)[U,U ] ⊆

⋂
M MU = 0.

By using the theory of orthogonal completion for semiprime rings [3, Chapter 3], it is
clear that there exists a central idempotent element e in U such that on the direct sum
decomposition U = eU ⊕ (1 − e)U , d vanishes identically on eU and the ring (1 − e)U is
commutative. With this completes the proof. �

We come now to our last result of this section:

Theorem 3.4. Let R be a semiprime ring of characteristic different from 2 with center Z(R), U
the left Utumi quotient ring ofR and k be a fixed positive integer. IfR admits a nonzero derivation
d such that d([x, y]k) − [x, y]k ∈ Z(R) for all x, y ∈ R, then there exists a central idempotent
element e in U such that on the direct sum decomposition U = eU ⊕ (1 − e)U , d vanishes
identically on eU and the ring (1− e)U satisfies s4, the standard identity in four variables.

Proof. By Fact 3.2, Z(U) = C, the extended centroid of R, and by Fact 3.1, the derivation
d can be uniquely extended on U . Since R and U satisfy the same differential identities,
then d([x, y]k)

n − [x, y]k ∈ C for all x, y ∈ U . Let B be the complete Boolean algebra of
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idempotents in C and M be any maximal ideal of B. As already pointed out in the proof
of Theorem 3.3, U is an orthogonally complete B-algebra, and by Fact 3.3, MU is a prime
ideal of U , which is d-invariant. Let d be the derivation induced by d on U = U/MU .
Since Z(U) = (C +MU)/MU = C/MU , then d([x, y]k)n − [x, y]k ∈ (C +MU)/MU , for
all x, y ∈ U . Moreover U is prime, hence we may conclude, by Theorem 2.2, either d = 0

in U or U satisfies s4. This implies that, for any maximal ideal M of B, either d(U) ⊆MU
or s4(x1, x2, x3, x4) ⊆ MU , for all x1, x2, x3, x4 ∈ U . In any case d(U)s4(x1, x2, x3, x4) ⊆⋂

M MU = 0. From [3, Chapter 3], there exists a central idempotent element e of U , the left
Utumi quotient ring of R such that on the direct sum decomposition U = eU ⊕ (1− e)U ,
d(eU) = 0 and the ring (1− e)U satisfies s4. This completes the proof of the theorem. �

According to Theorem 2.1 and Theorem 2.2, we conclude with the following conjecture.

Conjecture 3.1. Let R be a prime or semiprime ring with suitable torsion free restriction, Z(R)
be the center of R, I be a nonzero ideal of R, and n, k be the fixed positive integers. If R admits a
derivation d such that d([x, y]k)n − [x, y]k ∈ Z(R) for all x, y ∈ I , then R is commutative (or
satisfies s4).
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