CREAT. MATH. INFORM. Volume **26** (2017), No. 3, Pages 275 - 279 Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2017.03.04

A note on $\mathcal I\text{-}convergence$ and $\mathcal I^*\text{-}convergence$ of an infinite product

MERVE İLKHAN¹, METIN BAŞARIR² and EMRAH EVREN KARA¹

ABSTRACT. In this paper, we define \mathcal{I} -convergence and \mathcal{I}^* -convergence of an infinite product by Cauchy conditions and prove the relation between these two notions.

1. INTRODUCTION

In [5], Fast introduced the definition of statistical convergence using the natural density of a set. For a subset K of natural numbers \mathbb{N} , it is defined by $\delta(K) = \lim_{n} \frac{1}{n} |K_n|$, where $K_n = \{k \in K : k \leq n\}$ and $|K_n|$ denotes the cardinality of K_n . It is a practical tool to study the problems related to convergence of numerical sequences by means of the concept of density. A sequence (x_k) of reel numbers is said to be statistical convergent to x provided that for every $\varepsilon > 0$ the natural density of the set $K_{\varepsilon} = \{k \in \mathbb{N} : |x_k - x| \geq \varepsilon\}$ is equal to zero. Thus, this definition is equivalent to meet the condition $(C_1\chi_{K_{\varepsilon}})_n \rightarrow$ 0 as $n \rightarrow \infty$, where C_1 is the Cesaro mean of order one and $\chi_{K_{\varepsilon}}$ is the characteristic function of K_{ε} . Also by using a nonnegative regular summability matrix instead of C_1 statistical convergence was generalized by some authors. In [15], Schoenberg gave some basic properties of statistical convergence and also studied the concept as a summability method. Later on it was further investigated and linked with the summability theory by Connor [2], Freedman and Sember [6], Fridy [7] and many others.

As a generalization of statistical convergence, ideal convergence was defined by the aid of ideal \mathcal{I} which is a family of subsets of natural numbers \mathbb{N} and studied by several authors. Kostyrko et al. [9] studied ideal convergence in metric spaces. In connection with definition of \mathcal{I} -convergence, the authors also introduced another type of convergence which is closely related to \mathcal{I} -convergence and called as \mathcal{I}^* -convergence. They prove that \mathcal{I}^* -convergence implies \mathcal{I} -convergence and for the converse implication ideal has an additional property called (AP) condition. Later, \mathcal{I} and \mathcal{I}^* -convergence were extended to topological spaces and studied by Lahiri and Das [10].

In [4], \mathcal{I} -Cauchy condition was introduced for a sequence in any metric space and the author proved that \mathcal{I} -convergence and \mathcal{I} -Cauchy condition are equivalent in complete metric spaces. Later, Nabiev et al. [11] introduced \mathcal{I}^* -Cauchy sequences in a linear metric space. They prove that if a sequence is \mathcal{I} -convergent, then it satisfies \mathcal{I} -Cauchy condition. Further, they showed that if a sequence is \mathcal{I}^* -Cauchy, then it is \mathcal{I} -Cauchy and the converse is true if the ideal \mathcal{I} satisfies the condition (*AP*).

For more papers about ideal convergence of sequences, one can see [3]-[18].

Before continuing, we recall some concepts used throughout this paper.

Let X be a nonempty set. A class $\mathcal{I} \subseteq 2^X$ of subsets of X is said to be an ideal in X provided that the following conditions hold:

2010 Mathematics Subject Classification. 40A35, 40A20, 40A05.

Received: 02.08.2016. In revised form: 31.03.2017. Accepted: 07.04.2017

Key words and phrases. *Ideal convergence*, *P*-ideal, *I*-Cauchy condition.

Corresponding author: Emrah Evren Kara; karaeevren@gmail.com

(1) $\emptyset \in \mathcal{I}$, (2) $A, B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$,

(3) $A \in \mathcal{I}, B \subset A$ imply $B \in \mathcal{I}$.

An ideal \mathcal{I} in X is called proper (or non-trivial) if $\mathcal{I} \neq \emptyset$ and $X \notin \mathcal{I}$. A proper ideal \mathcal{I} in X is called admissible if $\{x\} \in \mathcal{I}$ for each $x \in X$.

Definition 1.1. [1] An ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ is a *P*-ideal if for every sequence $(A_n)_{n \in \mathbb{N}}$ of sets in \mathcal{I} there is a set $A_{\infty} \in \mathcal{I}$ such that $A_n \setminus A_{\infty}$ is finite for every *n*.

Definition 1.2. [9] An admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to satisfy the condition (AP) if for every countable family of mutually disjoint sets $\{A_1, A_2, ...\}$ belonging to \mathcal{I} there exists a countable family of sets $\{B_1, B_2, ...\}$ such that the symmetric difference $A_n \triangle B_n$ is finite for every $n \in \mathbb{N}$ and $B = \bigcup_{n=1}^{\infty} B_n \in \mathcal{I}$.

We need the following lemma to prove one of our main results. That is, equivalently we will use a *P*-ideal instead of the satisfaction of the condition (AP).

Lemma 1.1. [1] Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. The following conditions are equivalent:

- (1) \mathcal{I} is a *P*-ideal.
- (2) \mathcal{I} satisfies the condition (AP).

Let X be a nonempty set. A class $\mathcal{F} \subseteq 2^X$ of subsets of X is said to be a filter in X provided that the following conditions hold:

Ø ∉ F,
 A, B ∈ F imply A ∩ B ∈ F,
 A ∈ F, A ⊂ B imply B ∈ F.

If \mathcal{I} is a proper ideal in X, then

$$\mathcal{F}(\mathcal{I}) = \{X \setminus A : A \in \mathcal{I}\}$$

is a filter in *X*.

Definition 1.3. [9] Let \mathcal{I} be an admissible ideal in \mathbb{N} . A sequence $\{x_n\}_{n \in \mathbb{N}}$ of real numbers is said to be \mathcal{I} -convergent to a real number ξ ($\mathcal{I} - \lim x_n = \xi$) if for every $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in \mathbb{N} : |x_n - \xi| \ge \varepsilon\}$ belongs to \mathcal{I} .

Definition 1.4. [9] Let \mathcal{I} be an admissible ideal in \mathbb{N} . A sequence $\{x_n\}_{n\in\mathbb{N}}$ of real numbers is said to be \mathcal{I}^* -convergent to a real number ξ ($\mathcal{I}^* - \lim x_n = \xi$) if there is a set $M \in \mathcal{F}(\mathcal{I})$, $M = \{m_1 < m_2 < ...\}$ such that

$$\lim_{k \to \infty} x_{m_k} = \xi \left(\lim_{n \to \infty, n \in M} x_n = \xi \right).$$

Definition 1.5. [11] Let \mathcal{I} be an admissible ideal in \mathbb{N} . A sequence $\{x_n\}_{n\in\mathbb{N}}$ of real numbers is said to be \mathcal{I} -Cauchy if for every $\varepsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$ such that the set $A(\varepsilon) = \{n \in \mathbb{N} : |x_n - x_N| \ge \varepsilon\}$ belongs to \mathcal{I} .

Definition 1.6. [11] Let \mathcal{I} be an admissible ideal in \mathbb{N} . A sequence $\{x_n\}_{n \in \mathbb{N}}$ of real numbers is said to be \mathcal{I}^* -Cauchy if there is a set $M \in \mathcal{F}(\mathcal{I})$, $M = \{m_1 < m_2 < ...\}$ such that the subsequence (x_{m_k}) is an ordinary Cauchy sequence; that is,

$$\lim_{k,p\to\infty} |x_{m_k} - x_{m_p}| = 0.$$

276

2. MAIN RESULTS

In this section, we define \mathcal{I} -convergence and \mathcal{I}^* -convergence of an infinite product by the Cauchy conditions. Afterwards, \mathcal{I} is an admissible ideal in \mathbb{N} .

Definition 2.7. An infinite product $\prod_{n=1}^{\infty} u_n$ is said to be \mathcal{I} -convergent if it satisfies \mathcal{I} -Cauchy condition; that is, for every $\varepsilon > 0$ there exist $N = N(\varepsilon) \in \mathbb{N}$ and $A_{\varepsilon} \in \mathcal{I}$ such that

$$\left|\prod_{i\in\{q+1,\dots,p\}\setminus A_{\varepsilon}} u_i - 1\right| < \varepsilon$$

for all p > q > N.

Definition 2.8. An infinite product $\prod_{n=1}^{\infty} u_n$ is said to be \mathcal{I}^* -convergent if it satisfies \mathcal{I}^* -Cauchy condition; that is, there exits $A \in \mathcal{I}$ such that for every $\varepsilon > 0$ there is a $N = N(\varepsilon) \in \mathbb{N} \setminus A$ satisfying

$$\prod_{i \in \{q+1,\dots,p\} \setminus A} u_i - 1 \bigg| < \varepsilon$$

for all p > q > N.

Theorem 2.1. If an infinite product $\prod_{n=1}^{\infty} u_n$ satisfies \mathcal{I}^* -Cauchy condition, then it also satisfies \mathcal{I} -Cauchy condition.

Proof. Assume that \mathcal{I}^* -Cauchy condition holds for $\prod_{n=1}^{\infty} u_n$. Then there exits $A \in \mathcal{I}$ such that $\prod_{n \in \mathbb{N} \setminus A} u_n$ satisfies Cauchy condition. Given $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N} \setminus A$ such that

$$\left| \prod_{e \in \{q+1, \dots, q+j\} \setminus A} u_i - 1 \right| < \varepsilon$$

for all q > N and $j \ge 1$. Let $A_{\varepsilon} = A \cup \{1, 2, ..., N\}$. Hence we have $A_{\varepsilon} \in \mathcal{I}$ and

$$\left| \prod_{i \in \{q+1,\dots,q+j\} \setminus A_{\varepsilon}} u_i - 1 \right| < \varepsilon$$

for all q > N and $j \ge 1$ which mean that $\prod_{n=1}^{\infty} u_n$ satisfies \mathcal{I} -Cauchy condition.

Theorem 2.2. Let \mathcal{I} be a *P*-ideal. If an infinite product $\prod_{n=1}^{\infty} u_n$ satisfies \mathcal{I} -Cauchy condition, then it satisfies \mathcal{I}^* -Cauchy condition.

Proof. Let \mathcal{I} be a *P*-ideal and $\prod_{n=1}^{\infty} u_n$ satisfy \mathcal{I} -Cauchy condition. There exist $m_j \in \mathbb{N}$ and $A_j \in \mathcal{I}$ such that

$$\prod_{i \in \{l+1,\dots,k\} \setminus A_j} u_i - 1 \left| < \frac{1}{j} \right|$$

for all $j \in \mathbb{N}$ and $k > l > m_j$. Since \mathcal{I} is a P-ideal, there exists $A_{\infty} \in \mathcal{I}$ such that $A_j \setminus A_{\infty}$ is finite. We can write $A_j \setminus A_{\infty} \subseteq \{1, 2, ..., p_j\}$, where $p_j \in A_j \setminus A_{\infty}$. If $k, l \in A_j$, then $k, l \in A_{\infty}$ for $k > l > p_j$. Hence we have

$$\prod_{i \in \{l+1,\dots,k\} \setminus A_{\infty}} u_i - 1 \left| < \frac{1}{j} \right|$$

for $k > l > \max\{m_j, p_j\}$. This means $\prod_{n \in \mathbb{N} \setminus A_\infty} u_n$ satisfies Cauchy condition, where $A_\infty \in \mathcal{I}$.

Theorem 2.3. If $\prod_{n=1}^{\infty} u_n$ is *I*-convergent, then (u_n) is *I*-convergent to 1.

Proof. Since $\prod_{n=1}^{\infty} u_n$ satisfies \mathcal{I} -Cauchy condition, given $\varepsilon > 0$ there are $N \in \mathbb{N}$ and $A_{\varepsilon} \in \mathcal{I}$ such that $\left| \prod_{i \in \{q+1,...,p\} \setminus A_{\varepsilon}} u_i - 1 \right| < \varepsilon$ for p > q > N. Let p = q + 1 and $p \notin A_{\varepsilon}$, where q > N. Then we have $|u_p - 1| < \varepsilon$. Therefore $p \notin U = \{n \in \mathbb{N} : |u_n - 1| \ge \varepsilon\}$. Obviously, $U \subseteq \{1, 2, ..., N\} \cup A_{\varepsilon}$. Since \mathcal{I} contains all finite subsets of $\mathbb{N}, \{1, 2, ..., N\} \in \mathcal{I}$ and so $\{1, 2, ..., N\} \cup A_{\varepsilon} \in \mathcal{I}$ which implies that U belongs to \mathcal{I} . Consequently, (u_n) is \mathcal{I} -convergent to 1.

Now, we give some examples which show that the converse of the last theorem is not valid.

Example 2.1. Let \mathcal{I}_{δ} be the non-trivial admissible ideal consisting of all $A \subset \mathbb{N}$ with $\delta(A) = 0$. Then \mathcal{I}_{δ} -convergence coincides with the statistical convergence. Define the sequence (u_n) as follows:

$$u_n = \begin{cases} 2, & \text{if } n \in P \\ 1, & \text{otherwise} \end{cases}$$

where *P* is the set of all prime numbers. From the prime number theorem (see [12]; p.217), we obtain that $\delta(\mathbb{N}\setminus P) = 1$. Also, since

$$\lim_{n \to \infty, n \in \mathbb{N} \setminus P} u_n = 1$$

holds, Lemma 1.1 in [14] implies that \mathcal{I}_{δ} -lim $u_n = 1$.

On the other hand, choosing $\varepsilon \leq 1$, for every $n \in \mathbb{N}$ and $A \in \mathcal{I}_{\delta}$ we can find a prime number p = q + 1, where p > q > n. Hence, we have $|u_p - 1| \geq \varepsilon$ which means that $\prod_{n=1}^{\infty} u_n$ is not \mathcal{I}_{δ} -convergent.

Example 2.2. Let define a sequence (u_n) as follows:

$$u_n = \begin{cases} x, & \text{if } n = k^2 \text{ for some } k \in \mathbb{N} \\ 1, & \text{if } n \neq k^2 \text{ for all } k \in \mathbb{N} \end{cases}$$

where *x* is a real number different from 1. Then this sequence is \mathcal{I}_{δ} -convergent to 1. However, $\prod_{n=1}^{\infty} u_n$ is not \mathcal{I}_{δ} -convergent. Indeed, let $\varepsilon_0 = |x - 1|$. Since for every $n \in \mathbb{N}$ there exits $k \in \mathbb{N}$ such that $p = k^2 > q = k^2 - 1 > n$, for every $A \in \mathcal{I}$ we obtain

$$\left|\prod_{i\in\{q+1,\ldots,p\}\setminus A} u_i - 1\right| = |u_p - 1| = |x - 1| \ge \varepsilon_0.$$

Example 2.3. Let \mathcal{I} be an admissible ideal in \mathbb{N} . The infinite product $\prod_{n=1}^{\infty} \frac{n}{n+1}$ is \mathcal{I} convergent although it is not convergent in the usual sense. In fact, given any $\varepsilon > 0$,
there exits $n_{\varepsilon} \in \mathbb{N}$ such that $\frac{1}{n_{\varepsilon}} < \varepsilon$. Also, we have $A_{\varepsilon} = \{q + 1, ..., p - 1\} \in \mathcal{I}$ for every $p > q > n_{\varepsilon}$. Thus, we conclude that

$$\prod_{n \in \{q+1,\dots,p\} \setminus A_{\varepsilon}} \frac{n}{n+1} - 1 \bigg| = \bigg| \frac{p}{p+1} - 1 \bigg| = \frac{1}{p+1} < \varepsilon.$$

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

REFERENCES

- Balcerzak, M., Dems, K. and Komisarski, A., Statical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (2007), 715–729
- [2] Connor, J., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32 (1989), 194–198
- [3] Das, P. and Ghosal, S. Kr., Some further results on *I*-Cauchy sequences and condition (AP), Comput. Math. Appl., **59** (2010), 2597–2600
- [4] Dems, K., On J-Cauchy sequences, Real Anal. Exchange, 30 (2004/2005), No. 1, 123-128
- [5] Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244
- [6] Freedman, A. R. and Sember, J. J., Densities summability, Pacific J. Math., 95 (1981), 293-305
- [7] Fridy, J. A., On statistical convergence, Analysis, 5 (1985), 301-313
- [8] Gürdal, M. and Şahiner, A., Ideal Convergence in n-normed spaces and some new sequence spaces via -norm, J. Fundam. Sci., 4 (2008), No. 2, 233–244
- [9] Kostyrko, P., Salat, T. and Wilczynski, W., *I-convergence*, Real Anal. Exchange, 26 (2000/2001), No. 2, 669–686
- [10] Lahiri, B. K. and Das, P., I and I*-convergence in topological spaces, Math. Bohem., 130 (2005), No. 2, 153–160
- [11] Nabiev, A., Pehlivan, S. and Gürdal, M., On I-Cauchy sequences, Taiwanese J. Math., 11 (2007), No. 2, 569-576
- [12] Niven, I. and Zuckerman, H. S., An Introduction to the Theory of Numbers (4th ed.), John Wiley, New York-London-Sydney, 1967
- [13] Salat, T., Tripathy, B. C. and Ziman, M., On some properties of *I*-convergence, Tatra Mt. Math. Publ., **28** (2004), 279–286
- [14] Salat, T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), No. 2, 139–150
- [15] Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375
- [16] Şahiner, A., Gürdal, M., Saltan, S. and Gunawan, H., Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11 (2007), No. 5, 1477–1484
- [17] Şahiner, A., Gürdal, M. and Yiğit, T., Ideal Convergence Characterization of Completion of Linear n-Normed Spaces, Comp. Math. Appl., 61 (2011), No. 3, 683–689
- [18] Yamancı, U. and Gürdal, M., On Lacunary Ideal Convergence in Random -Normed Space, J. Math., 2013 (2013), Article ID 868457, 8 pages

¹DEPARTMENT OF MATHEMATICS DÜZCE UNIVERSITY DÜZCE, TURKEY *Email address*: merveilkhan@gmail.com *Email address*: karaeevren@gmail.com

²DEPARTMENT OF MATHEMATICS SAKARYA UNIVERSITY SAKARYA, TURKEY *Email address*: basarir@sakarya.edu.tr