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Generalized Functional Discriminating Measure For Finite
Probability Distributions

PRAPHULL CHHABRA

ABSTRACT. Analysts like Renyi (1961), Csiszar (1963, 1966), Bregman (1967), Burba-Rao (1982), Jain and
Saraswat (2012), etc., have introduced and analyzed the different functional discriminating measures for com-
paring two discrete probability distributions. But in this article, a new functional discriminating measure has
been proposed that will compare finite (more than two) discrete probability distributions simultaneously. Fur-
ther, some intra-relations among the measures at different values of the parameters have been discussed. Also,
an interesting connection with Csiszar’s generalized functional measure has been created. Some new inequali-
ties compared to variational discrimination and Chi-square discrimination have been discussed as well.

1. INTRODUCTION

Discriminating measures are fundamental measures of distance between two likeli-
hoods of dissemination or comparing two likelihoods of dissemination or comparing two
probability distributions. The concept of discriminating measure is working productively
to resolve distinctive issues related to the likelihood hypothesis. The real information is
approximated by the measures of likelihood and measurements. This data leads to data
misfortune. The essential reason is to evaluate how much data is contained within the
information.
Now a days, these measures are being connected in a few disciplines such as: color picture
division [17], estimation of likelihood dispersions [4, 8], design acknowledgment [9, 23],
3D picture division and word arrangement [20], choice making [16, 22, 24, 25], attractive
reverberation picture investigation [27], fetched- touchy classification for therapeutic con-
clusion [19], turbulence stream [5], fuzzy divergence and applications[3, 10, 15, 21, 26],
etc.
Let Θl = {U = (u1, u2, u3, ..., ul) : ui > 0,

∑l
i=1 ui = 1}, l ≥ 2 be the set of all complete

finite discrete probability distributions, where ui is a probability mass function.

Definition 1.1. Convex function: A function g (x) is said to be convex over an interval
(a, b) if it has for every x1, x2 ∈ (a, b) and 0 ≤ µ ≤ 1, we have

g [µx1 + (1− µ)x2] ≤ µg (x1) + (1− µ) g (x2) ,

and if uniformity does not hold, i.e., µ 6= 0 or µ 6= 1, then it is said to be entirely convex.
In a broader sense, we can write

g

[
m∑
i=1

µixi

]
≤

m∑
i=1

µig (xi) , (1.1)

for all xi ∈ (a, b) and µi ≥ 0 with
∑m

i=1 µi = 1.
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Convex functions have wide applications in immaculate and connected arithmetic. As
of late numerous generalizations and expansions have been made for the convexity, like:
strong convexity [28], s- convexity [2], GA- convexity [29], GG- convexity [12], preinvexity
[11] and others.

2. NEW GENERALIZED FUNCTIONAL DISCRIMINATING MEASURE

LetU1 =(u11,..., ul1) ,..., Um =(u1m,..., ulm) andW1 =(w11,..., wl1) ,...,Wm=(w1m, ..., wlm)
be discrete probability distributions such that Uj ,Wj ∈ Θl ∀ j = 1, 2, ...,m. Then, the fol-
lowing new functional discriminating measure is being introduced.

Sm
g (U1, U2, ..., Um,W1,W2, ...,Wm)

=

l∑
i=1

l∑
i=1

...

l∑
i=1

wi1wi2...wimg

(
ui1+wi1

2wi1
+ ui2+wi2

2wi2
+ ...+ uim+wim

2wim

m

)
, (2.2)

where g : (0,∞)→ R (set of real no.) is real, continuous, and convex function. For m = 1,
it will compare two probability distributions U1 and W1 at a time, for m = 2, it compares
four probability distributions U1, W1, U2, and W2 at a time, and so on. This allows you to
compare 2j probability distributions at the same time, where j = 1, 2, ..., 2m.
Jain Saraswat’s discriminating measure [14] is a special case of (2.2) at m = 1, which is

S1
g (U1,W1) =

l∑
i=1

wi1g

(
ui1 + wi1

2wi1

)
=

l∑
i=1

wig

(
ui + wi

2wi

)
. (2.3)

3. INTRA RELATION AMONG FUNCTIONAL DISCRIMINATING MEASURES

In this segment, an imperative and productive connection among new useful discrim-
inations has been discussed. These discriminations are essentially uncommon cases of
(2.2) agreeing to the number of likelihood dispersions or the number of discrete probabil-
ity distributions.

Theorem 3.1. Let g : (0,∞) → R be a differentiable, convex function, i.e., g′′ (x) ≥ 0 ∀x > 0.
For Uj ,Wj ∈ Θl ∀ j = 1, 2...,m, we have

S1
g (U1,W1) ≥ S2

g (U1, U2,W1,W2) ≥ ... ≥ Sm
g (U1, U2, ..., Um,W1,W2, ...,Wm)

≥ Sm+1
g (U1, U2, ..., Um, Um+1,W1,W2, ...,Wm,Wm+1) ≥ g (1) , (3.4)

where Sm
g (U1, U2, ..., Um,W1,W2, ...,Wm) is given by (2.2).

Proof. By utilizing the disparity (1.1) for different summations, we get

l∑
i=1

l∑
i=1

...

l∑
i=1

wi1wi2...wimwi(m+1)g

 ui1+wi1

2wi1
+ ui2+wi2

2wi2
+ ...+ uim+wim

2wim
+

ui(m+1)+wi(m+1)

2wi(m+1)

m+ 1


≥g

 l∑
i=1

l∑
i=1

...

l∑
i=1

wi1wi2...wimwi(m+1)

 ui1+wi1

2wi1
+ ui2+wi2

2wi2
+...+ uim+wim

2wim
+

ui(m+1)+wi(m+1)

2wi(m+1)

m+ 1


= g

[
1

m+ 1

(
l∑

i=1

ui1 + wi1

2

l∑
i=1

wi2..

l∑
i=1

wim

l∑
i=1

wi(m+1)

)]

+..+ g

[
1

m+ 1

(
l∑

i=1

ui(m+1) + wi(m+1)

2

l∑
i=1

wi1..

l∑
i=1

wim

)]
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= g

[
1

m+ 1
(1 + 1 + ...+ 1)

]
= g

(
m+ 1

m+ 1

)
= g (1) , i.e.,

Sm+1
g (U1, U2, ..., Um, Um+1,W1,W2, ...,Wm,Wm+1) ≥ g (1) . (3.5)

Consequently, it demonstrated the last inequality of the relation (3.4). �

Now again apply the inequality (1.1) for h1, h2, ..., hm+1, where hi ∈ (0,∞) ∀ i =
1, 2, ...,m+ 1, we obtain

1

m+ 1
[g (h1) + g (h2) + ...+ g (hm) + g (hm+1)] ≥ g

[
h1 + h2 + ...+ hm + hm+1

m+ 1

]
. (3.6)

Let

h1 =
z1 + z2 + ...+ zm

m
,h2 =

z2 + z3 + ...+ zm + zm+1

m
, ..., hm+1 =

zm+1 + z1 + ...+ zm−1
m

,

where zi ∈ (0,∞) ∀ i = 1, 2, ...,m+ 1.
Then by using the inequality (3.6), we get

1

m+ 1

[
g

(
z1 + z2 + ...+ zm

m

)
+ ...+ g

(
zm+1 + z1 + ...+ zm−1

m

)]

≥g
[

1

m+ 1

(
z1+z2 +...+zm

m
+ ...+

zm+1+z1 +...+zm−1
m

)]
=g

(
m (z1+z2 +...+zm+zm+1)

m (m+1)

)

= g

(
z1 + z2 + ...+ zm + zm+1

m+ 1

)
. (3.7)

Now put zj =
uij+wij

2wij
in (3.7), multiply with wij ∀ j = 1, ...,m+ 1 and for each i = 1, ..., l

and then summation m+ 1 times from i = 1 to i = l, we get

1

m+ 1

[
l∑

i=1

...

l∑
i=1

wi1...wi(m+1)g

(
ui1+wi1

2wi1
+ ...+ uim+wim

2wim

m

)]

+...+
1

m+ 1

 l∑
i=1

...

l∑
i=1

wi1...wi(m+1)g

 ui(m+1)+wi(m+1)

2wi(m+1)
+ ui1+wi1

2wi1
+ ...+

ui(m−1)+wi(m−1)

2wi(m−1)

m



≥
l∑

i=1

...

l∑
i=1

wi1...wi(m+1)g

 ui1+wi1

2wi1
+ ...+

ui(m+1)+wi(m+1)

2wi(m+1)

m+ 1

 , i.e.,

Sm
g (U1, U2, ..., Um,W1,W2, ...,Wm) ≥ Sm+1

g (U1, U2, ..., Um+1,W1,W2, ...,Wm+1) . (3.8)

As a result, the second last inequality of the relation (3.4) is established for all m, and the
theorem is established.

Remark 3.1. If g is normalized, i.e., g (1) = 0, then we get the following set of relations

S1
g (U1,W1) ≥ S2

g (U1, U2,W1,W2) ≥ ... ≥ Sm
g (U1, U2, ..., Um,W1,W2, ...,Wm)

≥ Sm+1
g (U1, U2, ..., Um, Um+1,W1,W2, ...,Wm,Wm+1) ≥ 0. (3.9)
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4. RELATION WITH CSISZAR’S GENERALIZED FUNCTIONAL DISCRIMINATION

In 2000, S.S. Dragomir [7] presented the following important discrimination measure:

Cm
g (U1, U2, ..., Um,W1,W2, ...,Wm) =

l∑
i=1

l∑
i=1

...

l∑
i=1

wi1wi2...wimg

( ui1

wi1
+ ui2

wi2
+ ...+ uim

wim

m

)
,

(4.10)
where g : (0,∞)→ R (set of real no.) is real, continuous, and convex function.
Ciszar’s discriminating measure [1, 6] is a special case of this measure, which is

C1
g (U1,W1) =

l∑
i=1

wi1g

(
ui1
wi1

)
=

l∑
i=1

wig

(
ui
wi

)
. (4.11)

Now, a vital connection among measures (2.2) and (4.10) is being evaluated by the follow-
ing theorem.

Theorem 4.2. Let g : (0,∞) → R be a differentiable, convex and normalized function, i.e.,
g′′ (x) ≥ 0 ∀x > 0 and g (1) = 0 respectively. For Uj ,Wj ∈ Θl ∀ j = 1, 2...,m, we have

Sm
g (U1, U2, ..., Um,W1,W2, ...,Wm) ≤ 1

2
Cm

g (U1, U2, ..., Um,W1,W2, ...,Wm) . (4.12)

Proof. Apply the inequality (1.1) for the domain I ⊂ (0,∞), by putting µ1 = µ2 = 1
2 , µ3 =

... = µm = 0, we obtain

g

(
x1 + x2

2

)
≤ 1

2
[g (x1) + g (x2)] . (4.13)

Now put x1 = x and x2 = 1 in above inequality, we obtain

g

(
x+ 1

2

)
≤ 1

2
g (x) . (4.14)

Now in the inequality (4.14), take x =

∑m
j=1

uij
wij

m , multiply with
∏m

j=1 wij for each i and
then summation over m times from i = 1 to i = l, we obtain the required relation (4.12).

�

5. IMPORTANT DEDUCTIONS

Now, some curious results are going to be determined by using the defined discrimi-
nation (2.2) in the inequalities (3.9).

Proposition 5.1. Let Uj ,Wj ∈ Θl ∀ j = 1, 2, ...,m, then we have

Vm (U1, U2, ..., Um,W1,W2, ...,Wm) ≤
m∑
j=1

V (Uj ,Wj) (5.15)

and

V1 (U1,W1) = V (U,W ) ≥ 1

2
V2 (U1, U2,W1,W2) ≥ ... ≥ 1

m
Vm (U1, ..., Um,W1, ...,Wm)

≥ 1

m+ 1
Vm+1 (U1, ..., Um, Um+1,W1, ...,Wm,Wm+1) ≥ 0. (5.16)
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Proof. Let g (x) = |x− 1| , x > 0. Here g (x) is convex and normalized function because
g′′ (x) ≥ 0 ∀ x > 0 and g (1) = 0 respectively, but g (x) is not differentiable at x = 1.
Put g (x) in (2.2), we have

Sm
g (U1, ..., Um,W1, ...,Wm) =

l∑
i=1

...

l∑
i=1

wi1...wim

∣∣∣∣∣
ui1+wi1

2wi1
+ ...+ uim+wim

2wim

m
− 1

∣∣∣∣∣
=

1

m

l∑
i=1

...

l∑
i=1

wi1...wim

∣∣∣∣(ui1 + wi1

2wi1
− 1

)
+ ...+

(
uim + wim

2wim
− 1

)∣∣∣∣
=

1

2m

l∑
i=1

...

l∑
i=1

wi1...wim

∣∣∣∣ui1 − wi1

wi1
+ ...+

uim − wim

wim

∣∣∣∣ =
1

2m
Vm (U1, ..., Um,W1, ...,Wm) ,

(5.17)
and for m = 1

1

2

l∑
i=1

|ui − wi| =
1

2
V1 (U1,W1) =

1

2
V (U,W ) , (5.18)

where V (U,W ) is the Variational distance [13], a special case of the Vm(U1,..., Um,W1,...,Wm)
for comparing two probability distributions.
Now, equation (5.17) can be written as

1

2m
Vm (U1, ..., Um,W1, ...,Wm) ≤ 1

2m

l∑
i=1

...

l∑
i=1

wi1...wim

[∣∣∣∣ui1 − wi1

wi1

∣∣∣∣+ ...+

∣∣∣∣uim − wim

wim

∣∣∣∣]

=
1

2m

[
l∑

i=1

|ui1 − wi1|
l∑

i=1

wi2...

l∑
i=1

wim + ...+

l∑
i=1

|uim − wim|
l∑

i=1

wi1...

l∑
i=1

wi(m−1)

]

=
1

2m

[
l∑

i=1

|ui1 − wi1|+ ...+

l∑
i=1

|uim − wim|

]
=

1

2m

m∑
j=1

l∑
i=1

|uij − wij | =
1

2m

m∑
j=1

V (Uj ,Wj) .

⇒ Vm (U1, ..., Um,W1, ...,Wm) ≤
m∑
j=1

V (Uj ,Wj) .

Hence, the result (5.15) is obtained. Also, the sequence of inequalities (5.16) can be gotten
by utilising (3.9). We are overlooking the points of interest. �

Proposition 5.2. Let Uj ,Wj ∈ Θl ∀ j = 1, 2, ...,m, then we have

χ2
m (U1, U2, ..., Um,W1,W2, ...,Wm) =

m∑
j=1

χ2 (Uj ,Wj) (5.19)

and

χ2
1 (U1,W1) = χ2 (U,W ) ≥ 1

22
χ2
2 (U1, U2,W1,W2) ≥ ... ≥ 1

m2
χ2
m (U1, ..., Um,W1, ...,Wm)

≥ 1

(m+ 1)
2χ

2
m+1 (U1, ..., Um, Um+1,W1, ...,Wm,Wm+1) ≥ 0. (5.20)

Proof. Let g (x) = (x− 1)
2
, x > 0. Here g (x) is convex and normalized function because

g′′ (x) ≥ 0 ∀ x > 0 and g (1) = 0 respectively.
Put g (x) in (2.2), we obtain

Sm
g (U1, ..., Um,W1, ...,Wm) =

l∑
i=1

...

l∑
i=1

wi1...wim

[
ui1+wi1

2wi1
+ ...+ uim+wim

2wim

m
− 1

]2
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=
1

m2

l∑
i=1

...

l∑
i=1

wi1...wim

[(
ui1 + wi1

2wi1
− 1

)
+ ...+

(
uim + wim

2wim
− 1

)]2

=
1

4m2

l∑
i=1

...

l∑
i=1

wi1...wim

[
ui1 − wi1

wi1
+ ...+

uim − wim

wim

]2
=

1

4m2
χ2
m (U1, ..., Um,W1, ...,Wm) ,

(5.21)
and for m = 1

1

4

l∑
i=1

(ui − wi)
2

wi
=

1

4
χ2
1 (U1,W1) =

1

4
χ2 (U,W ) , (5.22)

where χ2 (U,W ) is the well known Chi-square discriminating measure [18], an uncom-
mon case of the

χ2
m (U1, ..., Um,W1, ...,Wm) ,

for comparing two probability distributions.
Now, the above equation (5.21) can be written as

1

4m2
χ2
m (U1, ..., Um,W1, ...,Wm)

=
1

m2

l∑
i=1

...

l∑
i=1

wi1...wim

 m∑
j=1

(
uij+wij

2wij
−1

)2

+2
∑

1≤j<k≤m

(
uij+wij

2wij
−1

)(
uik+wik

2wik
−1

)
=

1

m2

m∑
j=1

l∑
i=1

...

l∑
i=1

wi1...wim

(
uij + wij

2wij
− 1

)2

+
2

m2

∑
1≤j<k≤m

l∑
i=1

...

l∑
i=1

wi1...wim

(
uij + wij

2wij
− 1

)(
uik + wik

2wik
− 1

)

=
1

m2

m∑
j=1

[
l∑

i=1

wi1...

l∑
i=1

wij

(
uij + wij

2wij
− 1

)2

...

l∑
i=1

wim

]

+
2

m2

∑
1≤j<k≤m

[
l∑

i=1

wi1...

l∑
i=1

wij

(
uij + wij

2wij
− 1

)
...

l∑
i=1

wik

(
uik + wik

2wik
− 1

)
...

l∑
i=1

wim

]

=
1

m2

m∑
j=1

l∑
i=1

wij

(
uij + wij

2wij
− 1

)2

+
2

m2

∑
1≤j<k≤m

l∑
i=1

(
uij − wij

2

) l∑
i=1

(
u11ik − wik

2

)

=
1

4m2

m∑
j=1

χ2 (Uj ,Wj) .

⇒ χ2
m (U1, ..., Um,W1, ...,Wm) =

m∑
j=1

χ2 (Uj ,Wj) .

Hence, prove the result (5.19). Also, the sequence of inequalities (5.20) can be obtained by
using (3.9). We are omitting the details. �
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6. CONCLUSION

The main conclusion of this article is to present a new composite functional discrimi-
nating measure for analysing more than two discrete probability distributions at a time.
The obtained results (in sections 3, 4, and 5) are important in information theory and are
original to the best of the author’s knowledge. Also, the same is valid for continuous
probability distributions, like Normal, Exponential, Uniform, Chi-square, etc. The appli-
cation of obtained results in signal processing and pattern recognition is in the works, and
these will be provided in the next article as soon as possible.
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