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The Radon-Nikodým property for the Fourier space of
some hypergroups

KOSSI R. ETSE1, ANATÉ K. LAKMON2 and YAOGAN MENSAH3,∗

ABSTRACT. In this paper, we study the Radon-Nikodỳm Property for the Fourier space of a commutative
compact hypergroup and that of a compact (non necessarily commutative) hypergroup. We prove the coinci-
dence of the weak-* topology and the norm topology on the unit sphere of the subset AK(H) of the Fourier
space A(H) of a commutative hypergroup H consisting of elements that have support in a fixed compact subset
K of the hypergroup H . Finally, we derive the fact that AK(H) has the Radon-Nikodỳm property.

1. INTRODUCTION

In their various works on locally compact spaces, researchers in harmonic analysis have
noticed the existence of some topological spaces which, although not being groups, pos-
sess some of their characteristic structures, such as the possibility that a convolution on
the corresponding space of all the finite regular Borel measures can be defined similar to
the group case. Among the authors who have taken a very close interest in this class of
spaces that have such convolutions are Dunkl [6], Jewett [13] and Spector [22] who suc-
ceeded in introducing, independently in the 1970s, axiomatic formalizations with small
differences of these spaces. Dunkl and Spector called these spaces ”hypergroups” and
Jewett refered to them as ”convos”. The term ”hypergroup” was adopted subsequently
by the majority of authors. More details of the theory of hypergroups and standard ex-
amples can be found in W. R. Bloom and H. Heyer’s monograph [1].
Since their introduction, hypergroups have received a good deal of attention from har-
monic analysis reseachers due to the fact that hypergroups generalize, in many ways,
locally compact groups. Analogues of many important results in harmonic analysis on
groups can be shown for hypergroups, especially commutative hypergroups. In [15], Mu-
ruganandam studied several hypergroups the Fourier spaces of which are Banach algebra
under the pointwise multiplication. For a commutative hypergroup, the author succeeded
in giving sufficient conditions so that its Fourier space forms a Banach algebra. On the
other hand, many authors studied conditions under which some Banach spaces related
to the Fourier algebra of a locally compact group (the definition of which was clarified
by Eymard [8]) possesses some geometric properties such as the Radon-Nikodým prop-
erty (RNP). In this context, we can cite the works of E. Granirer [11], M. Leinert [12] and
K. Taylor [25]. In [9], Finet studied the Radon-Nikodým property for some subspace of
L1(K) where K is a compact hypergroup. See the book [4] by J. Diestel and J.J. Uhl, Jr.
where various aspects of the Radon-Nikodým property are discussed. Recent papers on
the subject are [20, 10, 18, 14].
The aim of this paper is to investigate the Radon-Nikodým property for the Fourier spaces
and for other spaces related to commutative hypergroups and compact hypergroups.
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The rest of the paper is organized as follows. In Section 2 we recapitulate some defini-
tions, facts and notations used throughout this work. In Section 3, we state our main
results. Here, we investigate the Radon-Nikodým property for the Fourier space of a
compact commutative hypergroup and that of a compact (non necessarily commutative)
hypergroup. We end the section proving the Radon-Nikodým property for the space
AK(H) = {u ∈ A(H), supp(u) ⊂ K} where K is a compact subsets of the hypergroup
H by using a method of Granirer and Leinert in [12].

2. PRELIMINARIES

2.1. Definition of Hypergroups. Useful references are [1, 13, 16]. Let H be a nonempty
locally compact Hausdorff topological space and let C(H), Cc(H), Cb(H) as usual denote
respectively the space of all complex continuous functions, the space of complex con-
tinuous functions with compact support and the space of complex continuous bounded
functions on H . Also C+

c (H) denotes the subspace of Cc(H) consisting of positive func-
tions. Furthermore, let M(H) denote the Banach space of all bounded Radon measures
on H . Let the topology on M(H) be given by the weak topology σ(M(H), Cb(H)). For
any µ belonging to M(H), let supp(µ) denote the support of µ. For every x ∈ H , let δx
denote the Dirac measure at x.
Let M1(H) denote the space of all probability measures on H equipped with the weak
topology and let M+(H) denote the subspace of M(H) consisting of positive functions.
Let K(H) denote the space of all not empty compact subsets of H . For subsets U and V of
H , set

KU (V ) = {A ∈ K(H) : A ∩ U ̸= ∅, A ⊂ V }.
Then K(H) can be given the topology generated by the sub-basis of all set KU (V ) for
which U and V are open subsets of H . This topology is called the Michael topology on
K(H) [1, page 7].
We recall the following definition of hypergroup from [16] using Jewett’s axioms [13].

Definition 2.1. H is said to be a hypergroup, if H is a nonempty locally compact Hausdorff
topological space which satisfies the following conditions.

H1: There exists a binary operation ∗ called convolution on M(H) under which M(H)
is an algebra. Moreover, for every x, y ∈ H , δx ∗ δy is a probability measure and
the mapping (x, y) → δx ∗ δy is continuous from H ×H into M1(H).

H2: There exists an element (necessarily unique) e in H such that δe∗δx = δx∗δe = δx
for all x ∈ H .

H3: There exists a (necessarily unique) homeomorphism x → x− of H called involu-
tion satisfying the following :
(1) (x−)− = x for all x ∈ H .

(2) If µ− is defined by
∫
H

f(x)dµ−(x) =

∫
H

f(x−)dµ(x) for all f ∈ Cc(H), then

(δx ∗ δy)− = δy− ∗ δx− for all x, y ∈ H .
(3) e belongs to supp(δx ∗ δy) if and only if y = x−.

H4: For every x, y ∈ H , supp(δx ∗ δy) is compact. Moreover, the mapping (x, y) →
supp(δx ∗ δy) is continuous from H × H into K(H), with respect to the Michael
topology.

We shall denote the probability measure δx ∗ δy simply by x ∗ y. That is, for every
continuous function f on H :

f(x ∗ y) = ⟨f, δx ∗ δy⟩ =
∫
H

f(z)d(δx ∗ δy)(z).
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The element e will be called the identity of H . For every x ∈ H , x− will be called the adjoint
of x.

Definition 2.2. [1, page 10] A hypergroup H is said to be commutative if its convolution
is commutative. If the involution is the identity mapping on H , that is: x− = x for every
x ∈ H , then H is said to be a symmetric (hermitian) hypergroup.

Symmetric hypergroups are commutative. Note that the study of hypergroups is gen-
erally done through the study of their associated measure algebras, since the properties
of hypergroups are given through these algebras.

In this article, all the hypergroups H that we will study have a Haar measure which we
denote by m. For commutative and compact hypergroups the existence of a Haar measure

is a fact [1, page 33]. We will use
∫
H

...dx to denote
∫
H

...dm(x), the integration with

respect to m when there is no risk of confusion. The Banach spaces Lp(H), 1 ≤ p ≤ ∞, are
understood as usual with respect to m.

2.2. Involutive Banach algebras M(H) and L1(H). Let H be a hypergroup.
With the involution µ∗ = (µ−) for all µ ∈ M(H), the space M(H) is an involutive

Banach algebra with unit, [13, Theorem 6.1G]. The space L1(H) is an involutive Banach
algebra with the convolution

(f ∗ g)(x) =
∫
H

f(x ∗ y)g(y−)dy

and the involution f∗(x) = ∆(x−)f(x−) for all f, g ∈ L1(H) and for every x ∈ H where ∆
stands for the modular function of H defined by m∗ δx− = ∆(x)m. It is a homomorphism
from H into the multiplicative group of positive real numbers [13, Section 5.3].

Definition 2.3. [1, Definition 1.6.14]A net (kα) ⊂ L1(H) is called a bounded approximate
unit for L1(H) if lim∥kα ∗ f − f∥1 = 0 for all f ∈ L1(H).

Bounded approximate units act as substitute for identity in L1(H) (unless H is dis-
crete).
Before going further on hypergroups, let us recall some important results about involutive
Banach algebra which will be used in the sequel.

Fact 2.1. Positive linear functional on an involutive algebra.
Let A be an involutive Banach algebra having an approximate identity and f a contin-

uous positif linear form on A, then

∥f∥ = f(1), |f(x)|2 ≤ ∥f∥f(xx∗) and |f(yxy∗)| ≤ ∥x∥f(yy∗) for all x, y ∈ A.

If (kα) is an approximate identity for A, then f(kα) → f(1) = ∥f∥ [5, Section 2.1]. If f
is a continuous linear functional on A, we denoted by |f | the positive linear functional
determined by the conditions ∥|f |∥ = ∥f∥ and |f(x)|2 ≤ ∥f∥|f |(xx∗) for every x ∈ A. The
extension of |f | to the algebra with adjoined unit is again denoted by |f |.

2.3. Representations of hypergroups. Let A be an involutive Banach algebra, H be a
Hilbert space and B(H) the involutive algebra of all bounded linear operators on H, and
let I be the identity operator on H. A ∗-representation of A in H is a ∗-homorphism of the
involutive algebra A into the involutive algebra B(H) [5, Section 2.2].

Definition 2.4. [1, Definition 2.1.1]We refer to π as a representation of the hypergroup H in
some Hilbert space Hπ if

(1) π is a ∗-representation of the involutive Banach algebra M(H) into B(Hπ).
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(2) π(δe) = I
(3) For elements ξ, η ∈ Hπ , the mapping µ → ⟨π(µ)ξ, η⟩Hπ

is continuous on M+(H)
with respect to the weak topology.

The Hilbert space Hπ is called the representation space of H . A representation π is said
to be unitary if for all µ ∈ M(H), the operator π(µ) is a unitary operator on Hπ . The
representation π is said to be irreducible if there is no closed proper subspace of Hπ that is
invariant by π(µ) for all µ ∈ M(H).

It follows from this definition that each representation π is norm decreasing. In the
sequel, π(x) will denote π(δx).
The representations π1 and π2 of H , with representation spaces Hπ1 and Hπ2 respectively
are said to be equivalent if there exists an isomorphism U from Hπ1 onto Hπ2 such that
π2(µ)U = Uπ1(µ) for all µ ∈ M(H). The set of equivalence classes of unitary irreducible
representations of H is denoted by H̃ and one may denote by the same symbol a repre-
sentation and its equivalence class.

2.4. The Fourier space of a hypergroup. This part describes briefly the Fourier space of
a hypergroup, we refer to [15, Section 2] for more details. Let λ denote the left regular
representation of H on L2(H) given by

λ(x)f(y) = f(x− ∗ y)
where x, y ∈ H and f ∈ L2(H). This can be extended to L1(H) by setting

λ(f)(g) = f ∗ g
for f ∈ L1(H) and g ∈ L2(H). Let C∗(H) denote the enveloping C∗-algebras of the
hypergroup algebra L1(H) and let C∗

λ(H) denote the reduced C∗-algebras of H . That is,
C∗

λ(H) is the norm closure of the space {λ(f) : f ∈ L1(H)} in the algebra B(L2(H)) of
bounded linear operators on L2(H). The norm on C∗(H) is given by

∥f∥C∗(H) = sup{∥π(f)∥ : π ∈ H̃}.

Definition 2.5. [15, Definition 2.2] The Banach space dual of the full C∗-algebra C∗(H) is
called the Fourier-Stieltjes space of H and is denoted by B(H).

The space B(H) is contained in L∞(H) and the Banach space dual of C∗
λ(H) is denoted

by Bλ(H), which can be considered as a closed subspace of B(H).

For f ∈ Cc(H), for every x, y ∈ H , set f−(x) = f(x−) , f̃(x) = f(x−) and f∗(x) =

f̃(x)∆(x−). We have

f ∗ g̃(x) =
∫
H

f(x ∗ y)g(y)dy.

Definition 2.6. [15, Section 2.3] The closed subspace spanned by {f ∗ f̃ : f ∈ Cc(H)} in
Bλ(H) is called the Fourier space of H and is denoted by A(H).

A(H) is also the closure of the span of the set {f ∗ f̃ : f ∈ L2(H)} in Bλ(H).

Definition 2.7. [15, Definition 2.17] The von Neumann algebra [λ(H)]′′ associated to the
left regular representation λ of H is called the von Neumann algebra of H and is denoted
by V N(H).

V N(H) is the same as [λ(L1(H))]′′. Notice that C∗
λ(H) is contained in V N(H), as

V N(H) is the σ-weakly closed sub-algebra of B(L2(H)) containing {λ(f) : f ∈ Cc(H)}.
V N(H) is the dual space of A(H) [15, Theorem 2.19]. The space V N(H) is called an
atomic von Neumann algebra if the representation λ is atomic, that is, the direct sum of
irreducible representations [24, Section I.9 and Section III.6].
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2.5. Commutative Hypergroups. We recall some properties of commutative hypergroups.
Let H be a commutative hypergroup. In [23], the author proved that a left Haar measure
m exists on every commutative hypergroup.
A complex function χ on H is said to be multiplicative if χ(x∗y) = χ(x)χ(y) for all x, y ∈ H .
The dual Ĥ of H is the space of hermitian characters of H , that is, the space of multiplica-
tive continuous functions χ on H such that χ(x−) = χ(x) for all x ∈ H . It is well-known
that for a compact hypergroup H the dual Ĥ is discrete [1, Theorem 2.2.9].
For µ in M(H), the Fourier-Stieltjes transform F(µ) of µ is defined on Ĥ by

F(µ)(χ) =

∫
H

χdµ, χ ∈ Ĥ.

For any f in L1(H), the Fourier transform F(f) of f with respect to m is defined on Ĥ
by

F(f)(χ) =

∫
H

fχdm, χ ∈ Ĥ.

Let us denote by S the subset of Ĥ given by :

S = {χ ∈ Ĥ : |F(µ)(χ)| ≤ ∥λ(µ)∥,∀µ ∈ M(H)}.

The unique non-negative measure π on Ĥ such that∫
H

|f |2dm =

∫
Ĥ

|F(f)|2dπ

for all f ∈ L1(H) ∩ L2(H), is called the Plancherel-Levitan measure associated with m;
moreover S is exactly the support of π.
When H is a commutative hypergroup, A(H) = {f ∗ g̃ : f, g ∈ L2(H)} and A(H) is
isometrically isomorphic to L1(S, dπ) [15, page 69].

2.6. The Radon-Nikodým Property (RNP). Several equivalent formulations of the Radon-
Nikodým Property (RNP) exist; the book [4] is an excellent source with details on various
aspects of the RNP. There is a summary on pages 217 and 218 of equivalent properties,
which are equivalent to the Radon-Nikodým Property. Here we recall the following geo-
metric definition.

Definition 2.8. A Banach space X has the Radon-Nikodým property (RNP) if every bo-
unded subset D of X is dentable; that is, for each ε > 0, there is some xε ∈ D such that
xε ̸∈ co

(
D\Bε(xε)

)
where Bε(xε) = {y ∈ X : ∥y − xε∥ < ε} and co

(
D\Bε(x)

)
is the norm

closed convex-hull of D\Bε(x).
A point x ∈ D which satisfies this property for each ε > 0 is said to be a denting point of
D.

For every discrete set Γ, l1 := l1(Γ) has the RNP and every Banach space which is norm
isomorphic to l1 has the RNP [4].
If M is a von Neumann algebra with predual M∗, then ”M is an atomic von Neumann
algebra” is equivalent to ”M∗ has the RNP” [25, Theorem 3.5].

3. MAIN RESULTS

Some of the results on hypergroups in this section are almost the same as in the case
of groups, with appropriate modifications when needed. For instance, in the proof of
Theorem 3.2, we use the fact that A(H) is isometrically isomorphic to L1(S, dπ) where S

is the subset of Ĥ that supports the Plancherel-Levitan measure on Ĥ . However, for a
compact abelian group G, A(G) is directly isometrically isomorphic to l1(Ĝ), where Ĝ is
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the dual group of G and Ĝ is discrete since G is compact. Also to obtain some results
in Subsection 3.2 we assumed that H is a commutative hypergroup, while the analogous
results for a locally compact group G do not require the commutativity assumption for G
[12].

3.1. RNP for the Fourier space of compact commutative and compact Hypergroups.

Theorem 3.2. If H is a compact commutative hypergroup, then A(H) has the Radon-Nikodým
property.

Proof. If H is a commutative hypergroup then A(H) is isometrically isomorphic to L1(S, dπ).
If H is compact then S is a discrete subset of Ĥ . Therefore L1(S, dπ) is isomorphic to l1. It
follows that A(H) has the RNP. □

Theorem 3.3. If H is a compact hypergroup, then A(H) has the Radon-Nikodým property.

Proof. If H is a compact hypergroup, then the left regular representation λ of H can be
written as a direct sum of continuous irreductible subrepresentations, see [13, Theorem
7.2C] and [26, page 243]. Thus λ is atomic and V N(H) = [λ(H)]′′ is an atomic von Neum-
man algebra. Since A(H) is the predual of V N(H), then A(H) has the RNP. □

3.2. Coincidence of the weak-∗ topology and the norm topology on the unit sphere of
AK(H) and RNP. In the following, H is assumed to be a commutative hypergroup with
Haar measure m. Since a commutative hypergroup H is unimodular [13, Section 7.3], we
have, for every x ∈ H

f∗(x) = f̃(x) = f(x−) = f−(x).

Let K be closed subset of H and set AK(H) = {f ∈ A(H), supp(f) ⊂ K}. We are
now going to investigate the Radon-Nikodým property for the spaces AK(H) when K is
compact. We borrow methods from [12] which dealt with the group case. Hereafter are
some facts that we may need.

Fact 3.4. If X and Y are normed spaces in duality and if for each y ∈ Y , ∥y∥ = sup{|⟨y, x⟩|,
x ∈ X, ∥x∥ ≤ 1}, then yα converges to y in τw∗ , the weak-* topology of Y (i.e. ⟨yα, x⟩
converges to ⟨y, x⟩,∀x ∈ X ) implies lim inf ∥yα∥ ≥ ∥y∥. If in addition sup∥yα∥ < ∞, then
|⟨yα − y, x⟩| converges to 0 uniformly on norm compact subsets of X , see [12, page 460]
and [2, Chapter 3].

Fact 3.5. Let H be a commutative hypergroup. For 1 ≤ p < ∞, the space Cc(H) is dense in
Lp(H). Moreover Lq(H) is the dual space of Lp(H) where 1/p+ 1/q = 1 [3, page 5]. This

duality is defined by ⟨f, g⟩ =
∫
H

f(x)g(x)dx for every f ∈ Lp(H) and every g ∈ Lq(H).

Since H is a locally compact topological space, let Uα be a basis of relatively compact
neighbourhoods at e ∈ H . For each α, choose a symmetric neighbourhood Vα at e such
that Vα∗V −

α = V 2
α ⊂ Uα and write hα = m(Vα)

−11Vα , where 1Vα denotes the characteristic
function of Vα. hα ∈ C+

c (H) with supp(hα) ⊂ Vα and ∥hα∥1 = 1. [1, pages 66 and 67].
kα = hα ∗ h−

α is a bounded approximate unit for L1(H) and we also have kα ∈ C+
c (H)

with limsupp(kα) = {e} and ∥kα∥1 = 1 [1, page 88]. The functions hα and kα are real
valued positive functions.

Proposition 3.1. Let kα = hα∗h−
α in L1(H) be as above. Let (uβ) be a net in B(H) such that uβ

converges to u0 in σ(B(H), C∗(H)) and ∥uβ∥B(H) converges to ∥u0∥B(H), (we write uβ → u0

in τnw∗ of B(H)). Then, for any ε > 0, there exists α0 such that ∥kα0 ∗ u0 − u0∥B(H) < ε and
there exists β0 such that ∥kα0

∗ uβ − uβ∥B(H) < ε for all β ≥ β0.
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Proof. We may adjoin a unit 1 to L1(H) when H is non-discrete and we may assume that
u0 ̸= 0.

(kα)
∗ = (hα ∗ h−

α )
∗ = (hα ∗ h∗

α)
∗ since H is commutative and kα is real.

(hα ∗ h∗
α)

∗ = (h∗
α)

∗ ∗ (hα)
∗ = hα ∗ h∗

α = kα. Thus (kα − 1)∗ = kα − 1.
For u ∈ B(H) and f ∈ L1(H), we have

|⟨kα ∗ u− u, f⟩|2 = |⟨(kα − 1) ∗ u, f⟩|2

= |⟨u, (kα − 1) ∗ f⟩|2

≤ ∥u∥B(H)|⟨|u|, (kα − 1) ∗ f ∗ ((kα − 1) ∗ f)∗⟩| using Fact 2.1

≤ ∥u∥B(H)|⟨|u|, (kα − 1) ∗ f ∗ f∗ ∗ (kα − 1)∗⟩|
≤ ∥u∥B(H)|⟨|u|, (kα − 1) ∗ (f ∗ f∗) ∗ (kα − 1)∗⟩|
≤ ∥u∥B(H)∥f ∗ f∗∥C∗(H)|⟨|u|, (kα − 1) ∗ (kα − 1)⟩| using Fact 2.1

≤ ∥u∥B(H)∥f ∗ f∗∥C∗(H)|⟨|u|, (1− kα) ∗ (1− kα)⟩|,

Since any representation σ on H is norm decreasing, we have ∥σ(f)∥1 ≤ ∥f∥1 for all
f ∈ L1(H). Thus for all kα ∈ L1(H), we have ∥kα∥C∗(H) ≤ ∥kα∥1.

It follows that 0 ≤ kα ≤ 1 , 0 ≤ 1 − kα ≤ 1, 0 ≤ (1 − kα) ∗ (1 − kα) ≤ 1 − kα in C∗(H)
with adjoined identity 1 and

|⟨kα ∗ u− u, f⟩|2 ≤ ∥u∥B(H)∥f ∗ f∗∥C∗(H)|⟨|u|, (1− kα)⟩|
≤ ∥u∥B(H)∥f∥2C∗(H)|⟨|u|, (1− kα)⟩|

since C∗(H) is a C∗-algebra. Therefore

∥kα ∗ u− u∥2B(H) ≤ ∥u∥B(H)|⟨|u|, (1− kα)⟩|.

Since kα is an approximate identity for the involutive Banach algebra L1(H) and for u ∈
B(H), |u| is a positive linear functional on C∗(H) then we conclude that |u|(kα) converges
to |u|(1) = ∥u∥, according to Fact 2.1. Therefore ⟨|u|, kα⟩ converges to ⟨|u|, 1⟩; finally,
⟨|u|, 1− kα⟩ converges to 0.

One can choose an α0 such that for any ε > 0,

∥u0∥B(H)|⟨|u0|, (1− kα0
)⟩| < ε2.

The latter estimation leads to

∥kα0 ∗ u0 − u0∥B(H) < ε.

Since uβ converges to u0 in τnw∗ , then by [7, Lemma 3.5], |uβ | converges to |u0|. Thus
∥kα0 ∗ uβ − uβ∥2B(H) ≤ ∥uβ∥B(H)|⟨|uβ |, (1 − kα0)⟩| and the right hand side of the latter
inequality converges to ∥u0∥B(H)|⟨|u0|, (1− kα0

)⟩| < ε2.
One can chose β0 such that ∥uβ∥B(H)|⟨|uβ |, (1 − kα0

)⟩| < ε2 if β ≥ β0. Then for all
β ≥ β0,

∥kα0
∗ uβ − uβ∥B(H) < ε.

□

Proposition 3.2. Let A be a norm bounded subset of L∞(H). Let f ∈ L1(H) and let (ϕα) be a
net in A which weak-* converges to ϕ0 ∈ A. Then ϕα ∗ f converges to ϕ0 ∗ f in the topology of
compact convergence.

Proof. For ϕ ∈ L∞(H) and f ∈ L1(H), we have

(ϕ ∗ f)(x) =
∫
H

f(x ∗ y)ϕ(y−)dy =

∫
H

xf(y)ϕ
−(y)dy = ⟨ϕ−,x f⟩,
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where

xf(y) = f(x ∗ y) =
∫
H

f(z)d(δx ∗ δy)(z).

As f ∈ L1(H) then xf ∈ L1(H) because ∥xf∥1 ≤ ∥f∥1 [13, Lemma 3.3B].
The net (ϕα) weak-* converges to ϕ0 in A, this implies that ⟨ϕα, f⟩ converges to

⟨ϕ0, f⟩,∀f ∈ L1(H), thus (ϕα ∗ f)(x) = ⟨ϕ−
α ,x f⟩ converges to ⟨ϕ−

0 ,x f⟩ = (ϕ0 ∗ f)(x).
If K is a compact subset of H , then the set {xf : x ∈ K} is a compact subset of L1(H)

since the mapping x 7−→ xf from H into L1(H) is continuous [1, page 15]. Therefore by
Fact 3.4, ϕα ∗ f converges to ϕ0 ∗ f in the topology of compact convergence. □

For u ∈ B(H) and µ ∈ M(H). The convolution product of µ by u is defined by

(µ ∗ u)(x) =
∫
H

u(y− ∗ x)dµ(y).

Proposition 3.3. If u ∈ B(H) and µ ∈ M(H) then µ ∗ u ∈ B(H). Moreover,

∥µ ∗ u∥B(H) ≤ ∥µ∥H̃∥u∥B(H).

Proof. Let u ∈ B(H). Then there exists, by [15, Proposition 2.8], a representation π in H̃ ,
such that u(x) = ⟨π(x)ξ, η⟩Hπ

with ∥u∥B(H) = ∥ξ∥Hπ
∥η∥Hπ

for some ξ, η ∈ Hπ and every
x ∈ H . Note that π(y−) = π−(y) = π∗(y). Then

(µ ∗ u)(x) =
∫
H

u(y− ∗ x)dµ(y)

=

∫
H

⟨π(y− ∗ x)ξ, η⟩Hπ
dµ(y)

=

∫
H

⟨π(y−)π(x)ξ, η⟩Hπdµ(y)

=

∫
H

⟨π(x)ξ, π(y)η⟩Hπ
dµ(y)

= ⟨π(x)ξ, π(µ)η⟩Hπ
.

Since π(µ)η ∈ Hπ , then the function (µ ∗ u)(·) = ⟨π(·)ξ, π(µ)η⟩Hπ
belongs to B(H). More-

over,

|⟨π(x)ξ, π(µ)η⟩Hπ | ≤ ∥π(x)ξ∥Hπ∥π(µ)η∥Hπ

≤ ∥ξ∥Hπ
∥π(µ)∥B(Hπ)∥η∥Hπ

≤ ∥µ∥H̃∥ξ∥Hπ
∥η∥Hπ

.

Thus ∥µ ∗ u∥B(H) ≤ ∥µ∥H̃∥u∥B(H) .
□

Definition 3.9. [15, Definition 4.7]Let H be a commutative hypergroup. We say that H
satisfies condition (F ) if there exists a constant M > 0 such that

If χ1, χ2 ∈ S then χ1χ2 ∈ Bλ(H) and ∥χ1χ2∥Bλ(H) ≤ M.

In what follows, we assume that H is a commutative hypergroup which satisfies con-
dition (F ) with M = 1.

A net (uα) ⊂ B(H) converges to u in the multiplier topology τM if ∥(uα − u)v∥A(H)

converges to 0 for every v ∈ A(H).
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Proposition 3.4. Let f, g ∈ Cc(H). Let (uα) be a net that converges to u in σ(B(H), C∗(H))
such that

sup
α

∥uα∥B(H) < C < ∞.

Then the mapping u 7−→ (f ∗ g) ∗ u is continuous from (B(H), τnw∗) into (B(H), τM ).

Proof. Let v ∈ A(H)∩Cc(H), w ∈ L∞(H) and h ∈ L1(H). We have (f ∗w)v ∈ L∞(H) and
thus:

⟨(f ∗ w)v, h⟩ =
∫
H

(
(f ∗ w)(x)v(x)

)
h(x)dx

=

∫
H

(∫
H

w(x ∗ y)f(y−)dy
)
v(x)h(x)dx

=

∫
H

(∫
H

w(x ∗ y)f(y−)v(x)dy
)
h(x)dx,

Let K ⊂ H be compact such that supp(v)supp(f)− ⊂ K :∫
H

(∫
H

w(x ∗ y)f(y−)v(x)dy
)
h(x)dx =

∫
H

(∫
H

1Kw(x ∗ y)f(y−)v(x)dy
)
h(x)dx

=

∫
H

(∫
H

1Kw(x ∗ y)f(y−)dy
)
v(x)h(x)dx

=

∫
H

(
(f ∗ (1Kw))(x)

)
v(x)h(x)dx

= ⟨(f ∗ (1Kw))v, h⟩

Hence
⟨(f ∗ w)v, h⟩ = ⟨(f ∗ (1Kw))v, h⟩.

The hypothesis on f implies f ∈ L2(H). Also (1Kw)∗ ∈ L2(H). Therefore f ∗ (1Kw) =
f ∗ ((1Kw)∗)∗ ∈ L2(H) ∗ L2(H)∗. Since H is commutative, then g̃ = g∗ and A(H) =
L2(H) ∗ L2(H)∗. We have f ∗ (1Kw) ∈ A(H).

If H satisfies condition (F ) with M = 1, then by [15, Corollary 4.13], A(H) is a Banach
algebra under pointwise product and we have:

∥(f ∗ w)v∥A(H) = ∥f ∗ (1Kw)v∥A(H) ≤ ∥f ∗ (1Kw)∥A(H)∥v∥A(H)

≤ ∥f∥2∥(1Kw)∗∥2∥v∥A(H).

Now let w = g ∗ (uα − u). Then

∥(f ∗ w)v∥A(H) = ∥(f ∗ g ∗ (uα − u))v∥A(H) ≤ ∥f∥2∥(1K(g ∗ (uα − u)))∗∥2∥v∥A(H).

By Proposition 3.2, g∗(uα−u) converges to 0 uniformly on K, since g ∈ Cc(H) ⊂ L1(H)
and uα, u ∈ B(H) ⊂ L∞(H) and sup

α
∥uα∥B(H) < C < ∞.

Hence ∥((f ∗ g) ∗ (uα − u))v∥A(H) ≤ ∥f∥2∥(1K(g ∗ (uα − u)))∗∥2∥v∥A(H) converges to
0 for any v ∈ A(H) ∩ Cc(H) which is dense in A(H). Since Cc(H) is dense in L1(H)
(which is isomorphic to a closed ideal of M(H)), for every f, g ∈ Cc(H) and u ∈ B(H) by
Proposition 3.3, we have

(f ∗ g) ∗ u ∈ B(H) and ∥(f ∗ g) ∗ u∥B(H) ≤ ∥f ∗ g∥H̃∥u∥B(H) ≤ ∥f ∗ g∥1∥u∥B(H).

Thus ∥(f∗g)∗uα∥B(H) ≤ ∥f∗g∥1∥uα∥B(H) ≤ ∥f∗g∥1C and therefore sup
α

∥(f∗g)∗uα∥B(H) <

∞. We conclude that (f ∗g)∗uα converges to (f ∗g)∗u in the multiplier topology of B(H).
Hence u 7−→ (f ∗ g) ∗ u is continuous from (B(H), τnw∗) to (B(H), τM ). □
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The following theorem is fundamental in our work.

Theorem 3.6. Let H be a commutative hypergroup satisfying condition (F ) with M = 1. If uβ

is a net in B(H) such that uβ converges to u0 in σ(B(H), C∗(H)), the weak-* topology of B(H)
and if ∥uα∥B(H) converges to ∥u0∥B(H), then uβ converges to u0 in the multiplier topology of
B(H).

Proof. Consider the bounded approximate unit (kα) for L1(H) as in Proposition 3.1. Choose
ε > 0. By Proposition 3.1, there exists α0 and β0 such that ∥kα0

∗ u − u∥B(H) < ε and
∥kα0

∗ uβ − uβ∥B(H) < ε for all β ≥ β0.
For v ∈ A(H) and β ≥ β0,

∥(uβ − u)v∥A(H) = ∥(kα0 ∗ uβ − kα0 ∗ uβ + uβ − u+ kα0 ∗ u− kα0 ∗ u)v∥A(H)

≤ ∥kα0
∗ uβv − uβv∥B(H) + ∥[kα0

∗ (uβ − u)]v∥A(H) + ∥kα0
∗ uv − uv∥B(H).

Since uβv → uv satisfies also the conditions in Proposition 3.1, we have

∥kα0
∗ uβv − uβv∥B(H) < ε and ∥kα0

∗ uv − uv∥B(H) < ε.

By taking kα0
= hα0

∗ h−
α0

as f ∗ g in Proposition 3.4, there exists some β1 ≥ β0 such
that ∥[kα0

∗ (uβ − u)]v∥A(H) < ε if β ≥ β1. There exists α0, β0 and β1, such that for all
β ≥ β1 ≥ β0 , ∥(uβ − u)v∥A(H) ≤ 3ε. □

Now, let us recall this fact which we will use in the proof of our next result.

Fact 3.7. [16, Proposition 2.22]. Let H be a hypergroup. If K is a nonempty compact subset of
H and U is a neighborhood of K, then there exists w ∈ A(H) such that

0 ≤ w(x) ≤ 1, w|K = 1 and supp(w) ⊂ U.

Let K be a compact nonempty subset of H . Set

AK(H) = {u ∈ A(H), supp(u) ⊂ K}.
Now consider the unit sphere of AK(H) :

SAK(H) = {v ∈ AK(H) : ∥v∥A(H) = 1}.
We have the following result.

Theorem 3.8. If Let K be a compact nonempty subset of H , then the weak-* topology coincides
with the norm topology on SAK(H).

Proof. SAK(H) is a subset of AK(H) ⊂ B(H). Let vα, v ∈ SAK(H) such that vα converges
to v in the weak-* topology of B(H). We have ∥vα∥B(H) = ∥v∥B(H) = 1. Thus vα is as in
Theorem 3.6 and for every w ∈ A(H), ∥(vα − v)w∥A(H) converges to 0. By Fact 3.7, we can
chose w ∈ A(H) such that w|K = 1, thus ∥(vα − v)w∥A(H) = ∥vα − v∥B(H) converges to
0. □

Let us recall these propositions of Namioka and Phelps. Consider the following condi-
tion.
(C): ”On the unit sphere, the weak* topology coincides with the norm topology.”

Proposition 3.5. [17, Corollary 4.9 and Proposition 4.11] Let E be a normed linear space such
that the norm of E∗(the dual of E) satisfies the condition (C). Then each norm-closed, convex,
bounded subset of E∗ is contained in the weak-*-closed convex hull of its denting points.

Proposition 3.6. [19, Corollary 14] If every bounded closed nonempty convex subset of the
Banach space E has a denting point, then every such set is the closed convex hull of its strongly
exposed points.
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These two propositions 3.5 and 3.6 implie that every dual Banach space that satisfies
condition (C) has the RNP.

Proposition 3.7. AK(H) is weak-* closed in B(H) and it is a dual Banach space.

Proof. AK(H) = {u ∈ A(H), supp(u) ⊂ K}. If the interior int(K) = ∅ then AK(H) = {0},
so we may assume that int(K) ̸= ∅.

For any x /∈ K, there is some v ∈ A(H) such that v(K) = 0 and v(x) ̸= 0. (Such v can
be taken as 1− w with w as in Fact 3.7).

Now let (uα) ∈ AK(H) and v ∈ B(H) such that v = 0 on K. Since (uα) ∈ AK(H) then
uα(x) = 0 for x /∈ K.

If uα converges to u in τw∗ , then 0 = uαv converges to uv in τw∗ .
Hence uv = 0 and u(x) = 0 if x /∈ K, thus {y ∈ H;u(y) ̸= 0} ⊂ K. Thus u ∈ AK(H).

It follows that AK(H) is weak-* closed in B(H). Let us denote by M the set (AK(H))⊥ =
{ϕ ∈ C∗(H); ⟨ϕ, v⟩ = 0 for all v ∈ AK(H)}. Using [21, Theorem 4.7 and Theorem 4.9(b)],
the Banach space (C∗(H)/M)∗ is isometric to

M⊥ = {u ∈ B(H); ⟨u, ϕ⟩ = 0 for all ϕ ∈ M}
and AK(H) is the dual of a Banach space, since

M⊥ = ((AK(H))⊥)
⊥ = AK(H).

□

Theorem 3.9. Let H be a commutative hypergroup and let K be a compact subset of H . Then
AK(H) is a dual Banach space with the RNP.

Proof. AK(H) is weak-* closed in B(H) and it is a dual Banach space by Proposition 3.7.
By Theorem 3.8, AK(H) satisfies condition (C). Thus, by Proposition 3.5, each bounded
norm closed convex subset K of AK(H) has a denting point and hence by Proposition 3.6
every bounded norm closed convex subset K of AK(H) is the closed convex hull of its
strongly exposed points. Hence AK(H) has the RNP. □

4. CONCLUSION

We have studied the RNP for the Fourier space of a compact commutative or non nec-
essary commutative hypergroup. In both cases, the Radon-Nikodým property holds. For
a general commutative hypergroup, we proved the AK(H) also has the Radon-Nikodým
property under additionnal conditions. It may be interesting to study the RNP or other
geometric properties for the Fourier space of structures of other categories such as grou-
poids, n-groups, etc.
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