
CREAT. MATH. INFORM.
Volume 26 (2017), No. 1,
Pages 29 - 36

Online version at https://creative-mathematics.cunbm.utcluj.ro/

Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X

DOI: https://doi.org/10.37193/CMI.2017.01.04

On the Stancu operators and their applications

DAN BĂRBOSU and DAN MICLĂUŞ

ABSTRACT. The aim of this paper is to pay a modest homage to the world class researcher Professor Dim-
itrie D. Stancu, well known for the classes of linear positive operators he introduced and studied, which have
influenced, are still influencing and will influence the future development of approximation theory.

1. INTRODUCTION

Dimitrie D. Stancu
(1927–2014)

Let α, β, γ be real non-negative parameters satisfying the following relations: α ≥ 0
may depend on the natural number n and 0 ≤ β ≤ γ. We recall that, for any function
f : [0, 1]→ R, the Stancu operators are defined [24] by

S〈α,β,γ〉n (f ;x) =

n∑
k=0

s
〈α〉
n,k(x)f

(
k+β
n+γ

)
=

n∑
k=0

(
n
k

)x[k,−α](1−x)[n−k,−α]

1[n,−α] f
(
k+β
n+γ

)
. (1.1)
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The notation x[k,−α] represents the factorial power of x with increment (−α), defined by

x[k,−α] :=


k−1∏
i=0

(x+ iα), if k ≥ 1 and x 6= 0

1, elsewhere.
(1.2)

In the paper [10], the Stancu operators given by the relation (1.1) are presented as a special
case. By choosing suitable values for the parameters α, β, γ, from Stancu operators (1.1)
one can obtain the most important linear positive operators in approximation theory.

The aim of this paper is to present a survey of some results stemming from several
classes of Stancu linear positive operators, thus paying a modest tribute to the great math-
ematician D. D. Stancu, who was the first author’s PhD supervisor.

2. STANCU OPERATORS BASED ON FACTORIAL POWERS

In 1923, Eggenberger and Pólya [8] considered an urn model which contains w white
balls and b black balls. A ball is drawn randomly and then replaced together with s balls
of the same color. This procedure is repeated n times by noting the distribution of the ran-
dom variable X representing the number of times a white ball is drawn. The distribution
of X is given by

Pr(X = k) =
(
n
k

)w(w+s)·...·(w+k−1s)b(b+s)·...·(b+n−k−1s)
(w+b)(w+b+s)·...·(w+b+n−1s) . (2.3)

Based on Pólya-Eggenberger distribution (2.3), Stancu [20] introduced a new class of lin-
ear positive operators associated to a real-valued function f : [0, 1]→ R, given by

S〈α〉n (f ;x) =

n∑
k=0

s
〈α〉
n,k(x)f

(
k
n

)
=

n∑
k=0

(
n
k

)x[k,−α](1−x)[n−k,−α]

1[n,−α] f
(
k
n

)
, (2.4)

where α is a non-negative parameter which may depend only on the natural number n. If
we choose the value 0 for the parameters β and γ in the relation (1.1), then we obtain the
Stancu operators (2.4). We note that Stancu operators (2.4) are of Bernstein type because
if we take α = 0 (2.4), one obtains the well-known Bernstein operators [5], given by

Bn(f ;x) =

n∑
k=0

sn,k(x)f
(
k
n

)
=

n∑
k=0

(
n
k

)
xk(1− x)n−kf

(
k
n

)
. (2.5)

In the papers [20], [21], Stancu had proved that the classical Mirakjan-Favard-Szász oper-
ators could be obtained as limiting case from Stancu operators (2.4). For α = n−2 and the
change of variable x = my/n, where m is a natural number not depending on n, the right
hand side of relation (2.4) becomes

n∑
k=0

(
n

k

)k−1∏
i=0

(
my
n + i

n2

)
·
n−k−1∏
j=0

(
1− my

n + j
n2

)
(
1 + 1

n2

) (
1 + 2

n2

)
· . . . ·

(
1 + n−1

n2

) f

(
k

m

)
=

=

n∑
k=0

1

k!

(
1− 1

n

)
· . . . ·

(
1− k − 1

n

) k−1∏
i=0

(
my + i

n

)
·
n−k−1∏
j=0

(
1− my

n + j
n2

)
(
1 + 1

n2

) (
1 + 2

n2

)
· . . . ·

(
1 + n−1

n2

) f

(
k

m

)
.

If we let n→∞ in this last expression, we get

lim
n→∞

(
1− 1

n

)
· . . . ·

(
1− k − 1

n

)
= 1 and lim

n→∞

k−1∏
i=0

(
my +

i

n

)
= (my)k.
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In order to find the limit of

E1(n) =

n−k−1∏
j=0

(
1− my

n
+

j

n2

)
=

n∏
j=0

[
1 + 1

n

(
j
n −my

)]
n∏

j=n−k

[
1 + 1

n

(
j
n −my

)] =
n∏
j=0

[
1 + 1

n

(
j
n −my

)]
k∏
l=0

[
1 + 1

n

(
n−k+l
n −my

)]
and

E2(n) =

n−1∏
i=0

(
1 +

i

n2

)
=

n

n+ 1

n∏
i=0

(
1 +

1

n
· i
n

)
we shall use the following result: if f could be integrated on the interval [a, b], then

lim
n→∞

n∏
j=1

(1 + δnfjn) = exp

(∫ b

a

f(x)dx

)
,

where δn = b−a
n and fjn = f(a+ jδn). By setting f = x−my, a = 0 and b = 1, we get

lim
n→∞

(
1− my

n

) n∏
j=1

(
1 +

1

n

(
j

n
−my

))
= exp

(∫ 1

0

(x−my)dx
)

= e
1
2−my,

and

lim
n→∞

k∏
l=0

[
1 +

1

n

(
n− k + l

n
−my

)]
= 1,

respectively. Therefore we have

lim
n→∞

E1(n) = e
1
2−ny.

Similarly, by setting f = x, a = 0 and b = 1, we get

lim
n→∞

n

n+ 1

n∏
i=1

(
1 +

1

n
· i
n

)
= exp

(∫ 1

0

xdx

)
= e

1
2 ,

which means that
lim
n→∞

E2(n) = e
1
2 .

Using the above results, we obtain

Mm(f ; y) = e−my
∞∑
k=0

(my)k

k! f
(
k
m

)
, (2.6)

which was introduced by Mirakjan [17] and then studied intensively by Favard [9] and
Szász [25].
Taking α = n−1 one obtains a special case of the operators (2.4), introduced by Lupaş and
Lupaş [12], defined by

S
〈 1n 〉
n (f ;x) =

n∑
k=0

s
〈 1n 〉
n,k (x)f

(
k
n

)
=

n∑
k=0

(
n
k

)x[k,− 1
n ](1−x)[n−k,− 1

n ]

1[n,−
1
n ]

f
(
k
n

)
. (2.7)

In what follows, we survey some important results for the Stancu operators (2.4), which
were obtained in some previous works of the authors.

The computation of the test functions by Stancu operators was done long time ago and
can be found in [20]. Based on the fact that many properties of Bernstein operators can
be transferred to the Stancu operators (2.4), different mathematicians studied almost all
results using this standpoint. In [13] we revised and gave new results concerning the
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computation of the test functions, and the moments for the Stancu operators, respectively,
without using the properties of Bernstein operators.

Theorem 2.1. [13] For any j, n ∈ N and x ∈ [0, 1], the following formula

S〈α〉n (ej ;x) =
1
nj

j−1∑
i=0

S(j, j − i)(n)j−i x
[j−i,−α]

1[j−i,−α] (2.8)

holds, where (x)n :=
n−1∏
i=0

(x− i) denotes the falling factorial, with (x)0 := 1.

The relation (2.8) represents a general formula for computation of images of the test
functions by Stancu operators (2.4), and can be found also in [14] where the results are
proved by using the properties of Bernstein operators.

Application 1. [13] By using (2.8), for j ∈ {1, 2, 3, 4}, we get the images of the test func-
tions by Stancu operators (2.4), such that

S〈α〉n (e1;x) = x, S〈α〉n (e2;x) = x2 + (αn+1)x(1−x)
n(1+α) ,

S〈α〉n (e3;x) = x3 +
(2α2n2+3αn2+3n−2)x2(1−x)

n2(1+α)(1+2α) +
(2α2n2+3αn+1)x(1−x)

n2(1+α)(1+2α) ,

S〈α〉n (e4;x) = x4 +
(6α3n3+11α2n3+6αn3+6n2−11n+6)x3(1−x)

n3(1+α)(1+2α)(1+3α) +

+
(6α3n3+11α2n3+18αn2−12αn+7n−6)x2(1−x)

n3(1+α)(1+2α)(1+3α) +
(6α3n3+12α2n2−α2n+7αn−α+1)x(1−x)

n3(1+α)(1+2α)(1+3α) .

By taking α = n−1 in Application 1 we get the images of the test functions for the
particular case (2.7) of Stancu operators. It follows that

S
〈 1n 〉
n (e1;x) = x, S

〈 1n 〉
n (e2;x) = x2+ 2x(1−x)

n+1 , S
〈 1n 〉
n (e3;x) = x3+ 6nx2(1−x)

(n+1)(n+2) +
6x(1−x)

(n+1)(n+2) ,

S
〈 1n 〉
n (e4;x) = x4 +

12(n2+1)x3(1−x)
(n+1)(n+2)(n+3) +

12(3n−1)x2(1−x)
(n+1)(n+2)(n+3) +

2(13n−1)x(1−x)
n(n+1)(n+2)(n+3) .

The computation of the moments of higher order for the Stancu operators (2.4) was done
in [13], too, as follows:

S〈α〉n

(
(e1 − x)2;x

)
= (1+αn)x(1−x)

n(1+α) , S〈α〉n

(
(e1 − x)3;x

)
= (1+αn)(1+2αn)x(1−x)(1−2x)

n2(1+α)(1+2α) ,

S〈α〉n

(
(e1 − x)4;x

)
=

((3n−18αn)(1+αn)2−6(1+αn))(x(1−x))2

n3(1+α)(1+2α)(1+3α) +
(6αn(1+αn)2+(1−α)(1+αn))x(1−x)

n3(1+α)(1+2α)(1+3α) .

Similarly, for the particular case (2.7) of Stancu operators, we get

S
〈 1n 〉
n

(
(e1 − x)2;x

)
= 2x(1−x)

n+1 , S
〈 1n 〉
n

(
(e1 − x)3;x

)
= 6x(1−x)(1−2x)

(n+1)(n+2) ,

S
〈 1n 〉
n

(
(e1 − x)4;x

)
=

12(n2−7n)(x(1−x))2+(26n−2)x(1−x)
n(n+1)(n+2)(n+3) .

In [20], Stancu established an important relationship between two consecutive terms of
the sequence

(
S
〈α〉
n (f ;x)

)
n∈N

, which is useful for proving a monotonicity property of it, in

the case of convex or concave functions of first order. To our best knowledge, the problem
concerning the monotonicity property of the sequence of Stancu polynomials has been
completely solved the paper [15], where the Popoviciu’s Theorem [18] was applied to the
Stancu operators in order to get an appropriate form of the remainder term.
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Application 2. [15] Let x ∈ (0, 1) be arbitrary but fixed. Applying the Popoviciu’s Theo-
rem to Stancu operators, it follows that the linear functional R〈α〉n on C[0, 1], defined by

R〈α〉n (f ;x) = f(x)− S〈α〉n (f ;x),

satisfies the following conditions:
i) R〈α〉n (e0;x) = R

〈α〉
n (e1;x) = 0, R

〈α〉
n (e2;x) = − (1+αn)x(1−x)

n(1+α) 6= 0;

ii) for any convex function f of the first order, R〈α〉n (f ;x) 6= 0; then, there exist three
points 0 ≤ ξ0 < ξ1 < ξ2 ≤ 1 such that

R〈α〉n (f ;x) = R〈α〉n (e2;x)[ξ0, ξ1, ξ2; f ] = − (1+αn)x(1−x)
n(1+α) [ξ0, ξ1, ξ2; f ]. (2.9)

For any f ∈ C[0, 1], x ∈ [0, 1] and n ∈ N, the following

f(x) = S〈α〉n (f ;x) +R〈α〉n (f ;x) (2.10)

is called Stancu approximation formula, where R〈α〉n is the remainder operator associated
to the Stancu operator S〈α〉n . The study of the remainder term associated to the Stancu
operators was done in [20], in terms of divided differences of first, respectively second
order of the function f . Three years later, in [23], Stancu established an expression of the
remainder term by using only divided differences of second order. In [13] we refined the
result established by Stancu for the remainder term.

Theorem 2.2. [13] The representation of the remainder term associated to Stancu operators is
given by

R〈α〉n (f ;x) = −x(1−x)(1+αn)n(1+α)

n−1∑
k=0

p
〈α〉
n−1,k(x+ α)

[
x, kn ,

k+1
n ; f

]
, (2.11)

for x ∈ [0, 1]\
{
k
n | k = 0, n

}
, where p〈α〉n−1,k(x) =

(
n
k

)x[k,−α](1−x+2α)[n−k,−α]

(1+2α)[n,−α] , x ≥ 0, α ≥ 0.

Remark 2.1. The relation (2.11) could be also found in [16], where a complete study on
the bivariate approximation formula of Stancu operators was done.

Remark 2.2. The asymptotic behavior of the Stancu operators as well as various quanti-
tative forms of Voronovskaja’s result [26] could be found in [13]. For other recent results
concerning Stancu operators and their generalizations, the reader is referred to [7].

3. STANCU OPERATORS WITHOUT FACTORIAL POWERS

Let β, γ be real non-negative parameters satisfying the following relation 0 ≤ β ≤ γ.
In 1969, Stancu [22] introduced new linear positive operators associated to a real-valued
function f : [0, 1]→ R, defined by

P 〈β,γ〉n (f ;x) =

n∑
k=0

sn,k(x)f
(
k+β
n+γ

)
=

n∑
k=0

(
n
k

)
xk(1− x)n−kf

(
k+β
n+γ

)
, (3.12)

for any positive integer n. In the well-known monograph of Altomare and Campiti [2],
the operators (3.12) are called ”the operators of Bernstein-Stancu”, because in the particular
case β = γ = 0, they reduce to the classical Bernstein operators (2.5). If we choose the
value 0 for the parameter α in relation (1.1), then the Stancu operators given by (3.12) are
obtained. The equality

f(x) = P 〈β,γ〉n (f ;x) +R〈β,γ〉n (f ;x) (3.13)

is called the Bernstein-Stancu approximation formula, R〈β,γ〉n being its remainder term.
Concerning the remainder term of the relation (3.13), in [22] were established the follow-
ing results.
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Theorem 3.3. [22] If the function f ∈ C[0, 1] possesses divided differences of first and second
order, finite on [0, 1], then the remainder term of (3.13) can be expressed under the following form

R〈β,γ〉n (f ;x) = γx−β
n+γ

n∑
k=0

sn,k(x)
[
x, k+βn+γ ; f

]
− nx(1−x)

(n+γ)2

n−1∑
k=0

sn−1,k(x)
[
x, k+βn+γ ,

k+β+1
n+γ ; f

]
,

(3.14)
for any x ∈ [0, 1]\

{
k+β
n+γ | k = 0, n

}
.

The result given by (3.14) is the Stancu representation for the remainder term of the
Bernstein-Stancu approximation formula (3.13) and for β = γ = 0 it reduces to the well-
known Stancu representation [19] for the remainder term of classical Bernstein approxi-
mation formula. Using the hypotheses of the above theorem, we can state

Theorem 3.4. [22] The remainder term of (3.13) can be expressed by

R〈β,γ〉n (f ;x) = γx−β
n+γ [ξ1, ξ2; f ]− nx(1−x)

(n+γ)2 [η1, η2, η3; f ] , (3.15)

for any x ∈ [0, 1]\
{
k+β
n+γ | k = 0, n

}
, where 0 ≤ ξ1 < ξ2 ≤ 1, 0 ≤ η1 < η2 < η3 ≤ 1.

The result expressed by (3.15) represents a type of Aramă mean value theorem [3] for
the Bernstein-Stancu approximation formula, while the next result is a Voronovskaja-type
theorem.

Theorem 3.5. [22] If the function f ∈ C[0, 1] is differentiable in some neighborhood of x ∈ [0, 1]
and has the second order derivative f ′′(x), the following formula

lim
n→∞

n
(
f(x)− P 〈β,γ〉n (f ;x)

)
= (γx− β)f ′(ξ)− 1

2x(1− x)f
′′(η) (3.16)

holds, for 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1.

An important particular case of Bernstein-Stancu operators (3.12) is obtained by choss-
ing β = 0 and γ = 1 and is given by

P 〈0,1〉n (f ;x) =

n∑
k=0

sn,k(x)f
(

k
n+1

)
=

n∑
k=0

(
n
k

)
xk(1− x)n−kf

(
k

n+1

)
. (3.17)

In 1980, Bleimann, Butzer and Hahn [6] introduced a sequence of linear operators defined
for real-valued functions f : [0,+∞)→ R by

Ln(f ;x) =
1

(1+x)n

n∑
k=0

(
n
k

)
xkf

(
k

n+1−k

)
. (3.18)

They proved that, for all functions f ∈ C[0,+∞) satisfying a growth condition as x→∞,
it follows that limn→∞ Lnf = f , pointwisely on [0,+∞), the convergence being uniform
on each compact subset of [0,+∞). In [11] Ivan and in [1] Abel and Ivan discovered the
close connection between Bernstein operators and BBH operators which allowed them to
transfer some approximation properties from Bernstein to BBH operators. Following their
ideas, we consider the space of functions

C∗[0,+∞) =
{
f ∈ C[0,+∞) : lim

x→∞
f(x) = 0

}
.

For a function f ∈ C∗[0,+∞), x ∈ [0,+∞) and y = x
1+x , we define

F (y) =

{
f
(

y
1−y

)
, y ∈ [0, 1),

0, y = 1.
(3.19)
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It is clear that a function f ∈ C∗[0,+∞) implies F ∈ C[0, 1], such that in [4] we proved the
following equality

Ln(f ;x) = P 〈0,1〉n

(
F ; x

1+x

)
. (3.20)

The equality (3.20) allows to transfer some approximation properties of Bernstein-Stancu
operators (3.17) to the BBH operators (3.18). An example in this direction could be the
following

Theorem 3.6. [4] Suppose that f ∈ C∗[0,+∞) is differentiable in a neighborhood of x ∈ [0,+∞)
and has the second order derivative f ′′(x), then the following Voronovskaja-type formula

lim
n→∞

n (f(x)− Ln(f ;x)) = − 1
2x(1 + x)2f ′′(x)

holds.

In a similar way, it is possible to get the Stancu type representation, respectively Aramă
mean value type theorem of the remainder term for Bleimann, Butzer and Hahn approxi-
mation formula.
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N. Bernstein, C. R. Acad. Sci. URSS, 4 (1932), 79–85

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

NORTH UNIVERSITY CENTER AT BAIA MARE

VICTORIEI 76, 430122 BAIA MARE, ROMANIA

Email address: barbosudan@yahoo.com
Email address: danmiclausrz@yahoo.com


