
CREAT. MATH. INFORM.
Volume 32 (2023), No. 2,
Pages 183 - 192

Online version at https://semnul.com/creative-mathematics/

Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X

DOI: https://doi.org/10.37193/CMI.2023.02.06

Properties of Restricted Cascade Product of Fuzzy Finite
State Machines

S. A. MORYE1 and S. R. CHAUDHARI2

ABSTRACT. In this paper our sole aim is to introduce the Restricted cascade product of fuzzy finite state
machines without the condition of completeness which was very much needed for Restricted cascade product
of fuzzy finite switchboard state machines. The authors also aim to verify the properties of this product with all
other products such as Full direct product, restricted direct product, cascade product, wreath product, cartesian
product, direct sum and sum with respect to the notions of isomorphism and covering.

1. INTRODUCTION

After the introduction of fuzzy set by Lotfi Zadeh in 1965, fuzzy automaton was one
of the prime concepts that has emerged as a topic of research due to its applications
in various fields such as Computer Science, Electrical Engineering, Biological systems,
Image and Pattern recognition, Medicine, Artificial Intelligence, Neural networks etc.
[1, 5, 7, 21, 23, 30, 32, 33, 34]. Initially, Wee and Fu [34] applied the concept of fuzzy au-
tomaton in learning systems for automatic control and pattern recognition and discussed
its advantages. The concept of Fuzzy grammar and languages was first discussed by Lee
and Zadeh [13] and it was pointed out that the Context-sensitive fuzzy grammar is recur-
sive. Thomason and Marinos [31] describe interplay between Fuzzy regular expression,
Regular fuzzy language, and Fuzzy automaton. Santos [24, 25, 26, 27, 28]; Wechler [33];
Kandel and Lee [7] have developed the algebraic study of fuzzy finite state machines,
automata and probabilistic automata. The concept of subsemiautomaton or fuzzy finite
state machine was systematically developed by Malik et al.[16, 17, 18, 19], Mordeson and
Malik [21] . The notion of product of finite automata is one of the important algebraic
techniques that is used to design a new automaton for given ones that can carry out their
works altogether. The construction of various types of products of fuzzy finite state ma-
chines such as restricted direct product, direct product, wreath product, cascade product,
sum, direct sum, cartesian product etc was the motto of the papers by Malik et al. [18, 19];
Kim et al. [9] and Kumbhojkar and Chaudhari [11, 12].

Fuzzy languages viz. regular, context free, context sensitive etc are recognized by
corresponding type of fuzzy finite automaton [2, 3, 4, 8, 13, 21]. The concept of prod-
ucts of fuzzy finite automata for fuzzy language recognition was studied by Malik et
al.[18, 19] and Malik and Mordeson [21]; Kumbhojkar and Chaudhari [12] and many oth-
ers [10, 14, 20, 24, 29]. A fuzzy automaton with output is known as Mealy type of fuzzy
finite automaton. Various products for these types of fuzzy automata were discussed by
Liu et al. [14] and they were further generalized by S. R. Chaudhari and S. A. Morye
[22, 6].
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Recently, Kavikumar et al. [8] have introduced the concept of restricted cascade prod-
uct of complete of fuzzy finite state switchboard machines and studied its relationship
with their wreath product. Further they have illustrated a single pattern one-minute mi-
crowave as an example of restricted cascade product of fuzzy finite switchboard state
machines. But the concept of restricted cascade product for fuzzy finite state machines is
not yet introduced in literature.

In this paper we will introduce this concept for fuzzy finite state machines and discuss
that the condition of completeness is not necessary while developing it for fuzzy finite
state machines. We will also establish various algebraic properties of this restricted prod-
uct of fuzzy finite state machines with all other products introduced in [11, 18, 19, 21] in
terms of homomorphism and coverings.

2. PRELIMINARIES

Here in this section, we will recall the preliminary concepts of fuzzy finite state machine
and product of fuzzy finite state machines along with the newly introduce concept of
restricted cascade product of fuzzy finite state machines. It is noted that the completeness
of fuzzy finite state machines is not needed for products of fuzzy finite state machines
and hence the authors will not impose it for the restricted cascade product of fuzzy finite
state machines too.

Definition 2.1. [16] A fuzzy finite state machine (FFSM) is a triplet M = (Q,X, µ), where
Q is called the set of states, X is called the set of input symbols and µ is a fuzzy subset of
Q×X ×Q, that is, µ : Q×X ×Q → [0, 1].

As usual X∗ denotes the set of all words of elements of X of finite length. Let λ denote
the empty word in X∗ and |x| denote the length of x ∈ X∗. X∗ is a free semi group with
identity λ with respect to the binary operation concatenation of two words. If we define
µ∗ : Q×X∗ ×Q → [0, 1] by

µ∗(q, λ, p) =

{
1 if q = p

0 if q ̸= p

and

µ∗(q, xa, p) =
∨
r∈Q

{µ∗(q, x, r) ∧ µ(r, a, p)}

∀q, p ∈ Q and ∀x ∈ X∗, a ∈ X, then

µ∗(q, xy, p) =
∨
r∈Q

{µ∗(q, x, r) ∧ µ∗(r, y, p)}

∀q, p ∈ Q and ∀x, y ∈ X∗. Here onwards we shall denote µ∗ by µ without any ambiguity.
Malik et al.[18, 19] and Kim et al.[9] defined Full direct product, Restricted direct product,
Cascade product, Wreath product and Cartesian composition for fuzzy finite state ma-
chines. Kumbhojkar and Chaudhari [11]. introduced Direct sum and sum for fuzzy finite
state machines.

Definition 2.2. Let M1 = (Q1, X1, µ1) and M2 = (Q2, X2, µ2) be two FFSMs. Then the
FFSM,

(1) M1 × M2 = (Q1 × Q2, X1 × X2, µ1 × µ2) is called the Full direct product of M1

and M2, where µ1 × µ2 : (Q1 ×Q2)× (X1 ×X2)× (Q1 ×Q2) → [0, 1] is defined as
follows:

(µ1 × µ2)((q1, q2), (a1, a2), (p1, p2)) = µ1(q1, a1, p1) ∧ µ2(q2, a2, p2),
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for all (q1, q2), (p1, p2) ∈ Q1 ×Q2, (a1, a2) ∈ X1 ×X2.
(2) M1 ∧M2 = (Q1×Q2, X, µ1 ∧µ2) is called the Restricted direct product of M1 and

M2, where X1 = X2 = X and µ1 ∧ µ2 : (Q1 × Q2) × X × (Q1 × Q2) → [0, 1] is
defined as follows:

(µ1 ∧ µ2)((q1, q2), a, (p1, p2)) = µ1(q1, a, p1) ∧ µ2(q2, a, p2),

for all (q1, q2), (p1, p2) ∈ Q1 ×Q2, a ∈ X.
(3) M1ωM2 = (Q1 × Q2, X2, µ1ωµ2) is called the Cascade product of M1 and M2,

where ω : Q2×X2 → X1 is a mapping and µ1ωµ2 : (Q1×Q2)×X2× (Q1×Q2) →
[0, 1] is defined as follows:

(µ1ωµ2)((q1, q2), a2, (p1, p2)) = µ1(q1, ω(q2, a2), p1) ∧ µ2(q2, a2, p2),

for all (q1, q2), (p1, p2) ∈ Q1 ×Q2, a2 ∈ X2.

(4) M1 ◦M2 = (Q1 ×Q2, (X
Q2

1 ×X2), µ1 ◦ µ2) is called the Wreath product of M1 and
M2, where XQ2

1 = {f : Q2 → X1} and µ1◦µ2 : (Q1×Q2)×(XQ2

1 ×X2)×(Q1×Q2) →
[0, 1] is defined as follows:

(µ1 ◦ µ2)((q1, q2), (f, a2), (p1, p2)) = µ1(q1, f(q2), p1) ∧ µ2(q2, a2, p2),

for all (q1, q2), (p1, p2) ∈ Q1 ×Q2, a2 ∈ X2.
(5) M1⊕M2 = (Q1∪Q2, X1∪X2, µ1⊕µ2) is called the Direct sum of M1 and M2, where

Q1 ∩Q2 = ϕ,X1 ∩X2 = ϕ and µ1⊕µ2 : (Q1 ∪Q2)× (X1 ∪X2)× (Q1 ∪Q2) → [0, 1]
is defined as follows:

(µ1 ⊕ µ2)(q, a, p) =



µ1(q, a, p) if q, p,∈ Q1 and a ∈ X1,

µ2(q, a, p) if q, p,∈ Q2 and a ∈ X2,

1 if either (q, a) ∈ (Q1 ×X1) and p ∈ Q2,

or (q, a) ∈ (Q2 ×X2) and p ∈ Q1,

0 otherwise,

for all q, p ∈ Q1 ∪Q2, a ∈ X1 ∪X2.
(6) M1 + M2 = (Q1 ∪ Q2, X1 ∪ X2, µ1 + µ2) is called the Sum of M1 and M2, where

Q1 ∩Q2 = ϕ,X1 ∩X2 = ϕ and µ1+µ2 : (Q1 ∪Q2)× (X1 ∪X2)× (Q1 ∪Q2) → [0, 1]
is defined as follows:

(µ1 + µ2)(q, a, p) =


µ1(q, a, p) if q, p,∈ Q1 and a ∈ X1,

µ2(q, a, p) if q, p,∈ Q2 and a ∈ X2,

0 otherwise,

for all q, p ∈ Q1 ∪Q2, a ∈ X1 ∪X2.
(7) M1ϖM2 = (Q1 × Q2, X2, µ1ϖµ2) is called the Restricted cascade product of M1

and M2 where ϖ : X2 → X1 is a surjective mapping and µ1ϖµ2 : (Q1 × Q2) ×
X2 × (Q1 ×Q2) → [0, 1] is defined as follows:

(µ1ϖµ2)((q1, q2), a2, (p1, p2)) = µ1(q1, ϖ(a2), p1) ∧ µ2(q2, a2, p2),

for all (q1, q2), (p1, p2) ∈ Q1 ×Q2, a2 ∈ X2.
(8) M1 •M2 = (Q1 ×Q2, X1 ∪X2, µ1 • µ2) is called the Cartesian composition of M1

and M2, where X1∩X2 = ϕ and µ1 •µ2 : (Q1×Q2)×X1∪X2× (Q1×Q2) → [0, 1]
is defined as follows:

(µ1 • µ2)((q1, q2), a, (p1, p2)) =


µ1(q1, a, p1) if a ∈ X1, and q2 = p2

µ2(q2, a, p2) if a ∈ X2, and q1 = p1

0 otherwise,
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for all (q1, q2), (p1, p2) ∈ Q1 ×Q2 and a ∈ X1 ∪X2.

3. PROPERTIES OF RESTRICTED CASCADE PRODUCT WITH ISOMORPHISM

In this section we recall the definition of homomorphism of fuzzy finite state machines
given in [9, 21] and discuss the connection between restricted cascade product and all
other products.

Definition 3.3. [9, 21] Mi = (Qi, Xi, µi) be a FFSMs, i = 1, 2. Let α : Q1 → Q2 and
β : X1 → X2 be two mappings. Then the pair (α, β) is called a fuzzy finite state homo-
morphism, symbolically (α, β) : M1 → M2 , if µ1(q, x, p) ≤ µ2(α(q), β(x), α(p)),∀q, p ∈
Q1, x ∈ X1,

The homomorphism (α, β) : M1 → M2 is called mono-morphism (epimorphism, iso-
morphism), if both the mappings α and β are injective (surjective, bijective respectively).
In case of isomorphism of M1 and M2 we shall denote it by M1

∼= M2.
In the following theorem we show that the restricted cascade product of fuzzy finite state
machines is associative.

Theorem 3.1. Let Mi = (Qi, Xi, µi) be FFSMs, i = 1, 2, 3. Then (M1ϖ
1M2)ϖ

2M3
∼= M1ϖ

3

(M2ϖ
4M3).

Proof. Define α : (Q1×Q2)×Q3 → Q1×(Q2×Q3) by α((q1, q2), q3) = (q1, (q2, q3)) and take
β : X3 → X3 as identity function. Also set ϖ3(x3) = ϖ1(ϖ2(x3)) and ϖ4(x3) = ϖ2(x3).
Then, we have
((µ1ϖ

1µ2)ϖ
2µ3)(((q1, q2), q3), x3, ((p1, p2), p3)) =

= (µ1ϖ
1µ2)((q1, q2), ϖ

2(x3), (p1, p2)) ∧ µ3(q3, x3, p3)

= µ1(q1, ϖ
1(ϖ2(x3)), p1) ∧ µ2(q2, ϖ

2(x3), p2) ∧ µ3(q3, x3, p3)

= µ1(q1, ϖ
3(x3), p1) ∧ µ2(q2, ϖ

4(x3), p2) ∧ µ3(q3, x3, p3)

= µ1(q1, ϖ
3(x3), p1) ∧ (µ2ϖ

4µ3)((q2, q3), x3, (p2, p3))

= (µ1ϖ
3(µ2ϖ

4µ3))((q1, (q2, q3)), x3, (p1, (p2, p3)))

= (µ1ϖ
3(µ2ϖ

4µ3))(α((q1, q2), q3), β(x3), α((p1, p2), p3))

This proves that (M1ϖ
1M2)ϖ

2M3
∼= M1ϖ

3(M2ϖ
4M3). □

Now, authors have established the relation between restricted cascade product and
all other products. Note that the property (3) of the following theorem is established
by Kavikumar et al. [4] for restricted cascade product of switchboard state machines,
Proposition 3.11, and we pointed out that the completeness is not necessary there.

Theorem 3.2. Let M1 = (Q1, X1, µ1) and M2 = (Q2, X2, µ2) be two FFSMs. Then,

(1) M1 ×M2
∼= M1ϖM2

(2) M1ϖM2
∼= M1 ∧M2

(3) M1ωM2
∼= M1ϖM2

(4) M1ϖM2
∼= M1 ◦M2

Proof. Let M1 = (Q1, X1, µ1) and M2 = (Q2, X2, µ2) be two FFSMs.
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(1) Take α : Q1 ×Q2 → Q1 ×Q2 as natural function and define β as identity function
on X2. Also set ϖ(x2) = x1. Then,

(µ1 × µ2)((q1, q2), (x1, x2), (p1, p2)) = µ1(q1, x1, p1) ∧ µ2(q2, x2, p2)

= µ1(q1, ϖ(x2), p1) ∧ µ2(q2, x2, p2)

= (µ1ϖµ2)((q1, q2), x2, (p1, p2))

= (µ1ϖµ2)(α((q1, q2)), β(x2), α((p1, p2)))

(2) Take α : Q1 ×Q2 → Q1 ×Q2 as natural function and define β as identity function
on X . Also set ϖ(x) = x. Then,

(µ1ϖµ2)((q1, q2), x, (p1, p2)) = µ1(q1, ϖ(x), p1) ∧ µ2(q2, x, p2)

= µ1(q1, x, p1) ∧ µ2(q2, x, p2)

= (µ1 ∧ µ2)((q1, q2)), x, (p1, p2))

= (µ1 ∧ µ2)(α((q1, q2)), β(x), α((p1, p2)))

(3) Define α : Q1×Q2 → Q1×Q2 as natural function and define β as identity function
on X2. Also set ω(q2, x2) = ϖ(x2) Then,

(µ1ωµ2)((q1, q2)), x2, (p1, p2)) = µ1(q1, ω(q2, x2), p1) ∧ µ2(q2, x2, p2)

= µ1(q1, ϖ(x2), p1) ∧ µ2(q2, x2, p2)

= (µ1ϖµ2)((q1, q2), x2, (p1, p2))

= (µ1ϖµ2)(α((q1, q2)), β(x2), α((p1, p2)))

(4) Define α : Q1×Q2 → Q1×Q2 as natural function and define β : X2 → (XQ2

1 ×X2)
by β(x2) = (f, x2). Also set f(q2) = ϖ(x2) Then,

(µ1ϖµ2)((q1, q2), x2, (p1, p2)) = µ1(q1, ϖ(x2), p1) ∧ µ2(q2, x2, p2)

= µ1(q1, f(q2), p1) ∧ µ2(q2, x2, p2)

= (µ1 ◦ µ2)((q1, q2)), (f, x2), (p1, p2))

= (µ1 ◦ µ2)(α((q1, q2)), β(x2), α((p1, p2)))

□

Theorem 3.3. Let Mi = (Qi, Xi, µi) be FFSMs, i = 1, 2, 3. Then M1 × (M2ϖ
1M3) ∼=

M2ϖ
2(M1 ×M3)

Proof. Define α : Q1 × (Q2 ×Q3) → (Q1 ×Q2)×Q3 by α((q1(q2, q3))) = (q2, (q1, q3)) and
take β as identity function on X1 ×X3. Also set ϖ2(x1, x3) = ϖ1(x3). Then,

(µ1 × (µ2ϖ
1µ3))((q1, (q2, q3)), (x1, x3), (p1, (p2, p3))) =

= µ1(q1, x1, p1) ∧ (µ2ϖ
1µ3)((q2, q3), x3, (p2, p3))

= µ1(q1, x1, p1) ∧ µ2(q2, ϖ
1(x3), p3) ∧ µ3(q3, x3, p3)

= µ2(q2, ϖ
1(x3), p3) ∧ µ1(q1, x1, p1) ∧ µ3(q3, x3, p3)

= µ2(q2, ϖ
1(x3), p3) ∧ (µ1 × µ3)((q1, q3), (x1, x3), (p1, p3))

= µ2(q2, ϖ
2(x1, x3), p3) ∧ (µ1 × µ3)((q1, q3), (x1, x3), (p1, p3))

= (µ2ϖ
2(µ1 × µ3))((q2, (q1, q3)), (x1, x3), (p2, (p1, p3)))

= (µ2ϖ
2(µ1 × µ3))(α((q1, (q2, q3))), β(x1, x3), α((p1, (p2, p3))))

□
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Theorem 3.4. Let Mi = (Qi, Xi, µi) be FFSMs, i = 1, 2, 3. Then

(1) M1ϖ
1(M2 +M3) ∼= (M1ϖ

2M2) + (M1ϖ
3M3)

(2) M1ϖ
1(M2 ⊕M3) ∼= (M1ϖ

2M2)⊕ (M1ϖ
3M3)

(3) M1ϖ
1(M2 •M3) ∼= (M1ϖ

2M2) • (M1ϖ
3M3)

Proof. Let M1,M2,M3 be FFSMs.

(1) Define α : (Q1 × (Q2 ∪ Q3) → (Q1 × Q2) ∪ (Q1 × Q3) by α((q1, q)) = (q1, q) and
take β as identity function on X2 ∪X3. Given ϖ1 : X2 ∪X3 → X1, ϖ2 : X2 → X1

and ϖ3 : X3 → X1 denote ϖ2(x) = ϖ1(x) and ϖ3(x) = ϖ1(x). Then,
(µ1ϖ

1(µ2 + µ3))((q1, q), (x1, x), (p1, p)) =

= µ1(q1, ϖ
1(x), p1) ∧ (µ2 + µ3)(q, x, p)

=


µ1(q1, ϖ

1(x), p1) ∧ µ2(q, x, p) if q, p,∈ Q2 and x ∈ X2

µ1(q1, ϖ
1(x), p1) ∧ µ3(q, x, p) if q, p,∈ Q3 and x ∈ X3

0 otherwise

=


µ1(q1, ϖ

2(x), p1) ∧ µ2(q, x, p) if q, p,∈ Q2 and x ∈ X2

µ1(q1, ϖ
3(x), p1) ∧ µ3(q, x, p) if q, p,∈ Q3 and x ∈ X3

0 otherwise

=


(µ1ϖ

2µ2)((q1, q), (x1, x), (p1, p)) if q, p,∈ Q2 and x ∈ X2

(µ1ϖ
3µ3)((q1, q), (x1, x), (p1, p)) if q, p,∈ Q3 and x ∈ X3

0 otherwise

= ((µ1ϖ
2µ2) + (µ1ϖ

3µ3))((q1, q), x, (p1, p))

= ((µ1ϖ
2µ2) + (µ1ϖ

3µ3))(α((q1, q)), β(x), α((p1, p)))

(2) Similar to (1)
(3) Define α : (Q1 × (Q2 × Q3) → (Q1 × Q2) × (Q1 × Q3) by α((q1, (q2, q3))) =

((q1, q3), (q2, q3)) and take β as identity function on X2∪X3. Given ϖ1 : X2∪X3 →
X1, ϖ2 : X2 → X1 and ϖ3 : X3 → X1 denote ϖ2(x) = ϖ1(x) and ϖ3(x) = ϖ1(x).
Then, (µ1ϖ

1(µ2 • µ3))((q1, (q2, q3)), (x1, x), (p1, (p2, p3))) =

= µ1(q1, ϖ
1(x), p1) ∧ (µ2 • µ3)((q2, q3), x, (p2, p3))

=


µ1(q1, ϖ

1(x), p1) ∧ µ2(q2, x, p2) if x ∈ X2 and q3 = p3,

µ1(q1, ϖ
1(x), p1) ∧ µ3(q3, x, p3) if x ∈ X3 and q2 = p2,

0 otherwise

=


µ1(q1, ϖ

2(x), p1) ∧ µ2(q2, x, p2) if x ∈ X2 and q3 = p3,

µ1(q1, ϖ
3(x), p1) ∧ µ3(q3, x, p3) if x ∈ X3 and q2 = p2,

0 otherwise

=


(µ1ϖ

2µ2)((q1, q2), (x1, x), (p1, p2)) if x ∈ X2 and q3 = p3

(µ1ϖ
3µ3)((q1, q3), (x1, x), (p1, p3)) if x ∈ X3 and q2 = p2,

0 otherwise

= ((µ1ϖ
2µ2) • (µ1ϖ

3µ3))(((q1, q2), (q1, q3)), (x1, x), ((p1, p2), (p1, p3)))

= ((µ1ϖ
2µ2) + (µ1ϖ

3µ3))(α((q1, (q2, q3))), β(x), α((p1, (p2, p3))))

□
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4. COVERING PROPERTIES OF THE RESTRICTED CASCADE PRODUCT

In this section we first recall the concept of covering given in [9, 21] and proved rela-
tions between restricted cascade product and all other products.

Definition 4.4. [9, 21] Mi = (Qi, Xi, µi) be a FFSMs, i = 1, 2. Let η : Q2 → Q1 be surjective
partial function and let ξ : X1 → X2 be a function. Extend ξ to a function ξ∗ of X∗

1 into
X∗

2 by ξ∗(λ) = λ and ∀x ∈ X∗
1 , ξ

∗(x) = ξ(x1)ξ(x2) . . . ξ(xn), where x = x1x2 . . . xn and
xi ∈ X1, i = 1, 2, . . . , n. Then the pair (η, ξ) is called a covering of M1 by M2 , written
as M1 ≤ M2, if and only if ∀p2, q2 belongs to the domain of η and x1 ∈ X∗

1 , we have
µ1(η(q2), x1, η(p2)) ≤ µ2(q2, ξ(x1), p2).

Note that the properties (1) and (4) of the following theorem are established by Kaviku-
mar et al. [4] for restricted cascade product of switchboard state machine in Theorem 3.19.

Theorem 4.5. Let M1 = (Q1, X1, µ1) and M2 = (Q2, X2, µ2) be two FFSMs. Then

(1) M1ϖM2 ≤ M1 ×M2

(2) M1ϖM2 ≤ M1 ∧M2

(3) M1ϖM2 ≤ M1ωM2

(4) M1ϖM2 ≤ M1 ◦M2

Proof. Let M1 = (Q1, X1, µ1) and M2 = (Q2, X2, µ2) be two FFSMs.

(1) Let η and ξ be natural functions and set ϖ(x2) = x2. Then for any (q1, q2), (p1, p2)
belongs to the domain of η and (x1, x2) ∈ X1 ×X2, we have

(µ1ϖµ2)(η((q1, q2)), x2, η((p1, p2))) = (µ1ϖµ2)((q1, q2), x2, (p1, p2))

= µ1(q1, ϖ(x2), p1) ∧ µ2(q2, x2, p2)

= µ1(q1, x1, p1) ∧ µ2(q2, x2, p2)

= (µ1 × µ2)((q1, q2), (x1, x2), (p1, p2))

= (µ1 × µ2)((q1, q2), ξ((x1, x2)), (p1, p2))

(2) Let η be natural function and ξ be identity function and set ϖ(x) = x. Then for
any (q1, q2), (p1, p2) belongs to the domain of η and x ∈ X , we have

(µ1ϖµ2)(η((q1, q2)), x, η((p1, p2))) = (µ1ϖµ2)((q1, q2), x, (p1, p2))

= µ1(q1, ϖ(x), p1) ∧ µ2(q2, x, p2)

= µ1(q1, x, p1) ∧ µ2(q2, x, p2)

= (µ1 ∧ µ2)((q1, q2), x, (p1, p2))

= (µ1 ∧ µ2)((q1, q2), ξ(x), (p1, p2))

(3) We have Let η be natural function and ξ be identity function and set ω(q2, x2) =
ϖ(x2). Then for any (q1, q2), (p1, p2) belongs to the domain of η and x2 ∈ X2, we
have

(µ1ϖµ2)(η((q1, q2)), x2, η((p1, p2))) = (µ1ϖµ2)((q1, q2), x2, (p1, p2))

= µ1(q1, ϖ(x2), p1) ∧ µ2(q2, x2, p2)

= µ1(q1, ω(q2, x2), p1) ∧ µ2(q2, x2, p2)

= (µ1ωµ2)((q1, q2)), x2, (p1, p2))

= (µ1ωµ2)((q1, q2), ξ(x2), (p1, p2))
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(4) Let η be natural function and ξ : X2 → XQ2

1 be function such that ξ(x2) = (f, x2).
Set ϖ(x2) = f(q2). Then for any (q1, q2), (p1, p2) belongs to the domain of η and
x ∈ X , we have

(µ1ϖµ2)(η((q1, q2)), x2, η((p1, p2))) = (µ1ϖµ2)((q1, q2), x2, (p1, p2))

= µ1(q1, ϖ(x2), p1) ∧ µ2(q2, x2, p2)

= µ1(q1, f(q2), p1) ∧ µ2(q2, x2, p2)

= (µ1 ◦ µ2)((q1, q2), (f, x2), (p1, p2))

= (µ1 ◦ µ2)((q1, q2), ξ(x2), (p1, p2))

□

Theorem 4.6. Let Mi = (Qi, Xi, µi) be FFSMs, i = 1, 2, 3 such that M1 ≤ M2. Then
M1ϖ

1M3 ≤ M2ϖ
2M3

Proof. Define η′ : (Q2 × Q3) → (Q1 × Q3) by η′((q2, q3)) = (η(q2), q3)) and ξ′ as identity
map on X3. Set ϖ2(x3) = ξ(ϖ1(x3)) on X3. Then for all (q2, q3), (p2, p3) belongs to the
domain of η′ and for all x3 ∈ X3, we have

(µ1ϖ
1µ3)(η

′((q2, q3)), x3, η
′((p2, p3))) = (µ1ϖ

1µ3)((η(q2), q3)), x3, (η(p2), p3)))

= µ1(η(q2), ϖ
1(x3), η(p2)) ∧ µ3(q3, x3, p3)

≤ µ2(q2, ξ(ϖ
1(x3)), p2) ∧ µ3(q3, x3, p3), SinceM1≤M2

= µ2(q2, ϖ
2(x3), p2) ∧ µ3(q3, x3, p3)

= (µ2ϖ
2µ3)((q2, q3), x3, (p2, p3))

= (µ2ϖ
2µ3)((q2, q3), ξ

′(x3), (p2, p3))

□

5. CONCLUSION

With the motivation of the concept of restricted product for fuzzy finite switchboard
state machines [8], here in the paper the authors have introduced it for fuzzy finite state
machines and pointed out that the condition of completeness is not necessary. The alge-
braic properties in terms of homomorphism and covering for restricted cascade product
are also established. Similar to algebraic properties of other products of fuzzy finite state
machines reported in Malik et al. [18, 19]; Mordeson and Malik [21]; Kim et al. [9] and
Kumbhojkar and Chaudhari [11], the completeness does not hamper any result of present
paper for the product of restricted cascade fuzzy finite state machines.

The concepts of homomorphism and covering plays vital role in establishing languages
recognized by fuzzy finite automata [11, 21], the algebraic properties of restricted cascade
product that we have established in this paper will help in unfolding more of these ca-
pabilities. In Theorem 3.2 it is established that restricted cascade product of two FFSMs
is isomorphic to their other products, so structurally it can singly do the work of others,
whereas Theorem 4.5 indicated that the direct, restricted direct, cascade and wreath prod-
ucts subsumes the restricted cascade products. The exchange property of cross product of
two FFSMs with their restricted cascade product is discussed in the Theorem 3.3. In the
Theorem 3.4 the distributive properties of restricted cascade product with another prod-
ucts like sum, direct sum and cartesian product are established and monotone property
for covering is established in Theorem 3.5.
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