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A Jensen-type inequality in the framework of 2-convex
systems

GEORGE PRECUPESCU

ABSTRACT. Let Ag be the solution set of the system z1+z2+...+xn = ns, e(x1)+e(z2)+. .. +e(zn) = nk,
1 > x2 > ... > xpn, Where e : I — Ris a (fully extended) strictly convex or concave function. We call such a
system 2—convex and prove the existence of two special points w, {2 € Ag such that for all z € Ag and for all
f :+ I — R strictly 3-convex with respect to e, the following inequality holds: Vo € Ag = Ey(w) < Ef(z) <
E;(Q) where E¢(x) = f(x1)+ f(x2) +. ..+ f(2n). This may be seen as a broader version of the equal variable
method of V. Cirtoaje. It follows that w and 2 have at most three distinct components and we also give a detailed
analysis of their structure.

1. INTRODUCTION
Let I C R be an interval. For any function f : I — R we define E; : I — R by
E¢(z) = f(x1) + f(z2) + ...+ f(zn) Yo = (21,...,2,) € I" (1.1)

Ifsel, s=(s,...,s)and A = {(z1,...,2,) € I"|x1 + 22 + ... + 2, = ns} then the
well-known Jensen’s inequality states that for any convex function f : I — R

.Z’EAéEf(QS) ZEf(§) (12)

Our main objective is to get inequalities of type 1.2 when A is the solution set of a
system defined by two equations (not only one, as in the above case of Jensen’s inequality).
For this, we define here both a general type of two equations system (2-convex systems)
and a suitable class of functions f that satisfy the corresponding inequalities of type 1.2.

Such extensions of Jensen inequality have been previously studied by V. Cirtoaje in [2]
and [3] under the name of equal variable method. See also [4] for many applications and
examples of the same author. Our main result 3.5 is a direct generalization of V. Cirtoaje
results to a broader type of systems (see Remark 1.2).

For A C R we denote by 4 and A the closure set and, respectively, the interior set of A.

Definition 1.1. Let I C R be an interval. A continuous, convex functione : I — Ris called
fully extended on I if it can no more be extended by continuity at any point of I \ I.

Letm = inf(I) € R = RU {+oo}, M = sup(]) € Rand e : I — R fully extended on
1. Using known properties of convex functions, we infer from the above definition that, if
m ¢ I, then either m = —oo, or m is finite but lim,_.,, e(z) = +oo (and similarly for M).

1 +2x0+...+x, =nS
Definition 1.2. A 2-convex system is a system of the form ¢ e(z1)+e(z2)+... + e(z,)=nk
T1 2222 ...2 %y
where n > 3, e : I — Ris a continuous, strictly convex, fully extended on I function and
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s,k € R, s € I. We also denote it by S(e, s, k,n) and the solution set by As. We consis-
tently use the notation I = Is and m = inf(Is) € R, M = sup(Ig) € R.

Remark 1.1. We also consider 2-concave systems S(e, s, k, n) (for which the function e is
strictly concave). For each system S(e, s, k, n) we associate a dual one S’(—e, s, —k,n) and,
clearly, Ags = Ag. The dual of a 2-concave system is a 2-convex system (and vice versa).

Remark 1.2. V. Cirtoaje’s original theorems correspond to the particular case of a system
S(e, s, k,n) where e is of the form e(x) = z” or e(z) = In(z) and Ig is an appropriate
interval of the type [0, c0), (0, c0) or R (see [2], [3] ).

Definition 1.3. Let f,e : I C R — R be to functions continuous on I and differentiable
on I. We say that f is (strictly) 3—convex with respect to e if there exists a (strictly) convex
function g : J — Rwith e/(I) C Jsuch that f' =goe on 1.

Remark 1.3. In the particular case of e(z) = z? we get the definition of the usual 3-convex
functions (in an equivalent form). See for example [8].

Remark 1.4. If f is 3-convex with respect to ¢, then it is also 3-convex with respect to
h = —e. Indeed, we know that there exists a function g : J — R strictly convex with
e’(fg) C Jsuchthat f/ =goe'. Letgs : —J = R, ¢1(y) = g(—y) and it’s clear that g; is
also strictly convex and f'(z) = g(e/(z)) = g1(—¢€'(x)) = g1(h'(x)), hence f' = g1 o 1.

Bi(x)=z;+...+x,
sums). Using these notations, we can define the classical majorization relation < like this:
T, =T
v ey D@ =T0)
Tz(l) S ﬂ(y) Vi e {1723"'7717 1}

Forz € R"and 1 < 7 < n we define { (the top and bottom

(for any two decreasing n-tuples z, ).

Remark 1.5. The above condition T;(z) < T;(y) Vi € {1,2,...,n—1} can be replaced with:
Ti(x) < Tily) Vie{l,2...p—1)
Bi(x) > Bi(y) Vie{p+1,...,n}
because for p + 1 <i < nwehave B;(z) > B;(y) & Tn(z) — Ti—1(z) > T.(y) — Ti—1(y) &

T;_1(z) < T;—1(y). Hence T;(z) < T;(y) Vi € {p,...,n—1} and these inequalities, together
with T;(z) < Ti(y) Vi € {1,2,...,p— 1}, giveus T;(z) < T;(y) Vi € {1,2,...,n — 1}.

Iped{l,2,...,n} suchthat{

We state here the classical result of Hardy-Littlewood-Polya (HLP theorem — see [5]),
also called the majorization inequality or Karamata inequality (see [6]):

Theorem 1.1. (HLP) Let f : I C R — R be a continuous convex function and x,y € I™. Then
r<y= Ef(r) < Ep(y)
Moreover, if f is strictly convex, then the equality occurs if and only if x = y.
In the following, we will use this theorem extensively and, typically, the justification
for the majorization step = < y will be based on the Remark 1.5.
2. PRELIMINARY RESULTS

Lemma 2.1. Let S(e, s, k,n) be a non-empty 2—convex system, m = inf(Ig), M = sup(Ig).

(a) If M ¢ Ig then there exists an My € Ig such that ¥(x1,...,z,) € Ag = x1 < My
(b) If m ¢ Ig then there exists an mg € Ig such that¥(z1,...,z,) € As = x, > My
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Proof. (a) Case 1. M is finite, hence lim;_, s e(t) = 4+00. We consider two subcases.

Subcase 1.1 m is finite. First, we will show that e is bounded below on Is.

Assume m € Ig. Because lim;_, s e(t) = 400 we find ane > 0 with e(t) > 1Vt € (M —
€, M). Let C = infycpm ar—c) €(t). Because e is continuous on the compact set [m, M — ] it
follows that C' € R. Thus e(t) > Cy = min{1,C} on Ig.

Assume now m ¢ Ig. Because lim;_,,, e(t) = lim;_, ps e(t) = +oo there is an € > 0 with
e(t) > 1vt € (m,m+e)U(M —e, M) (and m +¢e < M —¢). Let C = inf,¢p 4 pr—o) €(t) sO
C € Rand e(t) > Cyp = min{1,C} on Ig. Thus, e is bounded below on Ig in all situations.

Now, since lim;_, s e(t) = +oo there is an My < M such that e(t) > nk — (n — 1)Cy
YVt € (Mo, M). But e(z1) = nk — [e(x2) + ... + e(zn)] < nk — (n—1)Cp and so z1 < M.

Subcase 1.2 m = —oo. This subcase can be reduced to the previous one. Observe first

thatx, = ns—(x1+... +xp_1) > ns— (n — H)M def mg and, obviously, the system

’(e|[ My S k,n) has Ag = Ag. But for S we can apply the subcase 1.1 because my is
mo,

finite etc.

Case 2. M = +oo. Fixt; > s > to > m and consider the support lines given by
1(t) = aat + B, p2(t) = aot + P2 where oy = €/ (t1), az = €/, (t2). From the strict
convexity of e we infer that oy > az and e(t) > ¢1(), e(t) > p2(t) ¥t € R. Thus,

nk = e(x1) + [e(z2) + ... +e(xn)] > p1(z1) + [p2(22) + .. + p2(20)]
=am+ B/ +as(ra+ ...+ x,)+(n—1)f =a1x1 + B1 + as(ns —x1) + (n —1)B2

Hence, nk > z1(ag — ag) + C where C' = nsas + 51 + (n — 1)z and so 21 < M def nk-C

ar—az’

(b) The proof is similar to (a). d

Theorem 2.2. Let S(e, s, k,n) be a 2—convex system. Then

(a) There exists a compact interval I = [mgo, Mo| C Ig such that Ag C Ij.
(b) As is a compact set.

Proof. If Ag is empty the theorem is trivially true, hence we can suppose in the following
that Ag is non-empty. If M € I we choose My = M. If not, we use Lemma 2.1 to find
such an M; and for the left side we proceed similarly. Next, we write Ag as A1 N A3 N
FEi...NE,_1 where

E,={reR"xpy1 —x, <0} Vi<p<n-1

Ay ={x e R"xy + 22+ ...z, = ns}

Ay ={x € IJle(x1) + e(z2) + ... e(xn) = nk}
and, because all these sets are closed, we conclude that Ag is a compact set. O

Remark 2.6. Hence, for every system S(e, s, k,n) we can find an equivalent “compact”
system So(e|r, , 8, k,n) with Is, = [mo, Mo] C Is and Ag, = Ag.

3. MAIN RESULTS

Lemma 3.2. Let S(e, s, k, 3) be a non-empty 2—convex system and x,y € Ag such that y; > .
Then

Y1 > X1 2 T2 > Y2 2> Y3 > X3

Proof. We only show that x5 > y, and y3 > x3, the other inequalities being obvious. If
x3 > ys then, using the fact that x; < y1, we deduce that z < y (strictly majorization)
and from HLP theorem we get e(z1) + e(z2) + e(z3) < e(y1) + e(y2) + e(y3) so 3k < 3k, a
contradiction. Thus y3 > x3. Next, if z2 < yo, then using z; < y; we infer that z; + 22 <
y1 + Y2 50 ¢ < y (strictly majorization) and applying HLP theorem we get a contradiction
exactly as above. So we also have z3 > ys. ([l
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The next theorem is an extension of an interesting result from [1] (see also [9], [7], [8]).

Theorem 3.3. Let S(e, s, k, 3) be a non-empty 2-convex system with e € C*(Ig)and f : Is — R
strictly 3—convex with respect to e. Then

Vr,y € As, w1 <y1 = f(z1) + f(z2) + f(23) < f(y1) + fy2) + f(ys)

Proof. f is strictly 3-convex with respect to e and so there exists g : J — R strictly convex
with ¢/(Ig) C J such that f' = g o ¢’. According to Lemma 3.2, if y; > z; then y; > 21 >
2 > Y2 > y3 > xg and, for enough large integers p > py, we define the intervals

1 1 o
AL = 21,51 — EL Ag = [y, x2), A = [23 + ];,yz] Cls

Because ¢’ is continuous strictly increasing and AY, Ay, A% are compact sets with disjoint
interiors we get also that By = ¢/(A}), By = ¢/(As), BY = ¢/(A}) are compact intervals
with disjoint interiors and their ordering on x-axis is exactly that of A}, Ay, A%.

Next, we consider the linear function L : R — R, L(r) = a+ fr that agree with g at the
endpoints of By and, because g is convex, we have

g(r) > L(r)Vr € By U BY (3.3)
g(r) < L(r)Vr € By
Since g is strictly convex we also have strict versions of these inequalities, for example
g(r) < L(r) ¥r € By (3.4)
Using 3.3 we infer that

g /Azfg(e’(t))dt—k/Ag g(e'(t))dt>/A§)L(e’(t))dt+/Ag Le'@t)dt < EL (35)
But g(/(t) = f'(t) s0 BY = f(y1 — 3) = f(x1) + f(ys) — (w3 + 1) and because f is
continuous on g it follows that

lim EY = f(y1) — f(z1) + f(y3) — f(x3)

p—r o0

On the other hand, E% = /
A7

[ + Be (t)]dt + / [ + Bé€’ (t)]dt

A%
= a(l(A}) + 1(45)) + Ble(yr — %) —e(z1)) + Ble(ys) — (s + %))

T1+ T2 +23 =Y +Y2+ Y3

and using the continuity of e and the initial
& Y {em) + efea) + eles) = ely) + elye) + elys)

conditions, we infer that
Jim By = a(yr — 21 +ys — xs) + fle(yn) — e(er) +elys) — e(x3))
= a(z2 — y2) + Ble(r2) — e(y2))
= al(A2) + B(e(x2) — e(y2))
= / L(€'(t))dt
As

But using 3.4 we can write further

/ L(e'(t))dt > / o) = [ F®)dt= fle2) — Flun)
As Az Az
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Thus, passing to the limit in 3.5 we get lim,,_, o EY > lim,_,, E5, thatis
Fn) = S + ) = Slaa) = [ L @)t > fla) = flw2)
Az

and the conclusion follows. |
Theorem 3.4. Let S(e, s, k, 3) be a non-empty 2—convex system and a point (zo, yo, 20) € As.
(a) If M > zo > yo > 2o > m then there is x(, € Ig, x(, > x¢ such that
Vo € (zo, ) y, 2 € Is with (z,y,2) € Ag
(b) If M > zg > yo > zo > m then there exists z, € Ig, z{ < zo such that
Vz € (20, 20) 3x,y € Is with (x,y,2) € Ag
where m = inf(Ig), M = sup(Ig).

Proof. (a) Let ¢, = min(M — zo,y0 — 20). We see that M > z¢ +¢ > % > m for all
e € [0, 4] and thus we can define the function R : [0,¢] — R given by

R(E):e(xo+s)+e<y(]+;o_€) +e<y()+§0_€>

By Jensen’s inequality we get R(0) = e(zo) + 2e (L422) < e(zo) + e(yo) + e(z0) = 3k
(the inequality being strict because yo # zo) and, using the continuity of R, we can fix an
0 < g9 < g such that R(e) < 3k Ve € [0, &].

Now, for every fixed 0 < e < gy we define I. = [0, #2===] and observe that for § € I.
wehave M > zo+e>yo—e—02> 2 +60 >m. Let H. : I. = R given by

H.(0)=e(xo+e)+e(yo—e—0)+e(zo+0)
and using HLP theorem for the strictly convex function e we get
H(0) = e(zo +€) + e(yo — ) + e(20) > e(zo) + e(yo) + e(z0) = 3k
(the inequality being strict because ¢ > 0). On the other hand,

1. (yo—;o—f) :e(w0+g)+e(yo+2%—€)+e(m+2%—f) _ R(e) < 3k

and using the continuity of H, there exists § = 6. € I, with H.(¢) = 3k, thatis
(xo+e,y0—e—0,20+0) € Ag

and if we define z(, = x¢ + ¢ the conclusion follows.

(b) (sketch) As above, let ¢, = min(zy — m,zo — yo) and R : [0,5] — R given by
R(e) = e (Zotiote) 4 ¢ (Zodhote) 4 ¢ (25 — €). It follows that R(0) < 3k and so we can fix
an 0 < gg < g such that R(e) < 3k Ve € [0,&0]. For every fixed 0 < ¢ < gy we define

I = [0,2=¥==] and let H. : I. -+ R, H.(0) =e(zo—0)+e(yo+¢c+0)+e(z0—¢).

As above, we get H.(0) > 3k, H.(*™=%>==) = R(e) < 3k. Using the continuity of H.

there exists 0 = 0. € I. with H.(6) = 3k, thatis (zo — 0,y0 + £+ 0,20 — €) € Ag etc. O

Corollary 3.1. Let S(e, s, k,3) be a non-empty 2—convex system with e € CY(Ig) and m =
inf(Ig), M = sup(Ig). Let f : Is — R be a strictly 3—convex function with respect to e.

(a) If Ey has a maximum value at the point (ci1, c2, c3) € Ag then ¢y = M or ¢ = cs.

(b) If Ey has a minimum value at the point (c1, c2, c3) € Ag then ¢y = co 0r c3 = m.
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Proof. We prove only (a), the (b) being similar. Assume that M > ¢; > ¢2 > ¢3. Then,
according to the Theorem 3.4, there exist solutions (¢}, 5, ¢5) € Ag with ¢} > ¢;. On the

other hand, by Theorem 3.3, it follows that E;(¢’) > E¢(c) and so we get a contradiction.
]

Theorem 3.5. Let S(e, s, k, n) be a non-empty 2-convex (or 2-concave) system with e € C*(Is).
If m = inf(Is), M = sup(Ig) then
(a) There is an unique point Q € Ag of the form (M,...,M ,a,b,...,b)with M > a > b
S——— S~——
0<r<n-—2 n—r—1
and an unique point w € Ag of the form (a,...,a,b, m,...,m )witha > b > m.
N—— N——
n—t—1 0<t<n—2
(b) If f : Is — Ris strictly 3—convex with respect to e then
Ve € Ag = Ef(w) < Ef(a:) < Ef(Q)
The equality occurs if and only if x = w (on left) or x = Q (on right).

Proof. We will prove the theorem first for the case of a 2-convex system.

(a) For the existence part we observe first that there exists at least a function fj : s — R
strictly 3-convex with respect to e. Indeed, it’s easy to see that, for example, fo(t) =
ftto (€/(s))?ds is such a function. For this particular function f, we consider Fy, : As — R
(defined as in 1.1) and, because E, is continuous on the compact set Ag, we get a point
c € Ag for which Ey (c) = supy, Fy,. The ideea is to show that c is exactly of the
desired form ( M,..., M ,a,b,...,b) with M > a > b and for this is enough to prove that

—— ——

0<r<n-—-2 n—r—1
for every 1 < i < j < k < n the triple (¢;, ¢j, ¢x) has ¢, = M or ¢; = ¢,. We consider the 3
variable system S’ (e, s’, k', 3) given by

Ty +xh+ah=c +cj+cp =38

e(@)) +e(xy) +e(x3) = e(ci) + e(c;) +e(er) = 3K

x) > xh >
and we observe that (¢;, ¢;, cy) € Agr must also maximize the sum fo(x]) + fo(xh) + fo(25)
over Ag: because, assuming the contrary, we get an (x}, z5, z5) € Ags such that

fo(@) + fo(ah) + fo(x3) > folci) + foles) + foler)

and if we consider the n-tuple ¢’ constructed from cby replacing (c;, ¢;, cx) with (2, 5, %)

(and, if necessary, reordering it) it follows that E, (¢') > Ey, (c), impossible. Thus, we can

apply Corollary 3.1 to (¢;, ¢;, cx) € Ag and conclude that ¢; = M or ¢; = ¢4, as desired.
Now, for the uniqueness part, let ¢, ¢’ € Ag of the same form

/! I / /
c=(M,...,.M  a,b,...;0), ¢ =(M,...,.M ,d' b, ...0)
——— —— —_——— ———
0<r<n-2 n—r—1 0<r <n—-2 n—1r —1
Assuming r > 1/, we consider first the case r = 7/, hence ¢ = (a,b...,b), ¢/ = (d/,0"...,b).

Ti(c) > Th(c')
Bi(c) < Bi(¢)) V2<i<n
Remark 1.5, ¢ = ¢. If ¢ # ¢’ then ¢ > ¢’ and, applying HLP theorem to the strictly convex
function e, we get the contradiction kn > kn.
Consider now the case r > 7’ and write the equality
rM+a+(n—r—10b=r"M+d+n-—r" -1
as (r—r"—1)(M =V)+ (M —d)+(a—=b)=(n—r)( —b)

If, for example, a > o’ then b < ¥’ and is clear that { . Thus, by
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Ti(c) > T;(d) V1i<i<r
Bi(c) < Bi(¢)) Vr+2<i<n
hence, by Remark 1.5, ¢ = ¢/. If ¢ # ¢/ then ¢ - ¢’ and, applying HLP theorem to the strictly
convex function e, we get again the contradiction kn > kn.

Therefore, there is a unique point {2 = ¢ of de desired form and the w case is similar.

(b) For this, there is practically nothing left to prove. Let f : Is — R be an arbitrarily
strictly 3—convex with respect to e. Because £y : Ag — R is continuous on the compact
set Ag, we get a point ¢ € Ag for which E¢(c) = sup,, E. And, exactly as above for fj,
we find that ¢ must be of the form (M, ..., M, a,b,...,b). On the other hand, according to
(a), there is an unique point {2 of that form so we must have ¢ = 2. For the minimum case
the proof is similar.

Thus, we have proved (a) and (b) for the case of a 2-convex system. If S is 2-concave,
then we consider the dual 2—convex system S’(h, s,k’,n) where h = —e, ¥’ = —k and,
clearly, As = Ag/. On the other hand, according to Remark 1.4, f is also 3-convex with
respect to h and so, by the 2-convex case, we get the unique points w, {2 € Ag: = Ag of the
desired form, for which E(w) < Ey(z) < Ef(Q) Vo € Ag and the conclusion follows. O

Since the left side is clearly positive, we get b < b’ and so {

Remark 3.7. If M ¢ Ig then r = 0 and (2 is of the simpler form 2 = (a,b...,b). Similarly,
if m ¢ Is thent = 0 and w gets the simpler form w = (a,...,a,b). We can see that, in
general, to get the exact value of 2 (for example) we have to solve a two equations system
with a, b as unknowns but also with that extra parameter r. But, as we will next see, this
r can be estimated in advance and this fact, obviously, simplify solving the above system.

From now on we will assume I's compact, hence I's = [m, M].

Lemma 3.3. Let I = [m, M| a compact interval, s € [ and C = {x € I"|x1+22+. .. 2, = ns}.
Then 3u € C of the form i = (M,...M,0,m,...m) where 0 <lyp <n—1land 0 € [m,M).
——— S —

lo ’I’L*lofl

Proof. Let A = 7= € (0,1),lo = [nA] € {0,...n — 1} and 0 = ns — oM — (n — lop — 1)m.

A straightforward calculation give us 8 = m + {nA\}(M — m) € [m, M) and, finally, we
define @ < (M,...M,0,m,...m) € C. Next, if v/ = (M,...M,0/,m,...m) € C with
l lo—1 i -1
0 n —to — 0 n—ty—
0<ly<n-—1land @ € [m,M)then ' =ns—I{M — (n— I — 1)m and we immediately
0’ —m

get nA — I = == € [0,1) so Iy = [nA] = Iy, hence % is unique. O

Remark 3.8. If Ag # () then k € [e(s), k], where k =4 E(@) and E(z) = 23" | e(z;).
Indeed, by Jensen inequality, E(Z) > E(5) and since @ = & = E(z) < E(u) (by HLP).
Moreover, if k = k then Ag = {@}. Indeed, we get lpe(M) +e(8) + (n—lo — 1)e(m) = nk
so E(u) = kand @ € As. Now, for an arbitrary z = (21,...,2,) € Ag weseethatz < @
and since E(z) = k = k = E(@i) we deduce from HLP inequality applied to the strictly
convex function e that Z = @. Thus Ag = {@}. Similarly, if £k = e(s) then Ag = {5}.

pe D +(n=p)e(By) 5 ) < )

pet)+mpe(m) g g VR 0p %

are given by pM + (n — p)d, = pyp + (n — p)m = ns. By a straightforward calculation
wegety >y > ... > Y1 >85> > 02 > ... > J,_1 and is also easy to verify that
dp € [m, s) (if p < lp), respectively v, € (s, M| (if p > ly), hence k, is well defined.

Next, forevery 1 < p < n—1we define k, = {
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Lemma 3.4. Under the above notations we have
@e(s) <k <..<k,<k iflg >1
{(b)i%zkloﬂ > > ko1 >e(s) iflg+1<n—1

Proof. (a) For 1 < p < p+ 1 <y we have the chain of majorization inequalities

($,...,8) < (M,...M,dp,...0p) < (M,...M,0p41,...0p41) < (M,...M,0,m,...m) =10
p n-—p P n—p-— 0

and applying HLP theorem to the strictly convex function e we get e(s) < k, < k11 < k
(b) Forlp+1 <p < p+1 <n — 1 the conclusion follows similarly using the chain

U= M,...M,0,m,...m) = (Vp,-- - Vp, My .M) = (Vpt1s- - Ypt1: My ... M) = (8,...,8)
——— —— —_———— ——

lo b n=p pt1 n—p-1

O

In the following, we will exemplify only the () case (the other being similar). We start
with some observations, grouped in the following remark.

Remark 3.9. Fixp <lpandletQ = (M,...,M,a,b....,b), Z=(M,...,M,6,,...,0p).
—— N——

T

p
(@)rM+a+ (n—7r—1)b=pM + (n — p)é, = kn. This is obvious.
(b) We have r < [y. Indeed, assuming r > I = {nﬁ} =71 >ny—e = (n—r)m >

a + (n —r — 1)b and this is impossible because a,b > m.
(c)If k <k, (p <lp) thenr < p. Indeed, if r > p then we observe by (a) that b < §, and
so (by Remark 1.5) Q = Z and, applying HLP theorem to ¢, we get & > k,,, a contradiction.
(d) Itk > kp (p < lp) then r > p. Indeed, if » < p then we infer using (a) that 6, < b.
Thus, by Remark 1.5, Q < Z and so (by HLP theorem) we get k < k,, a contradiction.

Now, we can evaluate 7 using the position of k in the sequence e(s) < ki < ... < ky, < k.

If k = e(s) or k = k then Ag = {5}, respectively Ag = {@} and everything is clear.

If kK = k, for some 1 < p < [, if follows that Z € Ag. But Z and 2 are of the same form
hence, by Theorem 3.5a, we infer that 2 = Z etc.

If k € (K, l;:) then , by Remark 3.9b and 3.9d, we get r = [o.

If kp—1 < k < kp for some 2 < p <[y then, by Remark 3.9cand 3.9d we getr =p — 1.

Finally, if e(s) < k < k; then, by Remark 3.9c we get r = 0.
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