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Approximation of fixed point of accretive operators based
on a Halpern-Type iterative method

KADRI DOGAN and VATAN KARAKAYA

ABSTRACT. In this study, we introduce a new iterative processes to approximate common fixed points of
an infinite family of quasi-nonexpansive mappings and obtain a strongly convergent iterative sequence to the
common fixed points of these mappings in a uniformly convex Banach space. Also we prove that this process
to approximate zeros of an infinite family of accretive operators and we obtain a strong convergence result for
these operators. Our results improve and generalize many known results in the current literature.

1. INTRODUCTION AND PRELIMINARIES

Throughout this study, the set of all non-negative integers and the set of reel numbers
will be denote by N and R, respectively.

A quick look into the vast literature of fixed point theory reveals that geometric prop-
erties of Banach spaces play a crucial role in the study of iterative approximations of fixed
points. Our exposition begins by recalling some geometric properties of a Banach space.

In 1936, Clarkson [6] achieved a remarkable study on uniform convexity. It signalled
the beginning of extensive research efforts on the geometry of Banach spaces and its ap-
plications. Most of the results indicated in this work were developed in 1991 or later.

Let C be a nonempty, closed and convex subset of a Banach space B , and B∗ be the
dual space of B.

The convexity modulus of B is defined as follows:

δB(ε) = inf

{
1− ‖a+ b‖

2
: a, b ∈ B(0, 1), ‖a− b‖ ≥ ε

}
.

The modulus of convexity is a real valued function defined from [0, 2] to [0, 1] which is
continuous on [0, 2). A Banach space B is uniformly convex if and only if δB(ε) > 0 for
all ε > 0.Let B be a normed space and SB = {a ∈ B : ‖a‖ = 1} the unit sphere of B. Then
the norm of B is Gâteaux differentiable at a point a ∈ SB if for a ∈ SB , the limit

d

dt
(‖a+ tb‖) |t=0 = lim

t→0

‖a+ tb‖ − ‖a‖
t

exists. The norm of B is said to be Gâteaux differentiable if it is Gâteaux differentiable at
each point of SB . In this case, B is called smooth. The norm of B is said to be uniformly
Gâteaux differentiable if for each b ∈ SB , the limit is approached uniformly for a ∈ SB .
Similarly, if the norm ofB is uniformly Gâteaux differentiable, thenB is called uniformly
smooth. A normed space B is called stricly convex if for all a, b ∈ B, a 6= b, ‖a‖ = ‖b‖ = 1,
we have

‖λa+ (1− λ) b‖ < 1, for all λ ∈ (0, 1) .
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Theorem 1.1. [3] Let B be a Banach space.
1) B is uniformly convex if and only if B∗ is uniformly smooth.
2) B is uniformly smooth if and only if B∗ is uniformly smooth.

Theorem 1.2. [3] Every uniformly smooth space is reflexive.

A self mapping φ on [0,∞) is said to be a gauge map if it is countinuos and strictly
increasing such that φ (0) = 0. Let φ be a gauge function, and let B be any normed space.
A mapping Jφ : B → 2B

∗
defined by

Jφa = {f ∈ B∗ : 〈a, f〉 = ‖a‖ ‖f‖ ; ‖f‖ = φ (‖a‖)}

for all a ∈ B, is called the dulaity map with gauge function φ.If φ (t) = t, then Jφ = J
duality mapping is called the normalized duality map.

Let

ψ (t) =

∫ t

0

φ (ς) dς , t ≥ 0,

then ψ (δt) ≤ δφ (t) and for each δ ∈ (0, 1). A mapping ρ : [0,∞)→ [0,∞) defined by

ρ (t) = sup

{
‖a+ b‖+ ‖a− b‖

2
− 1 : a, b ∈ B, ‖a‖ = 1 and ‖b‖ = t

}
is called the modulus of smoothness of B. Also, limt→0

ρ(t)
t = 0 if and only if B is uni-

formly smooth.
Let q ∈ (1, 2] be a real number. If a Banach space B is q−uniformly smooth, then the

following conditions hold:

(i) there exists a fix c > 0; (ii)ρ (t) ≤ ctq.

For q > 2,there is no q-uniformly smooth Banach space. In [5], this assertion was showed
by Cioranescu. We say that the mapping J is single-valued and also smooth if the Ba-
nach space B having a sequentially continuous duality mapping J from weak topology
to weak∗ topology. The space B is said to have weakly sequentially continuous duality
map if duality mapping J is continuous and single-valued, see [5, 19].

Let C be a nonempty subset of Banach space B and T : C → B be a nonself mapping.
Also, let F (T ) = {a ∈ C : Ta = a} denote the set of fixed point of T . The map T : C → B
is said to be:

1) Nonexpansive if ‖Ta− Tb‖ ≤ ‖a− b‖ for all a, b ∈ C;
2) Quasi-nonexpansive if ‖Ta− p‖ ≤ ‖a− p‖ for all a ∈ C and p ∈ F (T ).
In 1967, Halpern [9] was the first who introduced the following iteration process under

the nonexpansive mapping T . For any initial value a0 ∈ C and any fix u ∈ C, ϕn ∈ [0, 1]
such that ϕn = n−b,

an+1 = ϕnu+ (1− ϕn)Tan ∀n ∈ N, (1.1)

where b ∈ (0, 1). In 1977, Lions [11] showed that the iteration parocess (1.1) converges
strongly to a fixed point of T , where {ϕn}n∈N satisfies the following first three conditions:

(C1) limn→∞ ϕn = 0; (C2)
∑∞
n=1 ϕn =∞;

(C3) limn→∞
ϕn+1−ϕn

ϕ2
n+1

= 0; (C4)
∑∞
n=1 |ϕn+1 − ϕn| <∞

(C5) limn→∞
ϕn+1−ϕn

ϕn+1
= 0; (C6) |ϕn+1 − ϕn| ≤ o (ϕn+1) + σn,

∑∞
n=1 σn <∞.

Afterwards, several authors obtained various results by imposing different conditions
on the sequence {ϕn}n∈N as well as ambient.

(1) In [28], Wittmann showed that the sequence {an}n∈N converges strongly to a fixed
point of T by the conditions C1, C2 and C4.
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(2) In [17, 18], Reich showed that the sequence {an}n∈N converges strongly to a fixed
point of T in the uniformly smooth Banach spaces by the conditions C1, C2 and C6.

(3) In [22], Shioji and Takahashi showed that the sequence {an}n∈N converges strongly
to a fixed point of T in the Banach spaces with uniformly Găteaux differentiable norms
by the conditions C1, C2 and C4.

(4) In [29], Xu showed that the sequence {an}n∈N converges strongly to a fixed point of
T by the conditionsC1,C2 andC5.

Open question: Are the conditions C1and C2 enough to guarantee the strong conver-
gence of the iteration process (1.1) for the quasi-nonexpansive mappings, (see [9])?

This question was answered positively in [13− 21]. But, in [25], it was shown that the
answer to open question is not positive for nonexpansive mappings in Hilbert spaces.

The effective domain and range of an operatorA : B → 2B will be denoted by dom (A) =

{a ∈ B : Aa 6= ∅} and R (A), respectively. Let J : B → 2B
∗

be a duality mapping. The
operator A is said to be accretive if there exists j ∈ J (a− b) such that 〈a− b, j〉 ≥ 0 for all
a, b ∈ B.An accretive operator A is called m-accretive operator if R (I + rA) = B, for each
r ≥ 0. For the rest of this manuscript, the operatorA : B → 2B will be considered as an ac-
cretive operator having a zero. A single-valued mapping Jr = (I + rA)

−1
: B → dom (A)

for all r > 0 is called resolvent operator of A. It is well known that A−1 = F (Jr) for all
r > 0, where A−1 = {a ∈ B : 0 ∈ Aa}, ( see ,[31, 27] ) .

Let B be a reflexive, smooth and strictly convex Banach space and C be a nonempty,
closed and convex subset (ccs) of B. Under these conditions, for any a ∈ B, there exists a
unique point z ∈ C such that

‖z − a‖ ≤ min
t∈C
‖t− a‖ ; see [27].

Definition 1.1. [27] If PCa = z, then the map PC : B → C is called the metric projection.

Assume that a ∈ B and z ∈ C, then z = PCa iff 〈z − t, J (a− z)〉 ≥ 0, for all t ∈ C. In a
real Hilbert space H , there is a PC : H → C projection mapping, which is nonexpansive,
but, such a PC : B → C projection mapping does not provide the nonexpansive property
in a Banach space B, where C is a nonempty, closed and convex subset of them; see [7].

Definition 1.2. [20] Let C ⊂ D, and C and D be subsets of Banach space B. A mapping
Q : C → D is said to be sunny if Q (δx+ (1− δ)Qx) = Qx, for each x ∈ B and δ ∈ [0, 1).

A mapping Q is said to be a retraction if and only if Q2 = Q. A mapping Q is a
sunny nonexpansive retraction if and only if it is sunny, nonexpansive and retraction; a
nonexpansive retract of C if and only if there exists a nonexpansive retraction.

In the sequel, we shall need the following results.

Lemma 1.1. [29] Let B be a Banach space with weakly sequentially continuous duality mapping
Jφ. Then

ψ (‖a+ b‖) ≤ ψ (‖a‖) + 2 〈b, jφ (a+ b)〉
for a, b ∈ B. If we get J instead of Jφ, we have

‖a+ b‖2 ≤ ‖a‖2 + 2 〈b, jφ (a+ b)〉
for a, b ∈ B.

Lemma 1.2. [8] Let B be a Banach space with weakly sequentially continuous duality mapping
Jφ and C be a ccs of B. Let T : C → C be a nonexpansive operator having F (T ) 6= ∅. Then, for
each u ∈ C, there exists a ∈ F (T ) such that

〈u− a, J (b− a)〉 ≤ 0

for all b ∈ F (T ).
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Lemma 1.3. [30] Let B be a reflexive Banach space with weakly sequentially continuous duality
mapping Jφ and C be a ccs of B. Assume that T : C → C is a nonexpansive operator. Let zt ∈ C
be the unique solution in C to the equation zt = tu+ (1− t)Tzt such that u ∈ C and t ∈ (0, 1).
Then T has a fixed point if and only if {zt}t∈(0,1) remains bounded as t → 0+, and in this case,
{zt}t∈(0,1) converges as t → 0+ strongly to a fixed point of T . If we get the sunny nonexpansive
retraction defined by Q : C → F (T ) such that

Q (u) = lim
t→0

zt,

then Q (u) solves the variational inequality

〈u−Q (u) , Jφ (b−Q (u))〉 ≤ 0, u ∈ C and b ∈ F (T ) .

One of the useful and remarkable results in the theory of nonexpansive mappings is
demiclosedness principle. It is defined as follows.

Definition 1.3. [15] LetB be a Banach space, C a nonempty subset ofB, and T : C → B a
mapping. Then the mapping T is said to be demiclosed at origin, that is, for any sequence
{an}n∈N in C which an ⇀ p and ‖Tan − an‖ → 0 imply that Tp = p.

Lemma 1.4. [1] Let B be a reflexive Banach space having weakly sequentially continuous duality
mapping Jφ with a gauge function φ, C be a ccs ofB and T : C → B be a nonexpansive mapping.
Then I − T is demiclosed at each p ∈ B, i.e., for any sequence {an}n∈N in C which converges
weakly to a, and (I − T )an → p converges strongly imply that (I − T )a = p. (Here I is the
identity operator of B into itself.) In paticular, assuming p = 0, it is obtained a ∈ F (T ).

Lemma 1.5. [16] Let {µn}n∈N be a nonnegative real sequence and suppose {µn} satisfies the
following inequality

µn+1 ≤ (1− ϕn)µn + ϕnεn,
assume that {ϕn}n∈N and {εn}n∈N satisfy the following conditions:

(1) {ϕn}n∈N ⊂ [0, 1] and
∞∑
n=1

ϕn =∞; (2) lim supn→∞ εn ≤ 0, or (3)
∞∑
n=1

ϕnεn <∞,

then limn→∞ µn = 0.

Lemma 1.6. [27] Let B be a real Banach space, and let A be an m−accretive operator on B. For
t > 0, let Jt be a resolvent operator related to A and t. Then

‖Jka− Jla‖ ≤
|k − l|
k
‖a− Jka‖ , for all k, l > 0 and a ∈ B.

Lemma 1.7. [13] Let {µn}n∈N be a sequence of real numbers such that there exists a subsequence
{µni}i∈N of {µn}n∈N which satisfies µni < µni+1 for all i ≥ 0. Also, we consider a subsequence{
η(n)

}
n≥n0

⊂ N defined by

η(n) = max {k ≤ n : µk ≤ µk+1} .

Then
{
η(n)

}
n≥n0

is a nondecreasing sequence providing limn→∞ η(n) = ∞, for all n ≥ n0.
Hence, it holds that µη(n)

≤ µη(n)+1
, and we obtain µn ≤ µη(n)+1

.

Lemma 1.8. [2] Let B be a uniformly convex Banach space and t > 0 be a constant. Then there
exists a continuous, strictly increasing and convex function g : [0, 2t)→ [0,∞) such that∥∥∥∥∥

∞∑
i=1

ρiai

∥∥∥∥∥
2

≤
∞∑
i=1

ρi ‖ai‖2 − ρkρlg (‖ak − al‖)

∀k, l ≥ 0, ai ∈ Bt = {z ∈ B : ‖z‖ ≤ t}, ρi ∈ (0, 1) and k ≥ 0 with
∞∑
i=0

ρi = 1.
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2. MAIN RESULTS

Theorem 2.3. Let B be a real uniformly convex Banach space having the normalized duality
mapping J andC be a ccs ofB. Assume that {Ti}i∈N∪{0} is a infinite family of quasi nonexpansive

mappings given in the form Ti : C → C such that F =
∞⋂
i=0

F (Ti) 6= ∅, and for each i ≥ 0, Ti− I

is demiclosed at zero. Let {vn}n∈N be a sequence generated by
v1, u ∈ C arbitrarily chosen,

vn+1 = ξnu+ (1− ζn)T0vn + (ζn − ξn)T0wn
wn = ϕn,0vn +

∞∑
i=1

ϕn,iTivn, n ≥ 0,
(2.2)

where{ζn}n∈N, {ξn}n∈N and {ϕn,i}n∈N,i∈N∪{0} are sequences in [0, 1] satisfying the following
control conditions:

(1) limn→∞ ξn = 0; (2)
∞∑
n=1

ξn = ∞; (3) ϕn,0 +
∞∑
i=1

ϕn,i = 1, for all n ∈ N;

(4) lim infn→∞ ζnϕn,0ϕn,i > 0, for all n ∈ N.
Then {vn}n∈N converges strongly to PFu, where the map PF : B → F is the metric projection.

Proof. The proof consists of three parts.
Step 1. We prove that {vn}n∈N, {wn}n∈N and {Tivn}n∈N,i∈N∪{0} are bounded. Firstly,

we show that {vn}n∈N is bounded. Let p ∈ F be fixed. By Lemma 1.8, we have the
following inequality

‖wn − p‖2 =

∥∥∥∥∥ϕn,0vn +

∞∑
i=1

ϕn,iTivn − p

∥∥∥∥∥
2

≤ ϕn,0 ‖vn − p‖2 +
∞∑
i=1

ϕn,i ‖Tivn − p‖2 − ϕn,0ϕn,ig (‖vn − Tivn‖)

≤ ϕn,0 ‖vn − p‖2 +
∞∑
i=1

ϕn,i ‖vn − p‖2 − ϕn,0ϕn,ig (‖vn − Tivn‖)

= ‖vn − p‖2 − ϕn,0ϕn,ig (‖vn − Tivn‖) ≤ ‖vn − p‖2 . (2.3)
which implies that

‖vn+1 − p‖ = ‖ξnu+ (1− ζn)T0vn + (ζn − ξn)T0wn − p‖

≤ ξn ‖u− p‖+ (1− ζn) ‖T0vn − p‖+ (ζn − ξn) ‖T0wn − p‖
≤ ξn ‖u− p‖+ (1− ζn) ‖vn − p‖+ (ζn − ξn) ‖wn − p‖

≤ ξn ‖u− p‖+ (1− ξn) ‖vn − p‖ ≤ max {‖u− p‖ , ‖vn − p‖} .
If we continue the way of induction, we have

‖vn+1 − p‖ = max {‖u− p‖ , ‖v1 − p‖ } , ∀n ∈ N.

Hence, we conclude that ‖vn+1 − p‖ is bounded and this implies that {vn}n∈N is bounded.
Furthermore, it is easily show that {Tivn}n∈N,i∈N∪{0} and {wn}n∈N are bounded.

Step 2. We show that for any n ∈ N,

‖vn+1 − z‖2 ≤ (1− ξn) ‖vn − z‖2 + 2ξn 〈u− z, J (vn+1 − z)〉 . (2.4)

By (2.3), we have

‖wn − z‖2 = ‖vn − z‖2 − ϕn,0ϕn,ig (‖vn − Tivn‖) (2.5)



268 K. Dogan and V. Karakaya

which gives

‖vn+1 − z‖2 = ‖ξnu+ (1− ζn)T0vn + (ζn − ξn)T0wn − z‖2

≤ ξn ‖u− z‖2 + (1− ζn) ‖T0vn − z‖2 + (ζn − ξn) ‖T0wn − z‖2

≤ ξn ‖u− z‖2 + (1− ζn) ‖vn − z‖2 (2.6)

+(ζn − ξn)
[
‖vn − z‖2 − ϕn,0ϕn,ig (‖vn − Tivn‖)

]
= ξn ‖u− z‖2+(1− ξn) ‖vn − z‖2−ζnϕn,0ϕn,ig (‖vn − Tivn‖)+ξnϕn,0ϕn,ig (‖vn − Tivn‖) .

Assume that K1 = sup
{∣∣∣‖u− z‖2 − ‖vn − z‖2∣∣∣+ ξnϕn,0ϕn,ig (‖vn − Tivn‖)

}
.

By (2.6), we get that

ζnϕn,0ϕn,ig (‖vn − Tivn‖) ≤ ‖vn − z‖2 − ‖vn+1 − z‖2 + ξnK1. (2.7)

By Lemma 1.1 and (2.3), we have

‖vn+1 − z‖2 = ‖ξnu+ (1− ζn)T0vn + (ζn − ξn)T0wn − z‖2

= ‖ξn (u− z) + (1− ζn) (T0vn − z) + (ζn − ξn) (T0wn − z)‖2

≤ ‖(1− ζn) (T0vn − z) + (ζn − ξn) (T0wn − z)‖2

+2 〈ξn (u− z) , J (vn+1 − z)〉 ≤ (1− ζn) ‖T0vn − z‖2 + (ζn − ξn) ‖T0wn − z‖2

+2 〈ξn (u− z) , J (vn+1 − z)〉 ≤ (1− ζn) ‖vn − z‖2 + (ζn − ξn) ‖wn − z‖2

+2ξn 〈u− z, J (vn+1 − z)〉 ≤ (1− ζn) ‖vn − z‖2 + (ζn − ξn) ‖vn − z‖2

+2ξn 〈u− z, J (vn+1 − z)〉 = (1− ξn) ‖vn − z‖2 + 2ξn 〈u− z, J (vn+1 − z)〉 .
Step 3. We show that vn → z as n→∞. To this end, we will examine two cases.

Case 1. Suppose that there exists n0 ∈ N such that {‖vn − z‖}n≥n0
is nonincreasing.

Assume furthermore that the sequence {‖vn − z‖}n∈N is convergent. Thus, it is clear that
‖vn − z‖2 − ‖vn+1 − z‖2 → 0 as n→∞. In view of condition (4) and (2.7), we have

lim
n→∞

g (‖vn − Tivn‖) = 0 and hence lim
n→∞

‖vn − Tivn‖ = 0,

from the properties of g. Also, we can construct the sequences (wn − vn) and (vn+1 − wn)
as follows:

wn−vn = ϕn,0vn+

∞∑
i=1

ϕn,iTivn−vn =

∞∑
i=1

ϕn,iTivn−vn and vn+1−wn = ξnu+(1− ζn)T0vn+(ζn − ξn)T0wn −wn.

(2.8)

‖vn+1 − wn‖ = ‖ξn (u− T0wn) + ζn (T0vn − T0wn) + (T0vn − wn)‖
≤ ξn ‖u− T0wn‖+ ζn ‖T0vn − T0wn‖+ ‖T0vn − wn‖ ≤ ξn ‖u− T0wn‖+ ζn ‖vn − wn‖+ ‖T0vn − wn‖ .(2.9)

These imply that

lim
n→∞

‖vn+1 − wn‖ = 0 and lim
n→∞

‖wn − vn ‖ = 0. (2.10)

By (2.10), we obtain

‖vn+1 − vn‖ ≤ ‖wn − vn ‖+ ‖vn+1 − wn‖

which further yield
lim
n→∞

‖vn+1 − vn‖ = 0. (2.11)
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Previously, we have shown that the sequence {vn}n∈N is bounded. Therefore, there exists
a subsequence

{
vnj

}
j∈N of {vn}n∈N such that vnj+1 → l for all j ∈ N. By principle of demi-

closedness at zero, we conclude that l ∈ F . Considering the above facts and Definition
(1.1), we obtain

lim sup
n→∞

〈u− z, J (vn+1, z)〉 = lim
j→∞

〈
u− z, J

(
vnj+1 − z

)〉
= 〈u− z, J (l − z)〉 (2.12)
= 〈u− PFu, J (l − PFu)〉
≤ 0.

By Lemma (1.5), we have the desired result.
Case 2. Let {nj}j∈N be subsequence of {n}n∈N such that∥∥vnj

− z
∥∥ ≤ ∥∥vnj+1 − z

∥∥ , for all j ∈ N.

Then, in view of Lemma (1.7), there exists a nondecreasing sequence {mk}k∈N ⊂ N, and
hence

‖z − vmk
‖ < ‖z − vmk+1‖ and ‖z − vk‖ ≤ ‖z − vmk+1‖ , ∀k ∈ N.

If we rewrite the equation (2.7) for this lemma, we have

ζmk
ϕmk,0ϕmk,ig (‖vmk

− Tivmk
‖) ≤ ‖vmk

− z‖2 − ‖vmk+1 − z‖2 + ξmk
K1

≤ ξmk
K1, ∀k ∈ N.

By (1) and (2), we obtain

lim
k→∞

g (‖vmk
− Tivmk

‖) = 0 which implies lim
k→∞

‖vmk
− Tivmk

‖ = 0.

Therefore, using the same argument as in Case 1, we have

lim sup
n→∞

〈u− z, J (vmk
, z)〉 = lim sup

n→∞

〈
u− z, J

(
vvmk

+1, z
)〉
≤ 0.

Using (2.4), we get

‖vmk+1 − z‖2 ≤ (1− ξmk
) ‖vmk

− z‖2 + 2ξmk
〈u− z, J (vmk+1 − z)〉 .

Previously, we have shown that the inequality ‖vmk
− z‖ ≤ ‖vmk+1 − z‖, we obtain

ξmk
‖vmk

− z‖2 ≤ ‖vmk
− z‖2 − ‖vmk+1 − z‖2 + 2ξmk

〈u− z, J (vmk+1 − z)〉
≤ 2ξmk

〈u− z, J (vmk+1 − z)〉 .

Hence, we get
lim
k→∞

‖vmk
− z‖ = 0. (2.13)

considering the expressions (2.12) and (2.13), we obtain

lim
k→∞

‖vmk+1 − z‖ = 0.

Finaly, we get ‖vk − z‖ ≤ ‖vmk+1 − z‖, ∀k ∈ N. It follows that vmk
→ z as k → ∞. Then

we have vk → z as n→∞. �

Theorem 2.4. Let B be a real uniformly convex Banach space having the weakly sequentially

continuous duality mapping Jφ and C be a ccs of B such that D(Ai) ⊂ C ⊂
∞⋂
r>0

R(I + rAi) for

each i ∈ N . Assume that {Ai}i∈N∪{0} is an infinite family of accretive operators satisfying the
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range condition, and rn > 0 and r > 0 be such that limn→∞rn = r. Let JAi
rn = (I + rnAi)

−1 be
the resolvent of A. Let {vn}n∈N be a sequence generated by

v1, u ∈ C arbitrarily chosen,
vn+1 = ξnu+ (1− ζn) JA0

rn vn + (ζn − ξn) JA0
rn wn

wn = ϕn,0vn +
∞∑
i=1

ϕn,iJ
Ai
rn vn, n ≥ 0,

(2.14)

where{ζn}n∈N, {ξn}n∈N and {ϕn,i}n∈N,i∈N∪{0} are sequences in [0, 1] satisfing the following
control conditions:

(1) limn→∞ ξn = 0;

(2)
∞∑
n=1

ξn =∞;

(3) ϕn,0 +
∞∑
i=1

ϕn,i = 1, for all n ∈ N;

(4) lim infn→∞ ζnϕn,0ϕn,i > 0, for all n ∈ N.

If QZ : B → Z is the sunny nonexpansive retraction such that Z =
∞⋂
i=1

A−1i (0) 6= ∅, then

{vn}n∈N converges strongly to QZu.

Proof. The proof consists of three parts.
We note that Z is closed and convex. Set z = QZu.
Step 1. We prove that {vn}n∈N, {wn}n∈N and

{
JAi
rn vn

}
n∈N,i∈N∪{0} are bounded. Firstly,

we show that {vn}n∈N is bounded. Let p ∈ Z be fixed. By Lemma 1.8, we have the
following inequality

‖wn − p‖2 =

∥∥∥∥∥ϕn,0vn +

∞∑
i=1

ϕn,iJ
Ai
rn vn − p

∥∥∥∥∥
2

≤ ϕn,0 ‖vn − p‖2 +
∞∑
i=1

ϕn,i
∥∥JAi

rn vn − p
∥∥2 − ϕn,0ϕn,ig (∥∥vn − JAi

rn vn
∥∥)

≤ ϕn,0 ‖vn − p‖2 +
∞∑
i=1

ϕn,i ‖vn − p‖2 − ϕn,0ϕn,ig
(∥∥vn − JAi

rn vn
∥∥)

= ‖vn − p‖2 − ϕn,0ϕn,ig
(∥∥vn − JAi

rn vn
∥∥)

≤ ‖vn − p‖2 (2.15)

which implies that

‖vn+1 − p‖ =
∥∥ξnu+ (1− ζn) JA0

rn vn + (ζn − ξn) JA0
rn wn − p

∥∥
≤ ξn ‖u− p‖+ (1− ζn)

∥∥JA0
rn vn − p

∥∥+ (ζn − ξn)
∥∥JA0

rn wn − p
∥∥

≤ ξn ‖u− p‖+ (1− ζn) ‖vn − p‖+ (ζn − ξn) ‖wn − p‖
≤ ξn ‖u− p‖+ (1− ξn) ‖vn − p‖
≤ max {‖u− p‖ , ‖vn − p‖ }

If we continue the way of induction, we have

‖vn+1 − p‖ = max {‖u− p‖ , ‖v1 − p‖ } , ∀n ∈ N.

Hence, we conclude that ‖vn+1 − p‖ is bounded and this implies that {vn}n∈N is bounded.
Futhermore, it is easily show that

{
JAi
rn vn

}
n∈N,i∈N∪{0} and {wn}n∈N are bounded.
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Step 2. We show that for any n ∈ N,

‖vn+1 − z‖2 ≤ (1− ξn) ‖vn − z‖2 + 2ξn 〈u− z, Jφ (vn+1 − z)〉 . (2.16)

By (2.15), we have

‖wn − z‖2 = ‖vn − z‖2 − ϕn,0ϕn,ig
(∥∥vn − JAi

rn vn
∥∥) (2.17)

which gives

‖vn+1 − z‖2 =
∥∥ξnu+ (1− ζn) JA0

rn vn + (ζn − ξn) JA0
rn wn − z

∥∥2
≤ ξn ‖u− z‖2 + (1− ζn)

∥∥JA0
rn vn − z

∥∥2 + (ζn − ξn)
∥∥JA0

rn wn − z
∥∥2

≤ ξn ‖u− z‖2 + (1− ζn) ‖vn − z‖2 (2.18)

+(ζn − ξn)
[
‖vn − z‖2 − ϕn,0ϕn,ig

(∥∥vn − JAi
rn vn

∥∥)]
= ξn ‖u− z‖2 + (1− ξn) ‖vn − z‖2

−ζnϕn,0ϕn,ig
(∥∥vn − JAi

rn vn
∥∥)+ ξnϕn,0ϕn,ig

(∥∥vn − JAi
rn vn

∥∥) .

Assume that K2 = sup
{∣∣∣‖u− z‖2 − ‖vn − z‖2∣∣∣+ ξnϕn,0ϕn,ig

(∥∥vn − JAi
rn vn

∥∥)}.
By (2.18), we get that

ζnϕn,0ϕn,ig
(∥∥vn − JAi

rn vn
∥∥) ≤ ‖vn − z‖2 − ‖vn+1 − z‖2 + ξnK2. (2.19)

By Lemma 1.1 and (2.15), we have

‖vn+1 − z‖2 =
∥∥ξnu+ (1− ζn) JA0

rn vn + (ζn − ξn) JA0
rn wn − z

∥∥2
=

∥∥ξn (u− z) + (1− ζn)
(
JA0
rn vn − z

)
+ (ζn − ξn)

(
JA0
rn wn − z

)∥∥2
≤

∥∥(1− ζn) (JA0
rn vn − z

)
+ (ζn − ξn)

(
JA0
rn wn − z

)∥∥2
+2 〈ξn (u− z) , Jφ (vn+1 − z)〉

≤ (1− ζn)
∥∥JA0

rn vn − z
∥∥2 + (ζn − ξn)

∥∥JA0
rn wn − z

∥∥2
+2 〈ξn (u− z) , Jφ (vn+1 − z)〉

≤ (1− ζn) ‖vn − z‖2 + (ζn − ξn) ‖wn − z‖2

+2ξn 〈u− z, Jφ (vn+1 − z)〉
≤ (1− ζn) ‖vn − z‖2 + (ζn − ξn) ‖vn − z‖2

+2ξn 〈u− z, Jφ (vn+1 − z)〉
= (1− ξn) ‖vn − z‖2 + 2ξn 〈u− z, Jφ (vn+1 − z)〉 .

Step 3. We show that vn → z as n→∞. For this , we will examine two cases.
Case 1. Suppose that there exists n0 ∈ N such that {‖vn − z‖}n≥n0

is nonincreasing.
Furthermore, the sequence {‖vn − z‖}n∈N is convergent. Thus, it is clear that ‖vn − z‖2 −
‖vn+1 − z‖2 → 0 as n→∞. In view of condition (4) and (2.19), we have

lim
n→∞

g
(∥∥vn − JAi

rn vn
∥∥) = 0 and hence lim

n→∞

∥∥vn − JAi
rn vn

∥∥ = 0,

from the properties of g. Also, we can construct the sequences (wn − vn) and (vn+1 − wn),
as follows:

wn − vn = ϕn,0vn +

∞∑
i=1

ϕn,iJ
Ai
rn vn − vn =

∞∑
i=1

ϕn,i
(
JAi
rn vn − vn

)
. (2.20)
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and
vn+1 − wn = ξnu+ (1− ζn) JA0

rn vn + (ζn − ξn) JA0
rn wn − wn

‖vn+1 − wn‖ =

∥∥∥∥ ξn (u− wn) + (1− ζn)
(
JA0
rn vn − wn

)
+(ζn − ξn)

(
JA0
rn wn − wn

) ∥∥∥∥
≤ ξn ‖u− wn‖+ (1− ζn)

∥∥JA0
rn vn − wn

∥∥
+(ζn − ξn)

∥∥JA0
rn wn − wn

∥∥ . (2.21)

These imply that

lim
n→∞

‖vn+1 − wn‖ = 0 and lim
n→∞

‖wn − vn ‖ = 0. (2.22)

By (2.22), we obtain

‖vn+1 − vn‖ ≤ ‖wn − vn ‖+ ‖vn+1 − wn‖

which gives
lim
n→∞

‖vn+1 − vn‖ = 0. (2.23)

By Lemma 1.6 and (2.20), we have∥∥vn − JAi
r vn

∥∥ ≤
∥∥vn − JAi

rn vn
∥∥+ ∥∥JAi

rn vn − J
Ai
r vn

∥∥
≤

∥∥vn − JAi
rn vn

∥∥+ |rn − r|
rn

∥∥vn − JAi
rn vn

∥∥
which gives

lim
n→∞

∥∥vn − JAi
r vn

∥∥ = 0, for all i ∈ N.

Previously, we have shown that the sequence {vn}n∈N is bounded. Therefore, there
exists a subsequence

{
vnj

}
j∈N of {vn}n∈N such that vnj+1 → l ∈ F

(
JAi
r vn

)
for all j ∈ N.

This, together with Lemma 1.1 implies that

lim sup
n→∞

〈u− z, Jφ (vn+1, z)〉 =

= lim
j→∞

〈
u− z, Jφ

(
vnj+1 − z

)〉
= 〈u− z, Jφ (l − z)〉 ≤ 0. (2.24)

By Lemma (1.5), we obtain the desired result.
Case 2. Let {nj}j∈N be subsequence of {n}n∈N such that∥∥vnj

− z
∥∥ ≤ ∥∥vnj+1 − z

∥∥ , for all j ∈ N.

Then, in view of Lemma (1.7), there exists a nondecreasing sequence {mk}k∈N ⊂ N, and
hence

‖z − vmk
‖ < ‖z − vmk+1‖ and ‖z − vk‖ ≤ ‖z − vmk+1‖ , ∀k ∈ N.

If we rewrite the equation (2.7) for this Lemma, we have

ζmk
ϕmk,0ϕmk,ig

(∥∥vmk
− JAi

rn vmk

∥∥) ≤ ‖vmk
− z‖2 − ‖vmk+1 − z‖2 + ξmk

K2

≤ ξmk
K2, ∀k ∈ N.

By (1) and (2), we obtain

lim
k→∞

g
(∥∥vmk

− JAi
rn vmk

∥∥) = 0, which gives lim
k→∞

∥∥vmk
− JAi

rn vmk

∥∥ = 0.

Therefore, using the same argument as Case 1, we have

lim sup
n→∞

〈u− z, Jφ (vmk
, z)〉 = lim sup

n→∞

〈
u− z, Jφ

(
vvmk

+1, z
)〉
≤ 0.
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Using (2.16), we get

‖vmk+1 − z‖2 ≤ (1− ξmk
) ‖vmk

− z‖2 + 2ξmk
〈u− z, Jφ (vmk+1 − z)〉 .

Previously, we have shown that the inequality ‖vmk
− z‖ ≤ ‖vmk+1 − z‖, we obtain

ξmk
‖vmk

− z‖2 ≤ ‖vmk
− z‖2 − ‖vmk+1 − z‖2 + 2ξmk

〈u− z, Jφ (vmk+1 − z)〉
≤ 2ξmk

〈u− z, Jφ (vmk+1 − z)〉 .
Hence, we get

lim
k→∞

‖vmk
− z‖ = 0. (2.25)

By (2.24) and (2.25), we obtain

lim
k→∞

‖vmk+1 − z‖ = 0.

Finaly, we get ‖vk − z‖ ≤ ‖vmk+1 − z‖, ∀k ∈ N. It follows that vmk
→ z as k → ∞. Then

we have vk → z as n→∞. �

Theorem 2.5. Let B be a real uniformly convex Banach space having a Gâteaux differentiable

norm. and C be a ccs of B such that D(Ai) ⊂ C ⊂
∞⋂
r>0

R(I + rAi) for each i ∈ N . Assume that

{Ai}i∈N∪{0} is an infinite family of accretive operators satisfying the range condition, and rn > 0

and r > 0 be such that limn→∞rn = r. Let JAi
rn = (I + rnAi)

−1 be the resolvent of A. Let
{vn}n∈N be a sequence generated by

v1, u ∈ C arbitrarily chosen,
vn+1 = ξnu+ (1− ζn) JA0

rn vn + (ζn − ξn) JA0
rn wn

wn = ϕn,0vn +
∞∑
i=1

ϕn,iJ
Ai
rn vn, n ≥ 0,

(2.26)

where{ζn}n∈N, {ξn}n∈N and {ϕn,i}n∈N,i∈N∪{0} are sequences in [0, 1] satisfing the following
control conditions:

(1) limn→∞ ξn = 0;

(2)
∞∑
n=1

ξn =∞;

(3) ϕn,0 +
∞∑
i=1

ϕn,i = 1, for all n ∈ N;

(4) lim infn→∞ ζnϕn,0ϕn,i > 0, for all n ∈ N.

If QZ : B → Z is the sunny nonexpansive retraction such that Z =
∞⋂
i=1

A−1i (0) 6= ∅, then

{vn}n∈N converges strongly as n→∞ to QZu.

Proof. The proof can be done simply using similar arguments as in the proof of Theorem
2.4. �
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