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Fixed point theorems for uniformly generalized Kannan
type semigroup of self-mappings

AHMED H. SOLIMAN1 , MOHAMMAD IMDAD∗,2 and MD AHMADULLAH2

ABSTRACT. In this paper, we consider a new uniformly generalized Kannan type semigroup of self-mappings
defined on a closed convex subset of a real Banach space equipped with uniform normal structure and employ
the same to show that such semigroup of self-mappings admits a common fixed point provided the underlying
semigroup of self-mappings has a bounded orbit.

1. INTRODUCTION

The origin of metric fixed point theory can be traced back to classical Banach con-
traction theorem which was originated in the Ph.D. thesis of Banach in 1920. This useful
and applicable theorem was later published in the form of a research paper in 1922 which
has already earned around 2000 google citations. Indeed, this theorem is one of the most
useful theorems ever proved in classical functional analysis. In the long course of last
several decade, this natural theorem has been generalized and extended by improving
the involved contraction condition or lightening the requirement of completeness and by
now there exists an extensive literature which are also available in the form of books and
survey articles. To mention a few, we recall the books due to Takahashi [22], Goebel and
Kirk [8](Book), Rhoades [20](Survey article) and even many more.

In this paper, we prove our results on the common fixed point of semigroup of oper-
ators defined on suitable subsets of a Banach space. Technically speaking, some of the
fixed point results proved for uniformly Lipschitzian mappings were extended to uni-
formly Lipschitzian semigroup of self-mappings and even more generally to Lipschitzian
semigroup of self-mappings (e.g. [21, 23–32]). Recall that such mappings were first stud-
ied by Goebel and Kirk [9] wherein authors proved the existence of a fixed point of a
k-uniformly Lipschitzian mapping T defined on a bounded closed convex subset of a
uniformly convex Banach space B provided k < γ and γ > 1 is the unique solution of the
equation

(1− δB(1/γ))γ = 1, (1.1)

where δB denotes the modulus of convexity of B.

In 1973, Goebel and Kirk [9] posed the following question:
Question. Whether (or not) the constant γ > 1 satisfying equation (1.1) is the greatest
real number for which any k-uniformly Lipschitzian mapping T (with k < γ) has a fixed
point?

In 1993, Tan and Xu [21] answered the question of Goebel and Kirk [9] in the negative
by proving the existence of a fixed point of a k-uniformly Lipschitzian one parameter
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semigroup of self-mappings defined on K provided k < γ < α, and α > 1 is the unique
solution of the following equation:

α2

N(B)
δ−1B (1− 1

α
) = 1,

where N(B) > 1 denotes the normal structure coefficient of B.
Now, it remains an interesting question to find another constant α∗ strictly greater than

α for which every k-uniformly Lipschitzian mapping T (with k < α∗) has a fixed point.
In 2010, Ceng et al. [6] answered this question by proving the following theorem:

Theorem 1.1. [6] LetK be a nonempty closed convex subset of a real Banach spaceB with normal
structure coefficient N(B) > max{1, ε0}. Let τ = {Ts : s ∈ S = [0,∞)} be a k-uniformly
Lipschitzian semigroup of self-mappings defined on K wherein k < α∗ with

α∗ = sup
{
α : α2δ−1B (1− 1

α
)N(B)−1 ≤ 1 and 1− 1

α
∈ (0, 1− ε0

2
)
}
,

while ε0 denotes the characteristic of convexity of B. If {Tsu0 : s ∈ S} is bounded for some
u0 ∈ K, then the semigroup τ admits a common fixed point (i.e., there exists u∗ ∈ K such that
Tsu
∗ = u∗, for all s ∈ S.)

He also proved yet another fixed point result for Lipschitzian semigroup of mappings
as follows:

Theorem 1.2. [6] Let K be a nonempty bounded subset of a uniformly convex Banach space B,
and τ = {Ts : s ∈ S} a k-uniformly Lipschitzian semigroup of self-mappings mappings defined
on K such that:

k <
√
γ0N(B),

where γ0 = inf{γ ≥ 1 : γ(1 − δB(1/γ)) ≥ 1/2}. If there exists a nonempty bounded closed
convex subset E of K enjoying the following property:

(<) u ∈ E implies ww(u) ⊂ E,
where ww(u) stands for set of weak w-limit of τ at u, then semigroup τ admits a common
fixed point (i.e., there exists u∗ ∈ E such that Tsu∗ = u∗ for all s ∈ S).

Recall that a Banach space B is said to be with normal structure if every weakly com-
pact convex subset K of B with more than one point contains a non-diametral point,
i.e., u0 ∈ K for which

sup{||u0 − v|| : v ∈ K} < diam(K).

Every Banach space having normal structure also has weak normal structure, but the
converse is not true in general. In reflexive Banach spaces these properties are equivalent.

As every Lipschitzian mapping is uniformly continuous, it is natural to ask if there
exist contractive mappings which are discontinuous. This question was answered in af-
firmative by Kannan [15] which has greatly influenced the recent research of this domain.
In fact, Lipschitzian mappings are always continuous and Kannan type mappings are not
necessarily continuous. In what follows, a semigroup of self-mappings is called uniformly
Kannan if the following condition is satisfied:

d(T (t)u, T (t)v) ≤ β[d(u, T (t)u) + d(v, T (t)v)], t ∈ S,
for all u, v ∈ B and 0 < β < 1

2 .

There already exists extensive literature around the Kannan type of mappings. For the
work of this kind one can be referred [2, 3, 14].
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The aim of this paper is to introduce a relatively larger class of generalized uniformly
Kannan type semigroup of self-mappings and utilize the same to prove our results by
replacing the k-uniformly Lipschitzian semigroup of self-mappings with generalized uni-
formly Kannan type semigroup of self-mappings.

2. PRELIMINARIES

Let K be a nonempty closed convex subset of a real Banach space B and S an un-
bounded subset of [0,∞) such that t + h ∈ S and t − h ∈ S (for all t, h ∈ S with t > h).
A collection τ = {Ts : s ∈ S} of self-mappings on K is said to be generalized uniformly
Kannan type semigroup of self-mappings defined on K if Ts+tu = TsTtu (for all s, t ∈ S
and u ∈ K), for each x ∈ K, s 7→ Tsx is continuous and there exists a constant 0 ≤ β < 1
(for all u, v ∈ K) such that

||Tsu− Tsv|| ≤ β{||u− Tsu||+ ||v − Tsv||}, for each s ∈ S. (2.2)

Example 2.1. Let X = R,K = [0, 1] and S = [0,∞). Define Tt : K → K by

Ts(x) =
(1
2

)s
x, for all x ∈ K and each s ∈ S.

Here for each s ∈ S, Ts satisfies the requirement of uniformly Lipschitzian mapping but
fails to satisfy the condition (2.2) (e.g., x = 1, y = 0, s = 1). Observe that this example
exhibit that this two concepts are genuinely difference.

Geometrically speaking, B is strictly convex if its unit spheres do not contain any line
segments. Technically speaking, B is strictly convex if and only if the following implica-
tion holds:

u, v ∈ B, ||u|| = ||v|| = 1 and ||(u+ v)/2|| = 1 ⇒ u = v.

The Modulus of convexity of a Banach space B, is a function δB : [0, 2]→ [0, 1] by

δB(ε) = inf{1− ||(u+ v)/2|| : ||u|| ≤ 1, ||v|| ≤ 1 and ||u− v|| ≥ ε}.
Also, the characteristic of convexity of B is a number ε0(B) = sup{ε ∈ [0, 2] : δB(ε) = 0}.
It is easy to see (cf. [12]) that B is uniformly convex if and only if ε0(B) = 0; uniformly
nonsquare if and only if ε0(B) < 2; and strictly convex if and only if δ(2) = 1.Moreover, if
ε0(B) < 1; then B has a normal structure, i.e., each bounded convex subset H of B which
contains more than one non-diametral point i.e., a point u0 such that

sup{||u0 − u|| : u ∈ H} < diam(H).

The modulus of convexity δB of a Banach spaceB has well-known following properties
(see [13]):

(i) δB is increasing on [0,2], and moreover strictly increasing on [ε0, 2];
(ii) δB is continuous on [0,2) (but not necessarily at ε = 2);

(iii) B is strictly convex if and only if δB(2) = 1;
(iv) δB(0) = 0 and limε→2− δB(ε) = 1− ε0/2;
(v) [||a− u|| ≤ r, ||a− v|| ≤ r and ||u− v|| ≥ ε] ⇒ ||a− (u+ v)/2|| ≤ r(1− δB(ε/r)).

Recall that the normal structure coefficient N(B) of B is the number (see [5])

inf
{diamK
rK(K)

}
,

where the infimum is taken over all bounded closed convex subsets K of B with more
than one members, and rK(K) and diam(K) respectively, stand for Chebyshev radii of K
relative to itself and the diameter ofK, i.e., rK(K) = infu∈K supv∈K ||u−v|| and diamK =
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supu,v∈K ||u−v||.A Banach spaceB is said to have uniform normal structure ifN(B) > 1.
It is known that a Banach space with uniform normal structure is reflexive and that all
uniformly smooth or uniformly convex Banach spaces have uniform normal structure
(see [32]). It is also well known that N(H) =

√
2 for a Hilbert space H . Here it can

be pointed out that computations of the normal structure coefficient N(B) for general
Banach spaces is quite complicated. No exact values of N(B) are known except for some
special cases (e.g., all Hilbert as well as Lp spaces). In general, we have the following
lower bounded for N(B) (see [1, 5, 18]):

N(B) ≥ 1

1− δB(1)
.

Other lower bounds for N(B) in terms of some Banach space parameters or constants

can be found in [16, 19].

Tan and Xu [21] have also shown that if B is uniformly convex and γ > 1 is the unique
solution of (1.1), then N(B) > γ. Recall that for a Hilbert space H , we have N(H) =

√
2

and γ =
√
5/2.

If B is uniformly convex Banach space, then it can be easily seen that

α2δ−1B (1− 1

α
)Ñ(B) = 1 (2.3)

has a unique solution α > 1, where Ñ(B) = 1/N(B). Tan and Xu [21] proved that if
γ > 1 and α > 1 are the solution of (1.1) and (2.3), respectively, then γ < α. Notice that
γ =
√
5/2, and α = 1√√

3−1
> γ.

We also use the notation of asymptotic center essentially due to Edelstein [7]. Let K be
a nonempty closed convex subset of a Banach space B and {ut : t ∈ S} a bounded net of
elements of B. Then the asymptotic radius and asymptotic center of {ut}t∈S with respect
to K are the number

rK{ut} = inf
v∈K

lim sup
t
||ut − v||,

and respectively, the (possibly empty) set

AK({ut}) = {v ∈ K : lim sup
t
||ut − v|| = rK({ut})}.

The following lemma is required.

Lemma 2.1. [21, Lemma 2.1] If K is a nonempty closed convex subset of a reflexive Banach
space B, then for every bounded net {ut}t∈S of elements of B, AK({ut}) is a nonempty bounded
closed convex subset of K. In particular, if B is a uniformly convex Banach space, then AK({ut})
consists of a single point.

The following lemma can be proved on the lines of Lim [17], hence proof is omitted.

Lemma 2.2. If B is a Banach space equipped with uniformly normal structure, then for every
bounded net {ut}t∈S of elements of B, there exists v ∈ co({ut : t ∈ S}) such that

lim sup
t
||ut − v|| ≤ Ñ(B)D({ut}),

where Ñ(B) = 1/N(B), co(E) is the closure of the convex hull of a set E ⊂ B and D({ut}) =
lim
t
(sup{||ui − uj || : t ≤ i, j ∈ S}) the asymptotic diameter of {ut}.
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3. MAIN RESULTS

Our main result runs as follows.

Theorem 3.3. Let B be a real Banach space with N(B) > max{1, ε0} and K a nonempty closed
convex subset ofB wherein ε0 stands for the characteristic of convexity ofB. Let τ = {Ts : s ∈ S}
be a generalized uniformly Kannan type semigroup of self-mappings defined on K with

3ξβÑ(B)δ−1B (1− 1

ξ
) < 1, (3.4)

where ξ = 3β
1−β , 0 < β < 1 and Ñ(B) = N(B)−1. If {Tsu0 : s ∈ S} is bounded for some

u0 ∈ K, then the semigroup τ admits a common fixed point (∃u∗ ∈ K such that Tsu∗ = u∗ for
all s ∈ S).

Proof. Since B is equipped with uniform normal structure, B is reflexive. Owing to the
boundedness of {Tsu0 : s ∈ S} and Lemma 2.1, AK({Ttu0}t∈S) is nonempty bounded,
closed and convex subset of K. Therefore, we can choose u1 ∈ AK({Ttu0}t∈G) such that

lim sup
t
||Ttu0 − u1|| = inf

v∈K
lim sup

t
||Ttu0 − v||.

Recursively, we can choose u2 ∈ AK({Ttu1}t∈S) such that

lim sup
t
||Ttu1 − u2|| = inf

v∈K
lim sup

t
||Ttu1 − v||.

Continuing this process indefinitely, we furnish a sequence {un}∞n=0 inK with the follow-
ing properties (for each n ≥ 0):

(i) {Ttun}t∈S is bounded;
(ii) un+1 ∈ AK({Ttun}t∈S); i.e., un+1 is a point in K such that

lim
t
||Ttun − un+1|| = inf

v∈K
lim
t
||Ttun − v||.

Write rn = rK({Ttun}t∈S). Then by Lemma 2.2, we have

rn = lim sup
t
||Ttun − un+1||

≤ Ñ(B)D({Ttun}t∈S)
= Ñ(B) lim

t
(sup{||Tiun − Tjun|| : t ≤ i, j ∈ S})

= Ñ(B) lim
t
(sup{||Tiun − TiTj−iun|| : t ≤ i, j ∈ S})

≤ Ñ(B)β lim sup
t
{||un − Tiun||+ ||Tjun − Tj−iun||}

≤ Ñ(B).β.3d(un),

so that

rn ≤ 3βÑ(B)d(un), (3.5)

where
d(un) = sup{||un − Ttun|| : t ∈ S}.

Without loss of generality one may assume that d(un) > 0 for all n ≥ 0 (otherwise un is a
common fixed point of the semigroup τ and hence proof is completed). If n ≥ 0 is fixed
and ε > 0 is small enough, then we can choose j ∈ S such that

||Tjun+1 − un+1|| > d(un+1)− ε
and thereafter choose s0 ∈ S large enough so that

||Tsun − un+1|| < (rn + ε), ∀ s ≥ s0.
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Now, for s ≥ s0 + j,

||Tsun − Tjun+1|| ≤ β[||Tsun − Ts−jun||+ ||un+1 − Tjun+1||]
< β[3(rn + ε) + ||Tsun − Tjun+1||]

so that

||Tsun − Tjun+1|| < ξ(rn + ε).

Now, it follows from property (v) that

||Tsun −
1

2
(un+1 + Tjun+1)|| ≤ ξ(rn + ε)

(
1− δB

(d(un+1)− ε
ξ(rn + ε)

))
for s ≥ s0 + j and hence

rn ≤ lim sup
s
||Tsun −

1

2
(un+1 + Tjun+1)|| ≤ ξ(rn + ε)

(
1− δB

(d(un+1)− ε
ξ(rn + ε)

))
.

On taking limit as ε→ 0, we obtain

rn ≤ ξrn
(
1− δB

(d(un+1)

ξrn

))
,

which implies that

δB

(d(un+1)

ξrn

)
≤ 1− 1

ξ
or

d(un+1) ≤ ξrnδ−1B (1− 1

ξ
). (3.6)

Therefore, utilizing (3.5) and (3.6), we obtain

d(un+1) ≤ 3βξÑ(B)δ−1B (1− 1

ξ
)d(un). (3.7)

Write A = 3βξÑ(B)δ−1B (1− 1
ξ ). Then A < 1. Hence, it follows from (3.7) that

d(un) ≤ Ad(un−1) ≤ · · · ≤ And(u0). (3.8)

Since

||un+1 − un|| ≤ lim sup
t
||Ttun − un+1||+ lim sup

t
||Ttun − un||

≤ rn + d(un)

≤ (3βÑ(B) + 1)d(un)→ 0 as n→∞,
In view of (3.8),

∑∞
n=1 ||un+1 − un|| < ∞, and hence the sequence {un} is a Cauchy. Let

u∗ = lim
n→∞

un. Finally, we have (for each s ∈ S, )

||u∗ − Tsu∗|| ≤ ||u∗ − un||+ ||Tsun − un||+ ||Tsun − Tsu∗||
≤ ||u∗ − un||+ d(un) + β[d(un) + ||u∗ − Tsu∗||]
≤ ||u∗ − un||+ (1 + β)d(un) + β||u∗ − Tsu∗||

or

||u∗ − Tsu∗|| ≤
1

1− β
[||u∗ − un||+ (1 + β)d(un)]→ 0 as n→∞.

Hence, Tsu∗ = u∗ for all s ∈ S and this concludes the proof. �

Our next theorem is proved in uniformly convex Banach spaces.
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Theorem 3.4. Let K be a nonempty bounded subset of a uniformly convex Banach space B and
τ = {Ts : s ∈ S} a k-uniformly generalized Kannan type semigroup of self-mappings defined on
K with

3βξ < ν0N(B), (3.9)

where ν0 = inf{ν > 1 : ν(1 − δB(1/ν)) ≥ 1/2}, 0 < β < 1 and ξ = 3β
1−β . Also, suppose that

there exists a nonempty bounded closed convex subset E of K with the following property

(<) : u ∈ E implies ww(u) ⊂ E.

Then there exists u∗ ∈ E such that Tsu∗ = u∗, for all s ∈ S.

Proof. Choose u0 ∈ E and consider for each t ∈ S, {Tsu0 : t ≤ s ∈ S} is a bounded net.
Owing to Lemma 2.2, there exists zt ∈ co{Tsu0 : t ≤ s ∈ S} such that

lim sup
s
||Tsu0 − zt|| ≤ Ñ(B)D({Tsu0}t≤s∈S), (3.10)

where Ñ(B) = 1/N(B) and D({vt}) denotes the asymptotic diameter of a net {vt}, i.e.,
the number

D({vt}) = lim
t
(sup{||vi − vj || : t ≤ i, j ∈ S}).

Since B is reflexive, {zt} admits a subnet {ztl} converging weakly to some u1 ∈ B. On
using (3.10) and the weakly lower semicontinuity of the functional lim supt ||Ttu0 − v||, it
follows that

lim sup
t
||Ttu0 − u1|| ≤ Ñ(B)D({Ttu0}t∈S).

Also, u1 ∈
⋂
t∈S co{Tsu0 : t ≤ s ∈ S} and that

||z − u1|| ≤ lim sup
t
||z − Ttu0|| for all z ∈ B.

Using Property (<) and the fact that
⋂
t∈G co{Tsu0 : t ≤ s ∈ S} = co{ww(u0)} (which is

easy to prove by using Separation Theorem (see [4])), we conclude that u1 lies in E. By
repeating this process inductively, we obtain a sequence {un}∞n=0 inE with the properties:
(for all nonnegative integers n ≥ 0)

lim sup
t
||Ttun − un+1|| ≤ Ñ(B)D({Ttun}t∈G) (3.11)

and

||z − un+1|| ≤ lim sup
t
||z − Ttun|| for all z ∈ B. (3.12)

Write rn = lim supt ||Ttun − un+1|| and d(un) = sup{||Ttun − un|| : t ∈ S}. Now, in view
of (3.11), we have

rn = lim sup
t
||Ttun − un+1||

≤ Ñ(B)D({Ttun}t∈S)
= Ñ(B) lim

t
(sup{||Tiun − Tjun|| : t ≤ i, j ∈ G})

≤ Ñ(B)β lim sup
t
{||un − Tiun||+ ||Tjun − Tj−iun||}

≤ Ñ(B).β.3d(un),

that is,

rn < 3βÑ(B)d(un). (3.13)
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We may assume that d(un) > 0 for all n ≥ 0. Let n ≥ 0 be fixed and ε > 0 small enough.
Firstly, choose j ∈ G such that

||Tjun+1 − un+1|| > d(un+1)− ε

and thereafter, choose s0 ∈ S so large that

||Tsun − un+1|| < rn + ε, for all s ≥ s0.

It turns out, for s ≥ s0 + j,

||Tsun − Tjun+1|| ≤ β[||Tsun − Ts−jun||+ ||un+1 − Tjun+1||]
< β[3(rn + ε) + ||Tsun − Tjun+1||]

so that

||Tsun − Tjun+1|| < ξ(rn + ε).

Making use of property (v) (i.e. for s ≥ s0 + j), we have

||Tsun −
1

2
(un+1 + Tjun+1)|| ≤ ξ(rn + ε)

(
1− δB

(d(un+1)− ε
ξ(rn + ε)

))
.

Substituting z := (un+1 + Tjun+1)/2 in (3.12), we obtain

1

2
(d(un+1)− ε) < ||1

2
(Tjun+1 − un+1)||

≤ ||1
2
(Tjun+1 + un+1)− un+1||

≤ lim sup
t
||Ttun −

1

2
(un+1 + Tjun+1)||

≤ ξ(rn + ε)
(
1− δB

(d(un+1)− ε
ξ(rn + ε)

))
.

On taking the limit as ε→ 0 we have

1

2
d(un+1) ≤ ξrn

(
1− δB

(d(un+1)

ξrn

))
. (3.14)

On the other hand, owing to (3.12), for each j ∈ S, we have

||Tjun+1 − un+1)|| ≤ lim sup
t
||Tjun+1 − Ttun|| < ξrn

so that

d(un+1) < ξrn. (3.15)

Now, by using the definition of ν0 in (3.9) and combining (3.14) and (3.15), we infer that
(ξrn)/d(un+1) ≥ ν0. It turns out from (3.13) that

d(un+1) ≤
ξ

ν0
rn <

3βξ

ν0N(B)
d(un).

Consequently, we obtain

d(un) ≤ Ad(un−1) ≤ ... ≤ And(u0),

where A = 3βξ[ν0N(B)]−1 < 1 by assumption. Since

||un+1 − un|| ≤ lim sup
t
||Ttun − un+1||+ lim sup

t
||Ttun − un|| ≤ rn + d(un)

≤ (1 + 3βÑ(B))d(un) ≤ (1 + 3βÑ(B))And(u0),



Fixed point theorems for uniformly generalized Kannan type semigroup of self-mappings 239

therefore
∑∞
n=1 ||un+1 − un|| is convergent which amounts to saying that {un} is strongly

convergent. Let u∗ = limn un. Then, for each s ∈ S, we have

||u∗ − Tsu∗|| ≤ ||u∗ − un||+ ||Tsun − un||+ ||Tsun − Tsu∗||
≤ ||u∗ − un||+ d(un) + β[d(un) + ||u∗ − Tsu∗||]
≤ ||u∗ − un||+ (1 + β)d(un) + β||u∗ − Tsu∗||.

||u∗ − Tsu∗|| ≤
1

1− β
[||u∗ − un||+ (1 + β)d(un)]→ 0 as n→∞

Hence, Tsu∗ = u∗ for all s ∈ S and the proof is complete. �
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