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Reverse degree distance of some graph operations

V. KALADEVI, R. MURUGESAN and K. PATTABIRAMAN

ABSTRACT. In this paper, we present the exact formulae for the reverse degree distance of some graph oper-
ations, such as corona product, splice, link and composition of two connected graphs. Using the results obtained
here, the reverse degree distance of some important classes of graphs are obtained.

1. INTRODUCTION

Let G be a simple connected graph with vertex set V (G) and edge set E(G). For u ∈
V (G), let dG(u) be the degree of u in G and dG(u, v) is the distance between the vertices u
and v in G. For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex
farthest from v. The maximum eccentricity is its diameter, denoted by d(G). The degree
distance of G is defined as [14, 17, 19] DD(G) = 1

2

∑
u,v∈V (G)

(dG(u) + dG(v))dG(u, v).

It is a useful molecular descriptor [28]. Earlier as noted in [23, 27], this graph in-
variant appeared to be part of the molecular topological index (or Schultz index) [26],
which may be expressed as DD(G) +

∑
u∈V (G)

dG(u)2, see [19, 22], where the latter part∑
u∈V (G)

dG(u)2 is known as the first Zagreb index [20]. Thus the degree distance is also

called the true Schultz index in chemical literature [12]. Tomescu [30] showed that the
star is the unique graph with minimum degree distance in the class of connected graphs
with n vertices. Further work on the minimum degree distance (especially for unicyclic
and bicyclic graphs) may be found in A.I. Tomescu [29], Tomescu [31] and Bucicovschi
and Cioaba [2]. Dankelmann et al. [11] gave asymptotically sharp upper bounds for the
degree distance.

The Wiener index of G is, denoted by W (G), defined as W (G) = 1
2

∑
u,v∈V (G)

dG(u, v).

Gutman [19] showed that if G is a tree with n vertices, then DD(G) = 4W (G)− n(n− 1).
Thus there is no need to study the degree distance for trees because this is equivalent to
the study of the Wiener index, see [13]. Balaban et al. [1] introduced the concept of reverse
Wiener index, which is defined to be Λ(G) = |V (G)|(|V (G)|−1)d(G)

2 − W (G). Let Λ′(G) =
(|V (G)|−1)2d(G)

2 −W (G), which is a revised version of the reverse Wiener index of G. The
reverse Wiener index of unicyclic graphs are obtained by Du and Zhou [15].

The reverse degree distance of a connected graph G is defined in discrete mathematical
chemistry as rD′(G) = 2(|V (G)| − 1) |E(G)| d(G)− 1

2

∑
u,v∈V (G)

(dG(u) + dG(v))dG(u, v).

Since some of the chemical graphs are derived from the graph operation for instance
zig-zag nanotube is obtained from the generalized hierarchical product and 1,3- tetrameric
is obtained using link of two graphs and so on. For more information refer [3, 4, 5, 6]. This
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motivative us to consider such a graph operation related to Wiener, reverse Wiener index
is defined in [1] and its relation with other indices has been studied. Also the reverse
degree distance and its relation with degree distance and more indices has been studied
[33]. This motivate us to consider the reverse degree distance and obtained the relations
between this index and Wiener index, degree distance, Zagreb index and its coindex using
various graph operations such as corona product, splice, link and composition.

Some basic properties of the reverse degree distance have been established by Zhou
and Trinajstic [33], and in particular, it was shown that the reverse degree distance satis-
fies the basic requirement to be a branching index usable in chemistry. In continuation to
the study of the reverse degree distance, a natural starting point is the reverse degree dis-
tances of unicyclic graphs. In [16] the graphs with maximum reverse degrees distance in
the class of unicyclic graphs with given girth, number of pendant vertices and maximum
degree are determined. The degree distance and reverse degree distance of one tetragonal
carbon nanocones are determined by Momen and Alaeiyan in [25].

2. MAIN RESULTS

The first Zagreb index and second Zagreb index are defined as M1(G) =
∑

u∈V (G)

dG(u)2 and

M2(G) =
∑

uv∈E(G)

dG(u)dG(v). Similarly, the first Zagreb coindex and second Zagreb coindex

are defined as M1(G) =
∑

uv/∈E(G)

(dG(u) + dG(v)) and M2(G) =
∑

uv/∈E(G)

dG(u)dG(v).

2.1. Corona product. Corona product were introduced by Frucht and Harary in 1970 [18].
The corona product of two graphs G and H, denoted as G ◦ H, is defined as the graph
obtained by taking one copy of G and |V (G)| copies of H, and joining by an edge the ith
vertex of G to every vertex in the ith copy of H. Let the vertices of G and H are labeled by
v1, v2, . . . , vn1 and u1, u2, . . . , un2 , respectively. For 1 ≤ i ≤ n1, denote by Hi the ith copy
of H joined to the vertex vi and let V (Hi) = {ui1, ui2, . . . , uin2

}. The following lemmas are
follows from the structure of G ◦H.

Lemma 2.1. Let G and H be two connected graphs. Then the distance between two vertices of

G ◦H are given as follows (i)dG◦H(uij , upq) =


1 if i = p and ujuq ∈ E(H),

2 if i = p and ujuq /∈ E(H),

dG(vi, vp) + 2 if i 6= p.

(ii)dG◦H(vi, vp) = dG(vi, vp), if vi, vp ∈ V (G).
(iii)dG◦H(vi, upq) = dG(vi, vp) + 1, if ui ∈ V (G) and upq ∈ V (Hi).

Lemma 2.2. Let G be graph on n1 vertices. If H is a connected graph, then the degree of a vertex

of G ◦H is given by dG◦H(x) =

{
dG(x) + |V (H)| if x ∈ V (G),

dH(x) + 1 if x ∈ V (Hi) for some, i ∈ {1, 2, . . . , n1}.

Now we obtain the reverse degree distance of corona product of two connected graphs.

Theorem 2.1. Let G and H be two connected graphs with n1, n2 vertices and m1,m2 edges,
respectively. Then the reverse degree distance of G ◦H is rD′(G ◦H) = 2(n1(n2 + 1)− 1)(m1 +

n1(n2+m2))(d(G)+2)−(n2+1)DD(G)−4(n2+m2)(n2+1)W (G)−n1(M1(H)+2M1(H))−[
2n1(n1 − 1)(2n2m2 + n2

2) + 2n2
1(n2

2 + n2 + 2m2) + n1(n2
2 − n2 −m2 + 2n2m1)

]
.
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Proof. Let T = G ◦H. By the definition of reverse degree distance,

rD′(T ) = 2(n1(n2 + 1)− 1)(m1 + n1(n2 + m2))(d(G) + 2)

−1

2

∑
u,v∈V (T )

(dT (u) + dT (v))dT (u, v). (2.1)

We partition the set of pairs of vertices of G ◦H into four subsets, namely, V1,V2,V3 and
V4, where V1 = {{vi, vp} ⊆ V (G◦H)|vi, vp ∈ V (G)}, V2 = {{uij , uiq} ⊆ V (G◦H)|uij , uiq ∈
V (Hi), i ∈ {1, 2, . . . , n1}}, V3 = {{vi, upq} ⊆ V (G ◦ H)|vi ∈ V (G), upq ∈ V (Hp), p ∈
{1, 2, . . . , n1}} and V4 = {{uij , upq} ⊆ V (G ◦ H)|uij ∈ V (Hi), upq ∈ V (Hp), i 6= p, i, p ∈
{1, 2, . . . , n1}}. Therefore

1

2

∑
u,v∈V (T )

(dT (u) + dT (v))dT (u, v) = S1 + S2 + S3 + S4.

We shall obtain the above sums are separately.

S1 =
1

2

∑
vi,vp∈V (G), i 6=p

(dT (vi) + dT (vp))dT (vi, vp)

=
1

2

n1∑
i,p=1, i 6=p

(dG(vi) + n2 + dG(vp) + n2)dG(vi, vp), by Lemmas 2.1 and 2.2

= DD(G) + 2n2W (G).

S2 =
1

2

n1∑
i=1

∑
uij ,uiq∈V (Hi), j 6=q

(dT (uij) + dT (uiq))dT (uij , uiq)

=
1

2

n1∑
i=1

n2∑
j,q=1, j 6=q,uiuq∈E(H)

(dH(uj) + dH(uq) + 2)(1)

+
1

2

n1∑
i=1

n2∑
j,q=1, j 6=q,uiuq /∈E(H)

(dH(uj) + dH(uq) + 2)(2), by Lemmas 2.1 and 2.2

= n1M1(H) + 2n1M1(H) + n1n2(n2 − 1)− n1m2.

S3 =

n1∑
p=1

n1∑
i=1

n2∑
q=1

(dT (vi) + dT (upq))dT (vi, upq)

=

n1∑
p=1

n1∑
i=1

n2∑
q=1

(dG(vi) + n2 + dH(uq) + 1)(dG(vi, vp) + 1), by Lemmas 2.1 and 2.2

= n2DD(G) + 2n2(n2 + 1)W (G) + 4m2W (G) + 2n1n2m1 + 2n2
1n2(n2 + 1) + 4n2

1m2.

S4 =
1

2

∑
uij∈V (Hi),upq∈V (Hp),i6=p

(dT (uij) + dT (upq))dT (uij , upq)

=
1

2

n1∑
i,p=1,i6=p

n2∑
j,q=1,j 6=q

(dT (uij) + dT (upq))dT (uij , upq)
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By Lemmas 2.1 and 2.2, we have

S4 =
1

2

n1∑
i,p=1,i6=p

n2∑
j,q=1,j 6=q

(dH(vj) + dH(vq) + 2)(dG(ui, up) + 2)

=
1

2

n1∑
i,p=1,i6=p

2(dG(ui, up) + 2)

n2∑
j,q=1

(dH(vj) + 1)

= (2n2m2 + n2
2)

n1∑
i,p=1,i6=p

(dG(ui, up) + 2)

= (2n2m2 + n2
2)(2W (G) + 2n1(n1 − 1)).

Using the sums S1 to S4 in (2.1), we obtain:
rD′(T ) = 2(n1(n2 + 1)− 1)(m1 + n1(n2 + m2))(d(G) + 2)− (n2 + 1)DD(G)

−4(n2 + m2)(n2 + 1)W (G)− n1(M1(H) + 2M1(H))−
[
2n1(n1 − 1)(2n2m2

+n2
2) + 2n2

1(n2
2 + n2 + 2m2) + n1(n2

2 − n2 −m2 + 2n2m1)
]
.

�

Let Cn,Pn and Kn denote the cycle, path and complete graph on n vertices, respectively.
It is known that W (Pn) = n(n2−1)

6 , P I(Cn) = n3

8 when n is even, and n(n2−1)
8 otherwise

and W (Kn) = n(n−1)
2 . It can be easily verified that DD(Pn) = n(n−1)(2n−1)

3 ,DD(Cn) = n3

2

when n is even, and n(n2−1)
2 otherwise and DD(Kn) = n(n− 1)2.

By direct calculations we obtain the first and second Zagreb indices of Pn and Cn.
M1(Cn) = 4n, n ≥ 3, M1(P1) = 0, M1(Pn) = 4n − 6, n > 1 and M1(Kn) = n(n − 1)2.
M2(Pn) = 4(n − 2) and M2(Cn) = 4n. Similarly, M1(Pn) = 2(n2 − 4n + 4), M1(Cn) =

2n(n− 3) and M1(Kn) = 0.
For a given graph G, its t−fold bristled graph Brst(G) is obtained by attaching t vertices

of degree 1 to each vertex of G. This graph can be represented as the corona product of G
and complement of a complete graph on t vertices.

Example 2.1. Let G be a graph with n vertices. Then rD′(G ◦ Kt) = 2(nt + n − 1)(m +
nt)(d(G) + 2)− (t + 1)DD(G)− 4t(t + 1)W (G)− 2nmt− nt(3nt + n− 2).

Example 2.2. (i) rD′(Pn ◦Kt) = 2(nt + n− 1)2(n + 1)− n
3 (n− 1)(t + 1)(2nt + 2n + 2t−

1) + nt(3nt + 3n− 4).

(ii)rD′(Cn ◦Kt) =


n(n + 4)(t + 1)(nt + n− 1)− n3(t+1)2

2

−2n2t− nt(3nt + n− 2) if n is even

n(n + 3)(t + 1)(nt + n− 1)− n(n2−1)(t+1)2

2

−2n2t− nt(3nt + n− 2) if n is odd.
(iii) A special corona graph Cn ◦K1 is called a sunlet graph on 2n vertices.

rD′(Cn ◦K1) = 2n(n2 + 4n− 3) if n is even and 2n(3n2 + 2n− 1) if n is odd.

The star graph St+1 on t+1 vertices is the corona product of K1 and Kt. The fan graph
Ft+1 and the wheel graph Wt+1 on t+ 1 vertices are also corona product of K1 and Pt and
Ct. From the above formula the reverse degree distance of these graphs are obtained.

Example 2.3. (i)rD′(K1 ◦Kt) = t(7t− 1). (ii)rD′(K1 ◦ Pt) = 3t2 − 22t + 25.
(iii)rD′(K1 ◦ Ct) = 3t2 − 20t.
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Example 2.4. Using Theorem 2.1, we have (i) rD′(Pn ◦K2) = 12n3 + 27n2 − 15n + 2.
(ii)rD′(Pn ◦K2) = 2n2t−6n2t+ 2n2t3 + 5nt+ 2nt3 + 3nt2 + 2n3−6n2−3n−6t2−12t−4.

(iii)rD′(Pn ◦ Cm) = 4n3t2 + 16n3t
3 + 4n3

3 + 7n2 − 7n
3 − 4n2t2 + 17nt

3 − 7n2t + nt2 + 2.

2.2. Splice and link. Let G and H be two simple connected graphs with the vertex sets
V (G) and V (H) and the edge sets E(G) and E(H), respectively. For given vertices y ∈
V (G) and z ∈ V (H), a splice of G and H by vertices y and z is denoted by S(G.H)(y, z)
and defined by identifying the vertices y and z in the union of G and H. In the following
Lemma, the distance between vertices of S(G.H)(y, z) is computed. The proof can be
easily obtained from the definition of splice of graphs, so is omitted.

Lemma 2.3. Let G and H be two graphs. Then

dS(G.H)(y,z)(u, v) =


dG(u, v) if u, v ∈ V (G),

dH(u, v) if u, v ∈ V (H),

dG(u, y) + dH(z, v) if u ∈ V (G) v ∈ V (H).

Theorem 2.2. Let G and H be two graphs with n1, n2 vertices and m1,m2 edges. Then
rD′(S(G.H)(y, z)) = 2(n1 + n2 − 1)(m1 + m2)(d(y) + d(z))−DD(G)−DD(H)
− (n2 − 1)

∑
y 6=u∈V (G)

dG(u)dG(u, y)− (n1 − 1)
∑

z 6=v∈V (H)

dH(v)dH(v, z)− 2m1D(z)

− 2m2D(y), where D(y) =
∑

x∈V (G)

dG(x, y) and D(z) =
∑

z∈V (H)

dH(x, z).

Proof. Let S = S(G.H)(y, z). By the definition of reverse degree distance,
rD′(S) = 2(n1 + n2 − 1)(m1 +m2)(d(y) + d(z))− 1

2

∑
u,v∈V (S)

(dS(u) + dS(v))dS(u, v).(2.2)

We partition the set of pairs of vertices of S into five subsets, namely, V1,V2,V3,V4, and
V5, where V1 = {{u, v} ⊆ V (S)|u, v 6= y ∈ V (G)}, V2 = {{u, v} ⊆ V (S)|u = y, v ∈ V (G)},
V3 = {{u, v} ⊆ V (S)|u, v 6= z ∈ V (H)}, V4 = {{u, v} ⊆ V (S)|u = z, v ∈ V (H)} and
V5 = {{u, v} ⊆ V (S)|y 6= u ∈ V (G), z 6= v ∈ V (H)}.

Therefore by Lemma 2.3, we have
1

2

∑
u,v∈V (S)

(dS(u) + dS(v))dS(u, v) =
1

2

∑
u,v

(dS(u) + dS(v))dS(u, v)

=
1

2

∑
u,v 6=y, u,v∈V (G)

(dG(u) + dG(v))dG(u, v) +
1

2

∑
u=y, v∈V (G)

(dG(y) + dH(z) + dG(v))dG(v, y)

+
1

2

∑
u,v 6=z, u,v∈V (H)

(dH(u) + dH(v))dH(u, v) +
1

2

∑
u=z, v∈V (H)

(dG(y) + dH(z) + dH(v))dH(v, z)

+
1

2

∑
y 6=u∈V (G), z 6=v∈V (H)

(dG(u) + dH(v))(dG(u, y) + dH(v, z))

= DD(G) +DD(H) + (n2 − 1)
∑

y 6=u∈V (G)

dG(u)dG(u, y)

+(n1 − 1)
∑

z 6=v∈V (H)

dH(v)dH(v, z) + 2m1D(z) + 2m2D(y). (2.3)

Using (2.3) in (2.2), we obtain:
rD′(S) = 2(n1 + n2 − 1)(m1 + m2)(d(y) + d(z))−DD(G)−DD(H)

−(n2 − 1)
∑

y 6=u∈V (G)

dG(u)dG(u, y)− (n1 − 1)
∑

z 6=v∈V (H)

dH(v)dH(v, z)

−2m1D(z)− 2m2D(y).
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�

Let G and H be two simple connected graphs with the vertex sets V (G) and V (H) and
the edge sets E(G) and E(H), respectively. For vertices y ∈ V (G) and z ∈ V (H), a link of
G and H by vertices y and z is denoted by L(G •H)(y, z) and obtained by joining y and
z by an edge in the union of these grap. In the following Lemma, the distance between
vertices of L(G•H)(y, z) is computed. The proof can be easily obtained from the definition
of link of graphs, so is omitted.

Lemma 2.4. Let G and H be two graphs. Then

dL(G•H)(y,z)(u, v) =


dG(u, v) if u, v ∈ V (G),

dH(u, v) if u, v ∈ V (H),

dG(u, y) + dH(z, v) + 1 if u ∈ V (G) v ∈ V (H).

Theorem 2.3. Let G and H be two graphs with n1, n2 vertices and m1,m2 edges. Then rD′(L(G•
H)(y, z))=2(n1+n2)(m1+m2+1)(d(y)+d(z)+1)−DD(G)−DD(H)−n2

∑
y 6=u∈V (G)

dG(u)dG(u, y)−

n1

∑
z 6=v∈V (H)

dH(v)dH(v, z)−
[
(2m1 +2)D(z)+(2m2 +2)D(y)

]
−
[
(n2−1)(2m1 +1)+(n1−

1)(2m2 + 1) + 2m1 + 2m2 + 2
]
, where D(y) =

∑
x∈V (G)

dG(x, y) and D(z) =
∑

z∈V (H)

dH(x, z).

Proof. Let L = L(G •H)(y, z). By the definition of reverse degree distance,

rD′(L) = 2(n1 + n2)(m1 +m2 + 1)(d(y) + d(z) + 1)−
1

2

∑
u,v∈V (L)

(dL(u) + dL(v))dL(u, v). (2.4)

By Lemma 2.4, we have
1

2

∑
u,v

(dS(u) + dS(v))dS(u, v)

=
1

2

∑
u,v 6=y, u,v∈V (G)

(dG(u) + dG(v))dG(u, v) +
1

2

∑
u=y, v∈V (G)

(dG(y) + 1 + dG(v))dG(v, y)

+
1

2

∑
u,v 6=z, u,v∈V (H)

(dH(u) + dH(v))dH(u, v) +
1

2

∑
u=z, v∈V (H)

(1 + dH(z) + dH(v))dH(v, z)

+
∑

v=z,u 6=y∈V (G)

(1 + dH(z) + dG(u))(1 + dG(u, y))

+
1

2

∑
y 6=u∈V (G), z 6=v∈V (H)

(
(dG(u) + dH(v))(dG(u, y) + dH(v, z) + 1)

)
+ dG(y) + dH(z) + 2

= n2

∑
y 6=u∈V (G)

dG(u)dG(u, y) + n1

∑
z 6=v∈V (H)

dH(v)dH(v, z) + (2m1 + 2)D(z)

+DD(G) + (2m2 + 2)D(y) +DD(H) + (n2 − 1)(2m1 + 1) + 2m1

+(n1 − 1)(2m2 + 1) + 2m2 + 2. (2.5)

Using (2.5) in (2.4), we have
rD′(L) = 2(n1 + n2)(m1 + m2 + 1)(d(y) + d(z) + 1)−DD(G)−DD(H)

−n2

∑
y 6=u∈V (G)

dG(u)dG(u, y)− n1

∑
z 6=v∈V (H)

dH(v)dH(v, z)−
[
(2m1 + 2)D(z)

+(2m2 + 2)D(y)
]
−
[
(n2 − 1)(2m1 + 1) + (n1 − 1)(2m2 + 1) + 2m1 + 2m2 + 2

]
.

�
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2.3. Composition. The composition of the graphs G and H, denoted by G[H], has vertex
set V (G) × V (H) in which (u1, v1)(u2, v2) is an edge whenever u1u2 is an edge in G or,
u1 = u2 and v1v2 is an edge in H. The following lemma gives the distance and degree of
vertices of G[H].

Lemma 2.5. Let G and H be two connected graphs with V (G) = {u1, u2, . . . , un1
} and V (H) =

{v1, v2, . . . , vn2
}. If xij denote the vertex (ui, vj) of G[H], then (i) the distance between two

vertices of G[H] is given by dG[H](xij , xpq) =


dG(ui, up) if j = q or i 6= p

1 if i = p and vjvq ∈ E(H)

2 if i = p and vjvq /∈ E(H).

(ii) the degree of a vertex xij of G[H] is n2dG(ui) + dH(vj).

Theorem 2.4. Let G and H be two connected graphs with n1 and n2 vertices, respectively.
Then rD′(G[H]) = 2(n1n2 − 1)(m1n

2
2 + m2n1)d(G) − n3

2DD(G) − 2(2m2 + M1(H) +
M1(H))W (G)− n1M1(H)− 2n1M1(H)− 4n2m1(n2

2 − n2 −m2).

Proof. Let V (G) = {u1, u2, . . . , un1
}, similarly for V (H) = {v1, v2, . . . , vn2

}. Let xij denote
the vertex (ui, vj) of G[H]. By the definition of reverse degree distance,

rD′(G[H]) = 2(n1n2 − 1)(m1n
2
2 + m2n1)d(G)

−1

2

n1−1∑
i=1

n2∑
j, `=1
j 6= `

(dG[H](xij) + dG[H](xi`))dG[H](xij , xi`)

−1

2

n1∑
i, k=1
i 6= k

n2∑
j =1

(dG[H](xij) + dG[H](xkj))dG[H](xij , xkj)

−1

2

n1∑
i, k=1
i 6= k

n2∑
j, `=1
j 6= `

(dG[H](xij) + dG[H](xk`))dG[H](xij , xk`). (2.6)

We partition the sums into three sums, S1,S2 and S3 as follows.

S1 =

n1∑
i=1

n2∑
j, `=1
j 6= `

(dG[H](xij) + dG[H](xi`))dG[H](xij , xi`)

=

n1∑
i=1

n2∑
j, `=1
j 6= `

(2n2dG(ui) + dH(vj) + dH(v`))dG[H](xij , xi`)

= 2n2

n1∑
i=1

dG(ui)
( ∑

vjv`∈E(H)

dH(vj , v`) +
∑

vjv` /∈E(H)

dH(vj , v`)
)

+

n1∑
i=1

( ∑
vjv`∈E(H)

(dH(vj)+dH(v`)dH(vj , v`)+
∑

vjv` /∈E(H)

(dH(vj) + dH(v`)dH(vj , v`)
)
,

since dG[H](xij , xi`) = 1 if vjv` ∈ E(H) and 2 if vjv` /∈ E(H).
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= 4n2m1

 ∑
vj∈V (H)

dH(vj) + 2
∑

vj∈V (H)

(n2 − dH(vj)− 1)


+

n1∑
i=1

 ∑
vjv`∈E(H)

(dH(vj) + dH(v`)) +
∑

vjv` /∈E(H)

(dH(vj) + dH(v`))

 ,

= 4n2m1

(
2m2 + 2(n2

2 − 2m2 − n2)
)

+ 2n1M1(H) + 4n1M1(H).

S2 =

n1∑
i, k=1
i 6= k

n2∑
j =1

(d(xij) + d(xkj))dG[H](xij , xkj)

=

n1∑
i, k=1
i 6= k

n2∑
j =1

(n2(d(ui) + d(uk)) + 2d(vj))dG(ui, uk)

=

n1∑
i, k=1
i 6= k

n2∑
j =1

n2(d(ui) + d(uk))dG(ui, uk) +

n1∑
i, k=1
i 6= k

n2∑
j =1

2d(vj)dG(ui, uk)

= 2n2
2DD(G) + 8m2W (G).

S3 =

n1∑
i, k=1
i 6= k

n2∑
j, `=1
j 6= `

(d(xij) + d(xk`))dG[H](xij , xk`)

=

n1∑
i, k=1
i 6= k

n2∑
j, `=1
j 6= `

(n2d(ui) + d(vj) + n2d(uk) + d(v`))dG(ui, uk),

since dG[H](xij , xk`) = dG(ui, uk) for all j and k and further the distance
between the corresponding vertices of the layers is counted in S2

= 2n2
2(n2 − 1)DD(G) + 4W (G)(M1(H) + M1(H)).

Using S1 to S3 in (2.6), we have
rD′(G[H]) = 2(n1n2 − 1)(m1n

2
2 + m2n1)d(G)− n3

2DD(G)− 2(2m2 + M1(H)

+M1(H))W (G)− n1M1(H)− 2n1M1(H)− 4n2m1(n2
2 − n2 −m2).

�

As an application we present formulae for reverse degree distance of open and closed
fences, Pn[K2] and Cn[K2].
Example 2.5.

(i)rD′(Pn[K2]) = 2
3 (6n2 − 9n− 1)− 4

3n(n− 1)(n + 7).

(ii)rD′(Cn[K2]) =

{
n(5n2 − 5n− 4) if n is even
5n2(n2 − 3) if n is odd.
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