CREAT. MATH. INFORM. Volume **26** (2017), No. 1, Pages 45 - 52 Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2017.01.06

Some new types of decomposition of continuity

CARLOS CARPINTERO, JOHN MORENO and ENNIS ROSAS

ABSTRACT. Using the notion of μ -semi open set, we introduce the concept of locally μ -semi open set as a generalization of locally μ -closed set and give a new theory of decomposition of semi-continuity and some weak forms of continuity are studied.

1. INTRODUCTION AND PRELIMINARIES

In the last years, different forms of open sets are being studied. Recently, a significant contribution to the theory of generalized open sets have been presented by A. Császár [1], [2], [3]. Specifically, in 2002, A. Császár [1] introduced the notions of generalized topology and generalized continuity. It is observed that a large numbers of articles are devoted to the study of generalized open sets and certain type of sets associated to a topological spaces, containing the class of open sets and possessing properties more or less to those open sets. We recall some notions defined in [1]. Let X be a nonempty set and let expX, denote the power set of X. We call a class $\mu \subseteq \exp X$ a generalized topology [1] (briefly, GT) if $\emptyset \in \mu$ and the union of elements of μ belong to μ . A set X with a GT μ on it is called a generalized topological space (briefly, GTS) and is denoted by (X, μ) . The elements of μ are called μ -open sets and the complement of a μ -open set is called μ -closed set. For $A \subset X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A, i.e., the smallest μ -closed set containing A; and $i_{\mu}(A)$, the union of all μ -open sets contained in A, i.e., the largest μ -open set contained in A (see [1], [2]). It is easy to observe that i_{μ} and c_{μ} are idempotent and monotone ($\rho : \exp X \mapsto \exp X$ is said idempotent if $A \subset X$ implies $\rho(\rho(A)) = \rho(A)$ and monotone, if $A \subset B$ implies $\rho(A) \subseteq \rho(B)$. It is also well known (see [1], [2]), that if μ is a GT on $X, x \in X$ and $A \subset X$, then $x \in c_{\mu}(A)$ if and only if $x \in M$ and $M \in \mu$, implies $M \cap A \neq \emptyset$ and $c_{\mu}(X \setminus A) = X \setminus i_{\mu}(A)$.

In the same form as in topological space, is defined the notion of semi open set, we obtain that if (X, μ) is a generalized topological space, $A \subseteq X$ is said to be μ -semi open if there exists a μ -open set W such that $W \subseteq A \subseteq c_{\mu}(W)$ or equivalently, A is μ -semi open if and only if $A \subseteq c_{\mu}(i_{\mu}(A))$, the collection of all μ -semi open sets in X is denoted by μ -SO(X). The complement of a μ -semi open set is called μ -semi closed, the collection of all μ -semi closed sets in X is denoted by μ -SC(X). For $A \subset X$, we denote by $sc_{\mu}(A)$ the intersection of all μ -semi closed sets containing A, i.e., the smallest μ -semi closed set containing A; and $si_{\mu}(A)$, the union of all μ -semi open sets contained in A, i.e., the largest μ -semi open set contained in A (see [6]). sc_{μ} is idempotent and monotone. Also $sc_{\mu}(A) = A \cup i_{\mu}(c_{\mu}(A))$, $sc_{\mu}(X \setminus A) = X \setminus si_{\mu}(A)$ and $si_{\mu}(X \setminus A) = X \setminus sc_{\mu}(A)$ [6].

In [7], the authors introduced the notion of locally μ -closed set, μ -t-set, μ -B-set, μ^* -open set and μ -open set in order to unify the theory of decomposition of semi-continuity. In this article, using the notion of μ -semi open set, we introduce the concept of locally μ -semi

2010 Mathematics Subject Classification. 54C05, 54C08, 54C10.

Received: 14.07.2016. In revised form: 14.12.2016. Accepted: 28.12.2016

Key words and phrases. Locally μ -s-closed, μ -st-set, μ -sB-set, (μ, σ) -s-continuous functions.

Corresponding author: Carlos Carpintero; carpintero.carlos@gmail.com

open set as a generalization of locally μ -closed and give a new theory of decomposition of semi-continuity and some weak form are studied. Throughout this paper cl(A) (respectively int(A)) denotes the closure (respectively interior) of A in a topological space X.

2. LOCALLY μ -SEMI CLOSED SETS

Definition 2.1. [7] Let μ be a GT on a topological space (X, τ) . A subset A of X is called locally μ -closed if $A = U \cap F$ where $U \in \tau$ and F is μ -closed.

Remark 2.1. If μ is a GT on a topological space (X, τ) , then every open set as well as a μ -closed set is locally μ -closed.

Definition 2.2. [5]Let μ be a GT on a topological space (X, τ) . A subset *A* of *X* is called:

- 1. μ -t-set if $int(A) = int(c_{\mu}(A))$.
- 2. μ -B-set if $A = U \cap V$, $U \in \tau$, V is a μ -t-set.
- 3. μ^* -open set if $A \subseteq cl(i_{\mu}(A))$.
- 4. μ '-open set if $A \subseteq int(c_{\mu}(A))$.

Definition 2.3. Let μ be a GT on a topological space (X, τ) . A subset A of X is called generalized μ -closed or simple a g μ -closed if $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$.

Definition 2.4. Let μ be a GT on a topological space (X, τ) . A subset A of X is called locally μ -semi closed or simple locally μ -s-closed if $A = U \cap F$ where $U \in \tau$ and F is μ -semi closed.

Remark 2.2. If μ is a GT on a topological space (X, τ) , then every open set as well as a μ -semi closed set is locally μ -semi closed, also every locally μ -closed set is locally μ -semi closed.

Definition 2.5. Let μ be a GT on a topological space (X, τ) . A subset *A* of *X* is called:

- 1. μ -st-set if $int(A) = int(sc_{\mu}(A))$.
- 2. μ -sB-set if $A = U \cap V$, $U \in \tau$, V is a μ -st-set.
- 3. μ^* -semi open set (briefly μ^* -s-open set) if $A \subseteq cl(si_{\mu}(A))$.
- 4. μ '-semi open set (briefly μ '-s-open set) if $A \subseteq int(sc_{\mu}(A))$.

The complement of a μ^* -semi open set is called μ^* -semi closed set (briefly μ^* -s-closed set).

In the following example, we calculate some sets according with Definition 2.5.

Example 2.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X\}$ and $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ be a GT on (X, τ) . We obtain that:

- 1. μ -closed sets ={ $X, \{c\}, \{b, c\}, \{a, c\}$ }.
- 2. locally μ -closed sets ={ $\emptyset, X, \{c\}, \{a, c\}, \{b, c\}$ }.
- 3. μ -SO(X)sets = { \emptyset , X, {a}, {b}, {c}, {a, c}, {a, b}, {b, c}}.
- 4. μ -SC(X)sets = { \emptyset , X, , {a}, {b}, {c}, {a, c}, {a, b}, {b, c}}.
- 5. locally μ -semi closed sets ={ $\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{a, b\}, \{b, c\}$ }.
- 6. μ -st-sets ={ \emptyset , X, {a}, {b}, {c}, {a, c}, {a, b}, {b, c}}.
- 7. μ -sB-sets ={ \emptyset , X, {a}, {b}, {c}, {a, c}, {a, b}, {b, c}}.
- 8. μ^* -s-open sets ={ $\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{a, b\}, \{b, c\}$ }.
- 9. μ '-s-open sets ={ $\emptyset, X, \{a, b\}$ }.

The following theorems characterizes the locally μ -semi closed sets.

Theorem 2.1. Let μ be a GT on a topological space (X, τ) . $A \subseteq X$ is locally μ -semi closed if and only if $X \setminus A$ is the union of a closed set and a μ -semi open set.

Proof. Suppose that *A* is locally μ -semi closed, then $A = U \cap F$ where $U \in \tau$ and *F* is μ -semi closed. It follows that $X \setminus A = X \cap (U \cap F)^c = (U^c \cup F^c) = (X \setminus U) \cup (X \setminus F)$. Conversely, suppose that $X \setminus A = W \cup G$, *W* closed set and *G* μ -semi open. Then $A = X \setminus (X \setminus A) = X \setminus (W \cup G) = (X \setminus W) \cap (X \setminus G)$.

Theorem 2.2. Let μ be a GT on a topological space (X, τ) . $A \subseteq X$ is locally μ -semi closed if and only if there exists an open set U such that $A = U \cap sc_{\mu}(A)$.

Proof. Let *A* be a locally μ -semi closed subset of *X*, then $A = U \cap F$, where $U \in \tau$ and *F* is μ -semi closed. It follows that $A = A \cap U \subseteq U \cap sc_{\mu}(A) \subseteq U \cap sc_{\mu}(F) = U \cap F = A$. In consequence, $A = U \cap sc_{\mu}(A)$. Conversely, since $sc_{\mu}(A)$ is a μ -semi closed, it follows that *A* is locally μ -semi closed.

In the following example, we can see that there exists a locally μ -semi closed set that is not open as well as μ -semi closed.

Example 2.2. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a, b, c\}, \{c, d\}, \{c\}\}$ and $\mu = \{\emptyset, X, \{a, b, c\}, \{c, d\}\}$ be a GT on (X, τ) . We obtain that:

- 1. μ -closed sets ={ $\emptyset, X, \{d\}, \{a, b\}$ }.
- 2. locally μ -closed sets = { \emptyset , X, {a, b}, {c}, {a, b, c}, {c, d}, {d}}.
- 3. μ -SO(X)sets = { \emptyset , X, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}}.
- 4. μ -SC(X)sets = { \emptyset , X, {a, b}, {d}, {b}, {a}}.
- 5. locally μ -semi closed sets ={ $\emptyset, X, \{a, b\}, \{d\}, \{b\}, \{a\}, \{a, b, c\}, \{c, d\}, \{c\}$ }.
- 6. μ -t-sets ={ $\emptyset, X, \{a\}, \{b\}, \{d\}, \{a, b\}$ }.
- 7. μ -st-sets ={ $\emptyset, X, \{a\}, \{b\}, \{d\}, \{a, b\}$ }.
- 8. μ -B-sets ={ \emptyset , X, {a}, {b}, {c}, {d}, {a, b}, {a, b, c}, {c, d}}.
- 9. μ -sB-sets ={ \emptyset , X, {a}, {b}, {c}, {d}, {a, b, c}, {c, d}, {a, b}}.
- 10. μ^* -open sets ={ $\emptyset, X, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}$ }.
- 11. μ^* -s-open sets ={ $\emptyset, X, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}$ }.
- 12. μ -open sets ={ $\emptyset, X, \{c\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$ }
- 13. μ -s-open sets ={ \emptyset , X, {c}, {a, c}, {a, d}, {b, c}{b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

The following examples will be useful to better understand the development of this article.

Example 2.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\mu = \{\emptyset, \{a\}, \{a, c\}\}$ be a GT on (X, τ) . We obtain that:

- 1. μ -closed sets ={ $X, \{b, c\}, \{b\}$ }.
- 2. locally μ -closed sets ={ $\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}$ }.
- 3. μ -SO(X)sets = { \emptyset , X, {a}, {b}, {a, b}, {a, c}}.
- 4. μ -SC(X)sets = { \emptyset , X, {b, c}, {c}, {b}, {a, c}}.
- 5. locally μ -semi closed sets ={ \emptyset , X, {b, c}, {c}, {b}, {a}, {a, b}, {a, c}}.
- 6. μ -t-sets ={ $X, \{b\}, \{b, c\}$ }.
- 7. μ -st-sets = { \emptyset , X, {b}, {c}, {a}, {b, c}, {a, c}}.
- 8. μ -B-sets ={ $\emptyset, X, \{b\}, \{a\}, \{b, c\}, \{a, b\}$ }.
- 9. μ -sB-sets ={ $\emptyset, X, \{b\}, \{c\}, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}$ }.
- 10. μ^* -open sets ={ \emptyset , {a}, {b}, {a, c}}.
- 11. μ^* -s-open sets ={ $\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}$ }.
- 12. μ -open sets ={ $\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}$ }.
- 13. μ '-s-open sets ={ $\emptyset, X, \{a\}, \{b\}, \{a, b\}$ }.

Example 2.4. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{b, c\}\}$ and $\mu = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}\}$ $\{a, b, c\}\}$ be a GT on (X, τ) . We obtain that:

- 1. μ -closed sets = { \emptyset , X, {b, c, d}, {a, c, d}, {c, d}, {c}, {d}}.
- 2. μ -SO(X)sets = { \emptyset , X, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, d}, {a, c, d}, {b, c, d}, {a, b, c}, {a, b, d}.
- 3. μ -SC(X)sets = { \emptyset , X, {b, c, d}, {a, c, d}, {c, d}, {b, d}, {a, d}, {a, c}, {b, d}, {a, d}, {
- 4. μ -open sets ={ \emptyset , X, {b}, {a, b}, {b, c}, {a, b, c}{{a, b, d}, {b, c, d}}.
- 5. μ '-s-open sets ={ $\emptyset, X, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}$ }.

Note that $sc_{\mu}(A) \subseteq c_{\mu}(A)$ and $i_{\mu}(A) \subseteq si_{\mu}(A)$ for all $A \subseteq X$. If μ is a GT on a topological space (X, τ) , we obtain the relationship between the sets given in Definitions 2.2 and 2.4.

Theorem 2.3. Let μ be a GT on a topological space (X, τ) and $A \subset X$. Then

- 1. If A is a μ -t-set, then A is a μ -st-set.
- 2. If A is a μ -B-set, then A is a μ -sB-set.
- 3. If A is a μ^* -open, then A is a μ^* -s-open.
- 4. If A is a μ '-s-open, then A is a μ '-open.

Observe that in Example 2.2, τ is not contained in μ . If we take $A = \{c\}$, A is locally μ -semi closed, $sc_{\mu}(A) = X$, $sc_{\mu}(A) \setminus A = \{a, b, d\}$ is not μ -semi closed and $A \cup (X \setminus sc_{\mu}(A)) = A = \{c\}$ is not a μ -semi open set, also A is not contained in $si_{\mu}(A \cup (X \setminus sc_{\mu}(A)))$, because $A \cup (X \setminus sc_{\mu}(A)) = \{c\}$ and $sc_{\mu}(\{c\}) = \emptyset$.

In the case that $\tau \subset \mu$, we have the following theorem.

Theorem 2.4. Let μ be a GT on a topological space (X, τ) and $\tau \subset \mu$. If A is locally μ -semi closed, then:

- 1. $sc_{\mu}(A) \setminus A$ is μ -semi closed.
- 2. $A \cup (X \setminus sc_{\mu}(A))$ is μ -semi open set.
- 3. A is contained in $si_{\mu}(A \cup (X \setminus sc_{\mu}(A)))$.

Proof. 1.- Suppose that *A* is a locally μ -semi closed subset of *X*, then there exists an open set *U* such that $A = U \cap sc_{\mu}(A)$. It follows that: $sc_{\mu}(A) \setminus A = sc_{\mu}(A) \setminus (U \cap sc_{\mu}(A)) = sc_{\mu}(A) \cap (X \setminus (U \cap sc_{\mu}(A))) = sc_{\mu}(A) \cap ((X \setminus U) \cup (X \setminus sc_{\mu}(A))) = sc_{\mu}(A) \cup (X \setminus U) \cap sc_{\mu}(A) \cap (X \setminus sc_{\mu}(A)) = sc_{\mu}(A) \cap (X \setminus U)$. Now, as $sc_{\mu}(A)$ is μ -semi closed, $X \setminus U$ is closed and $\tau \subset \mu$, we obtain that $X \setminus U$ is μ -semi closed and then $sc_{\mu}(A) \cap (X \setminus U)$ is μ -semi closed.

2.- Using (1), $sc_{\mu}(A) \setminus A$ is μ -semi closed, then its complement $X \setminus (sc_{\mu}(A) \setminus A)$ is μ -semi open, but $X \setminus (sc_{\mu}(A) \setminus A) = X \setminus (sc_{\mu}(A) \cap (X \setminus A) = A \cup (X \setminus sc_{\mu}(A)).$ 3.- Using (2), $A \subset (A \cup (X \setminus sc_{\mu}(A))) = si_{\mu}(A \cup (X \setminus sc_{\mu}(A))).$

Definition 2.6. Let μ be a GT on a topological space (X, τ) . A subset A of X is called generalized μ -semi closed or simple a $g\mu$ -s-closed if $sc_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$.

Remark 2.3. Every generalized μ -closed set is a generalized μ -semi closed set, but the converse is not necessarily true as we can see in the following example

Example 2.5. In Example 2.2,

- 1. locally μ -closed sets = { \emptyset , X, {a, b, c}, {a, b}, {c, d}, {c}, {d}, {c}, {d}, {c}, {d}}.
- 2. μ -semi closed sets ={ $\emptyset, X, \{a, b\}, \{b\}, \{a\}, \{d\}$ }.
- 3. locally μ -semi closed sets ={ \emptyset , X, {a, b}, {d}, {b}, {a}, {a, b, c}, {c, d}, {c}}.

4. $g\mu$ -semi closed sets ={ $\emptyset, X, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$ }.

In Example 2.3,

- 5. $g\mu$ -closed sets = {X, {b}, {c}, {a, c}, {b, c}}.
- 6. $g\mu$ -semi closed sets = { \emptyset , X, {b}, {c}, {a, c}, {b, c}}.
- 7. locally μ -semi closed sets = { \emptyset , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.
- 8. μ -semi closed sets = { \emptyset , X, {b, c}, {a, c}, {b}, {c}}.

The following theorem characterize the μ -semi closed sets in terms of $g\mu$ -semi closed sets and locally μ -semi closed sets.

Theorem 2.5. Let μ be a GT on a topological space (X, τ) . $A \subset X$ is μ -semi closed if and only if A is $g\mu$ -semi closed and locally μ -semi closed.

Proof. Suppose that *A* is μ -semi closed in *X* and $A \subset U$, with $U \in \tau$. Since $A = sc_{\mu}(A)$, we obtain that *A* is $g\mu$ -semi closed and locally μ -semi closed.

Conversely, suppose that *A* is $g\mu$ -semi closed and locally μ -semi closed, then $A = U \cap F$, where $U \in \tau$ and *F* is μ -semi closed, therefore, $A \subset U$ and $A \subset F$, in consequence, $sc_{\mu}(A) \subset U$ and $sc_{\mu}(A) \subset F$ and hence $sc_{\mu}(A) \subset U \cap F = A$. So *A* is μ -semi closed. \Box

Example 2.6. In Examples 2.2, $\{a,b,c\}$ is locally μ -semi closed but is not $g\mu$ -semi closed, in consequence is not μ -semi closed. In the same form $\{a,d\}$ is $g\mu$ -semi closed but is not locally μ -semi closed, in consequence is not μ -semi closed.

Theorem 2.6. Let μ be a GT on a topological space (X, τ) and A, B subsets of X.

- 1. *A* is a μ -st-set if and only if *A* is a μ^* -s-closed.
- 2. If A is μ -semi closed, then A is μ -st-set.
- *3. If A and B are* μ *-st-sets, then* $A \cap B$ *is* μ *-st-set.*
- 4. If A is μ -st-set, then A is μ -sB-set.
- 5. Every locally μ -semi closed set is μ -sB-set.

Proof. 1. Suppose that *A* is a μ -st-set, then $int(A) = int(sc_{\mu}(A))$ and hence $int(sc_{\mu}(A)) \subset A$, in consequence, *A* is a μ^* -s-closed. Conversely, if *A* is a μ^* -s-closed, then $int(sc_{\mu}(A)) \subset A$ and hence $int(sc_{\mu}(A)) \subset int(A) \subset A \subset int(sc_{\mu}(A))$. Therefore, $int(sc_{\mu}(A)) \subset int(A) \subset int(A) \subset int(sc_{\mu}(A))$. In consequence, $int(sc_{\mu}(A)) = A$, so *A* is a μ^* -s-closed.

2. If *A* is μ -semi closed, then $A = sc_{\mu}(A)$, and hence $int(A) = int(sc_{\mu}(A))$. Therefore, *A* is μ -st-set.

3. Suppose that *A* and *B* are μ -st-sets. Since $A \cap B \subseteq sc_{\mu}(A \cap B)$, we obtain that $int(A \cap B) \subseteq int(sc_{\mu}(A \cap B)) \subseteq int(sc_{\mu}(A) \cap sc_{\mu}(B)) = int(sc_{\mu}(A)) \cap int(sc_{\mu}(B)) = int(A) \cap int(B) = int(A \cap B)$. In consequence, $int(A \cap B) = int(sc_{\mu}(A \cap B))$.

4. Since $X \in \tau$ and $A = A \cap X$, then A is a μ -sB-set.

5. Suppose that *A* is locally μ -semi closed set of *X*, then $A = U \cap F$, where $U \in \tau$ and *F* is a μ -semi closed. Using (2), *F* is μ -st-set, then by (4), follows that $A = U \cap F$, where $U \in \tau$ and *F* is a μ -st-set and therefore, *A* is μ -sB-set.

The following examples show that the converse of the above theorem is not necessarily true.

Example 2.7. In Example 2.2, $\{c\}$ is μ -sB-set, but $\{c\}$ is not μ -st-set. Also in Example 2.3, $\{a\}$ is μ -st-set, but $\{a\}$ is not μ -semi closed.

Example 2.8. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}\}$ and $\mu = \{\emptyset, \{a\}, \{a, b\}\}$. Then $\{a\}$ is a μ -sB-set but is not locally μ -semi closed.

Theorem 2.7. Let μ be a GT on a topological space (X, τ) . $A \subset X$ is open if and only if A is μ '-s-open and μ -sB-set.

Proof. Let A be an open set, then $A = int(A) \subset int(sc_{\mu}(A))$ and hence, A is μ '-s-open set. Since $A = A \cap X$, where X is μ -st-set, then A is μ -sB-set.

Conversely, since A is a μ -sB-set, $A = U \cap V$, where $U \in \tau$ and V is a μ -st-set. By hypothesis, $A \subseteq int(sc_u(A)) = int(sc_u(U \cap V)) \subseteq int(sc_u(U) \cap sc_u(V)) = int(sc_u(U)) \cap$ $int(sc_u(V)) = int(sc_u(U)) \cap int(V)$. But $A = U \cap V = (U \cap V) \cap U \subset (int(sc_u(U))) \cap U$ $int(V) \cap U = (int(sc_u(U)) \cap U \cap int(V)) = U \cap int(V) \subset U \cap V = A$. Therefore, A is an open set. \square

Example 2.9. In Example 2.2, $\{b, c, d\}$ is μ -s-open but not μ -sB-set. In the same form, $\{a\}$ is μ -sB-set but is not μ -s-open, in consequence, is not open.

3. (μ, σ) -S-CONTINUOUS FUNCTIONS

In [7] it was defined the notion of (μ, σ) -continuous functions. In this section, we generalize this notion and obtain some characterizations of it.

Definition 3.7. Let μ be a GT on a topological space (X, τ) . A function $f: (X, \tau) \to (Y, \sigma)$ is said to be (μ, σ) -s-continuous if $f^{-1}(V)$ is μ -semi open in X for each open set V of Y.

Theorem 3.8. Every (μ, σ) -continuous function is (μ, σ) -s-continuous but not conversely.

Example 3.10. Let $X = \mathbb{R}$ be the set of real numbers, $\mu = \{\emptyset, \mathbb{R} \setminus \mathbb{Q}\}$ and $\sigma = \{\emptyset, \mathbb{R}, \mathbb{Q}\}$ where \mathbb{Q} denotes the set of all rational numbers and $\mathbb{R} \setminus \mathbb{Q}$ denotes the set of all irrational numbers. Define $f: (\mathbb{R}, \sigma) \to (\mathbb{R}, \sigma)$ as the identity function. Then f is (μ, σ) -s-continuous but not (μ, σ) continuous.

Theorem 3.9. Let μ be a GT on a topological space (X, τ) and $f : (X, \tau) \to (Y, \sigma)$ a function. *Then the following are equivalent :*

- 1. f is (μ, σ) -s-continuous.
- 2. For each $x \in X$ and each open set V of Y with $f(x) \in V$, there exists a μ -semi open set U containing x such that $f(U) \subset V$.
- 3. For each $x \in X$ and each open set V of Y with $f(x) \in V$, $f^{-1}(V)$ is a μ -semi open neighborhood of x.
- 4. The inverse image of each closed set in Y is μ -semi closed.
- 5. $sc_{\mu}(f^{-1}(B)) \subseteq f^{-1}(cl(B))$ for every $B \subseteq Y$.
- 6. $f(sc_u(A)) \subseteq cl(f(A))$ for every $A \subseteq X$.
- 7. $f^{-1}(int(B)) \subseteq si_{\mu}(f^{-1}(B))$ for every $B \subseteq Y$.

Proof. 1. \Rightarrow 2. Let $x \in X$ and V an open set in Y such that $f(x) \in V$. Since f is (μ, σ) -scontinuous, $f^{-1}(V)$ is μ -semi open. By putting $U = f^{-1}(V)$, $x \in U$ and $f(U) \subseteq V$.

2. \Rightarrow 3. Let $x \in X$ and V an open in Y such that $f(x) \in V$. By 2, there exists a μ -semi open set U containing x such that $f(U) \subseteq V$. So each $x \in U \subseteq f^{-1}(V)$ and hence $f^{-1}(V)$ is a μ -semi open neighborhood of x.

3. \Rightarrow 1. Let $x \in X$ and V an open in Y such that $f(x) \in V$. By 3, $f^{-1}(V)$ is a μ -semi open neighborhood of x. Thus for each $x \in f^{-1}(V)$, there exists a μ -semi open set U_x containing x such that $x \in U_x \subseteq f^{-1}(V)$. Hence $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$ and so $f^{-1}(V) \in \mu$ -SO(X). $1. \Leftrightarrow 4$. It is obvious.

1. \Rightarrow 5. Let *B* be a subset of *Y*. Since cl(B) is closed and *f* is (μ, σ) -s-continuous, $f^{-1}(cl(B))$ is μ -semi closed. Therefore, $sc_{\mu}(f^{-1}(B)) \subseteq sc_{\mu}(f^{-1}(cl(B))) = f^{-1}(cl(B))$. 5. \Rightarrow 6. Let A be a subset of X. By 5, we have $sc_{\mu}(f^{-1}(f(A))) \subseteq f^{-1}(cl(f(A)))$. But

 $sc_u(A) \subseteq sc_u(f^{-1}(f(A)))$. Therefore $f(sc_u(A)) \subseteq cl(f(A))$.

6. \Rightarrow 7. Let *B* be a subset of *Y*. By 6, $f(sc_{\mu}(X \setminus f^{-1}(B)) \subseteq cl(f(X \setminus f^{-1}(B)))$ and $f(X \setminus si_{\mu}(f^{-1}(B)) \subseteq cl(Y \setminus B) = Y \setminus int(B)$. Therefore $X \setminus si_{\mu}(f^{-1}(B)) \subseteq f^{-1}(Y \setminus int(B))$ and $f^{-1}(int(B)) \subseteq si_{\mu}(f^{-1}(B))$.

7. \Rightarrow 1. Let *B* be an open in *Y* and $f^{-1}(int(B)) \subseteq si_{\mu}(f^{-1}(B))$. Then $f^{-1}(B) \subseteq si_{\mu}(f^{-1}(B))$. But $si_{\mu}(f^{-1}(B)) \subseteq f^{-1}(B)$. Hence $f^{-1}(B) = si_{\mu}(f^{-1}(B))$. Therefore $f^{-1}(B)$ is μ -semi open.

As an immediate consequence of Theorem 3.9, we have the following result.

Corollary 3.1. Let μ be a GT on a topological space (X, τ) and $f : (X, \tau) \to (Y, \sigma)$ a (μ, σ) -scontinuous function, then the following are equivalent:

- 1. $si_{\mu}(sc_{\mu}(f^{-1}(B))) \cap sc_{\mu}(si_{\mu}(f^{-1}(B))) \subseteq f^{-1}(cl(B))$ for each B in Y.
- 2. $f[si_{\mu}(sc_{\mu}(A)) \cap sc_{\mu}(si_{\mu}(A))] \subseteq cl(f(A)))$ for each A in X.

Definition 3.8. Let μ be a GT on a topological space (X, τ) and $A \subseteq X$. Then the μ -s-kernel of A denoted by μ -s-Ker(A) is defined to be the set, μ -s-Ker $(A) = \cap \{U : U \in \mu - SO(X), A \subseteq U\}$.

Theorem 3.10. Let μ be a GT on a topological space (X, τ) and $x \in X$. Then $y \in \mu$ -s-Ker $(\{x\})$ if and only if $x \in sc_{\mu}(\{y\})$.

Proof. Assume that $y \notin \mu$ -*s*-*Ker*({*x*}). Then there exists a μ -semi open set U containing x such that $y \notin U$. Therefore, we have $x \notin sc_{\mu}(\{y\})$. The converse is similarly shown. \Box

Theorem 3.11. Let μ be a GT on a topological space (X, τ) and A a subset of X. Then μ -s- $Ker(A) = \{x : x \in X, sc_{\mu}(\{x\}) \cap A \neq \emptyset\}.$

Proof. Let $x \in \mu$ -s-Ker(A) and $sc_{\mu}(\{x\}) \cap A = \emptyset$. Then, $x \notin X \setminus sc_{\mu}(\{x\})$ which is a μ -semi open set containing A. But this is impossible, since $x \in \mu$ -s-Ker(A). Consequently, $sc_{\mu}(\{x\}) \cap A \neq \emptyset$.

Conversely, let $x \in X$ such that $sc_{\mu}(\{x\}) \cap A \neq \emptyset$. Suppose that $x \notin \mu$ -s-Ker(A). Then there exists a μ -semi open set U containing A and $x \notin U$. Let $y \in sc_{\mu}(\{x\}) \cap A$. Then $y \in sc_{\mu}(\{x\})$ and $y \in A$. Thus $x \in \mu$ -s-Ker($\{y\}$) and $y \in U \in \mu$ implies $x \in U \in SO(X)$. By this contradiction, $x \in \mu$ -s-Ker(A).

Theorem 3.12. The following are equivalent for any points x and y in a GTS (X, μ) :

- (1) μ -s-Ker({x}) $\neq \mu$ -s-Ker({y}).
- (2) $sc_{\mu}(\{x\}) \neq sc_{\mu}(\{y\}).$

Theorem 3.13. Let μ be a GT on a topological space (X, τ) and $A \subseteq X$. Then

- 1. $x \in \mu$ -s-Ker(A) if and only if $A \cap F \neq \emptyset$ for any μ -semi closed subset F of X with $x \in F$.
- 2. $A \subseteq \mu$ -s-Ker(A) and $A = \mu$ -s-Ker(A) if A is μ -semi open in X.
- 3. If $A \subseteq B$ then μ -s-Ker $(A) \subseteq \mu$ -s-Ker(B).

Proof. 1. Let $x \in \mu$ -*s*-*Ker*(*A*). Then by Theorem 3.11, $A \cap sc_{\mu}(\{x\}) \neq \emptyset$. Conversely, assume that $A \cap F \neq \emptyset$. By taking $F = sc_{\mu}(\{x\})$, we have $A \cap sc_{\mu}(\{x\}) \neq \emptyset$ which implies $x \in \mu$ -*s*-*Ker*(*A*).

2. Let *A* be μ -semi open in *X*. Then always $A \subseteq \mu$ -*s*-*Ker*(*A*). On the other hand, assume that $x \in \mu$ -*s*-*Ker*(*A*). Then $x \in$

 $\bigcap \{U : U \in \mu - SO(X), A \subseteq U\}$. Since *A* is μ -semi open implies that $x \in A$. Thus μ -s- $Ker(A) \subseteq A$. Hence $A = \mu$ -s-Ker(A). 3. It is obvious.

As an immediate consequence of Theorems 3.9 and 3.13, we have the following result.

Corollary 3.2. Let μ be a GT on a topological space (X, τ) and $f : (X, \tau) \to (Y, \sigma)$ a function (μ, σ) -s-continuous. Then the following are equivalent :

1. For every subset A of X, $f(si_{\mu}(A)) \subset Ker(f(A))$.

2. For every subset B of Y, $si_{\mu}(f^{-1}(B)) \subseteq f^{-1}(Ker(B))$.

Definition 3.9. Let μ be a GT on a topological space (X, τ) . Then $f : (X, \tau) \to (Y, \sigma)$ is said to be $g\mu$ -s-continuous (respectively contra locally μ -s-continuous) if $f^{-1}(F)$ is a $g\mu$ -s-closed (respectively locally μ -s-closed) for each closed set F of (Y, σ) .

Example 3.11. In Example 2.3, take $f : (X, \tau) \to (X, \tau)$, defined as: f(a) = b, f(b) = c and f(c) = a, then f is contra locally μ -s-continuous but is not $g\mu$ -s-continuous. In the same form if in Example 2.8, we define $f : (X, \tau) \to (X, \tau)$, as: f(a) = b, f(b) = a and f(c) = c, then f is μ -s-continuous but is not contra locally μ -s-continuous. Observe that in each case f is not (μ, τ) -s-continuous.

The following theorem is a direct consequence of Theorem 3.9 and Theorem 2.5

Theorem 3.14. Let μ be a GT on a topological space (X, τ) . Then $f : (X, \tau) \to (Y, \sigma)$ is (μ, σ) -s-continuous if and only if it is $g\mu$ -s-continuous and contra locally μ -s-continuous.

The following example shows the existence of a function that is contra locally μ -s-continuous but not is $g\mu$ -s-continuous, in consequence is not (μ, τ) -s-continuous.

Example 3.12. In Example 2.2, define $f : (X, \tau) \to (X, \tau)$ as follows: f(a) = a, f(b) = b, f(c) = d and f(d) = c. Then f is contra locally μ -s-continuous but not is $g\mu$ -s-continuous, in consequence is not (μ, τ) -s-continuous.

Theorem 3.15. Let μ be a GT on a topological space (X, τ) . Then a contra continuous function $f: (X, \tau) \to (Y, \sigma)$ is (μ, σ) -s-continuous if and only if it is g μ -s-continuous

Proof. Suppose that f is a contra continuous and (μ, σ) -s-continuous. Let F be a closed set in Y, then $f^{-1}(F)$ is open and μ -semi closed in X. Since each μ -semi closed is $g\mu$ -s-closed, then f is $g\mu$ -s-continuous.

Conversely, let *F* be a closed set in *Y*, then $f^{-1}(F)$ is open and $g\mu$ -s-closed in *X*. Since each open set is locally μ -s-closed, then $f^{-1}(F)$ is locally μ -s-closed and $g\mu$ -s-closed, by Theorem 2.5, *f* is (μ, σ) -s-continuous.

REFERENCES

- [1] Császár, A., Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357
- [2] Császár, A., Generalized open sets in generalized topologies, Acta Math. Hungar., 96 (2005), 53-66
- [3] Császár, A., δ and θ-modifications of generalized topologies, Acta Math. Hungar, 120 (2008), No. 3, 275–279
- [4] Maki, H., Chandrasekhara, Rao K. and Nagoor Gani, A., On generalizing semi-open sets and preopen sets, Pure Appl. Math. Math. Sci, 49 (1999), 17–29
- [5] Noiri, T. and Roy, B., Unification of generalized open sets on topological spaces, Acta Math. Hungar., 130 (2011), 349–357
- [6] Rosas, E., Rajesh, N. and Carpintero, C., Some New Types of Open and Closed Sets in minimal Structure part I, Int. Math. Forum, 4 (2009), No. 44, 2169–2184
- [7] Roy, B. and Sen, R., On a type of decomposition of continuity, Afr. Mat., 26 (2015), No. (1-2), 153-158

DEPARTMENT OF MATHEMATICS UNIVERSIDAD DE ORIENTE CUMANÁ, VENEZUELA *Email address*: carpintero.carlos@gmail.com *Email address*: ennisrafael@gmail.com

DEPARTMENT OF BASIC SCIENCES UNIVERSIDAD DE LA COSTA BARRANQUILLA, COLOMBIA *Email address*: jbmorenobarrios@gmail.com