A Jensen-type inequality in the framework of 2-convex systems

GEORGE PRECUPESCU

ABSTRACT. Let A_S be the solution set of the system $x_1 + x_2 + \ldots + x_n = ns$, $e(x_1) + e(x_2) + \ldots + e(x_n) = nk$, $x_1 > x_2 > \ldots > x_n$, where $e: I \to \mathbb{R}$ is a (fully extended) strictly convex or concave function. We call such a system 2–convex and prove the existence of two special points $\omega, \Omega \in A_S$ such that for all $x \in A_S$ and for all $f: I \to \mathbb{R}$ strictly 3-convex with respect to e, the following inequality holds: $\forall x \in A_S \Rightarrow E_f(\omega) \leq E_f(x) \leq E_f(x)$ $E_f(\Omega)$ where $E_f(x) = f(x_1) + f(x_2) + \ldots + f(x_n)$. This may be seen as a broader version of the equal variable method of V. Cîrtoaje. It follows that ω and Ω have at most three distinct components and we also give a detailed analysis of their structure.

1. INTRODUCTION

Let $I \subseteq \mathbb{R}$ be an interval. For any function $f : I \to \mathbb{R}$ we define $E_f : I^n \to \mathbb{R}$ by

$$E_f(x) = f(x_1) + f(x_2) + \ldots + f(x_n) \quad \forall x = (x_1, \ldots, x_n) \in I^n$$
(1.1)

If $s \in I$, $\bar{s} = (s, ..., s)$ and $A = \{(x_1, ..., x_n) \in I^n | x_1 + x_2 + ... + x_n = ns\}$ then the well-known Jensen's inequality states that for any convex function $f: I \to \mathbb{R}$

$$x \in A \Rightarrow E_f(x) \ge E_f(\bar{s}) \tag{1.2}$$

Our main objective is to get inequalities of type 1.2 when A is the solution set of a system defined by two equations (not only one, as in the above case of Jensen's inequality). For this, we define here both a general type of two equations system (2-convex systems) and a suitable class of functions f that satisfy the corresponding inequalities of type 1.2.

Such extensions of Jensen inequality have been previously studied by V. Cîrtoaje in [2] and [3] under the name of equal variable method. See also [4] for many applications and examples of the same author. Our main result 3.5 is a direct generalization of V. Cîrtoaje results to a broader type of systems (see Remark 1.2).

For $A \subseteq \mathbb{R}$ we denote by \overline{A} and A the closure set and, respectively, the interior set of A.

Definition 1.1. Let $I \subseteq \mathbb{R}$ be an interval. A continuous, convex function $e: I \to \mathbb{R}$ is called fully extended on *I* if it can no more be extended by continuity at any point of $\overline{I} \setminus I$.

Let $m = \inf(I) \in \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}, M = \sup(I) \in \overline{\mathbb{R}} \text{ and } e : I \to \mathbb{R} \text{ fully extended on}$ I. Using known properties of convex functions, we infer from the above definition that, if $m \notin I$, then either $m = -\infty$, or *m* is finite but $\lim_{x \to m} e(x) = +\infty$ (and similarly for *M*).

Definition 1.2. A 2-convex system is a system of the form $\begin{cases} x_1 + x_2 + \ldots + x_n = ns \\ e(x_1) + e(x_2) + \ldots + e(x_n) = nk \\ x_1 \ge x_2 \ge \ldots \ge x_n \end{cases}$ where $n \ge 3$, $e : I \to \mathbb{R}$ is a continuous strictly on a of I.

where $n \ge 3$, $e: I \to \mathbb{R}$ is a continuous, *strictly* convex, **fully extended on I** function and

Received: 29.10.2020. In revised form: 11.06.2023. Accepted: 18.06.2023

²⁰¹⁰ Mathematics Subject Classification. 52A40, 52A41, 26D07.

Key words and phrases. convex function, 3-convex function, relative convexity, majorization, equal variable method.

 $s, k \in \mathbb{R}, s \in \mathring{I}$. We also denote it by S(e, s, k, n) and the solution set by A_S . We consistently use the notation $I = I_S$ and $m = \inf(I_S) \in \overline{\mathbb{R}}$, $M = \sup(I_S) \in \overline{\mathbb{R}}$.

Remark 1.1. We also consider 2-concave systems S(e, s, k, n) (for which the function e is strictly concave). For each system S(e, s, k, n) we associate a dual one S'(-e, s, -k, n) and, clearly, $A_{S'} = A_S$. The dual of a 2-concave system is a 2-convex system (and vice versa).

Remark 1.2. V. Cîrtoaje's original theorems correspond to the particular case of a system S(e, s, k, n) where e is of the form $e(x) = x^r$ or $e(x) = \ln(x)$ and I_s is an appropriate interval of the type $[0, \infty)$, $(0, \infty)$ or \mathbb{R} (see [2], [3]).

Definition 1.3. Let $f \in I \subset \mathbb{R} \to \mathbb{R}$ be to functions continuous on *I* and differentiable on I. We say that f is (strictly) 3-convex with respect to e if there exists a (strictly) convex function $q: J \to \mathbb{R}$ with $e'(\mathring{I}) \subseteq J$ such that $f' = q \circ e'$ on \mathring{I} .

Remark 1.3. In the particular case of $e(x) = x^2$ we get the definition of the usual 3-convex functions (in an equivalent form). See for example [8].

Remark 1.4. If *f* is 3–convex with respect to *e*, then it is also 3–convex with respect to h = -e. Indeed, we know that there exists a function $q : J \to \mathbb{R}$ strictly convex with $e'(I_S) \subseteq J$ such that $f' = g \circ e'$. Let $g_1 : -J \to \mathbb{R}$, $g_1(y) = g(-y)$ and it's clear that g_1 is also strictly convex and $f'(x) = g(e'(x)) = g_1(-e'(x)) = g_1(h'(x))$, hence $f' = g_1 \circ h'$.

For $x \in \mathbb{R}^n$ and $1 \leq i \leq n$ we define $\begin{cases} T_i(x) = x_1 + \ldots + x_i \\ B_i(x) = x_i + \ldots + x_n \end{cases}$ (the top and bottom sums). Using these notations, we can define the classical majorization relation \preccurlyeq like this:

 $x \preccurlyeq y \Leftrightarrow \begin{cases} T_n(x) = T_n(y) \\ T_i(x) \le T_i(y) \ \forall i \in \{1, 2, \dots, n-1\} \end{cases}$ (for any two decreasing n-tuples x, y).

Remark 1.5. The above condition $T_i(x) < T_i(y) \forall i \in \{1, 2, ..., n-1\}$ can be replaced with:

$$\exists p \in \{1, 2, \dots, n\} \text{ such that} \begin{cases} T_i(x) \leq T_i(y) & \forall i \in \{1, 2, \dots, p-1\}\\ B_i(x) \geq B_i(y) & \forall i \in \{p+1, \dots, n\} \end{cases}$$

because for $p+1 \le i \le n$ we have $B_i(x) \ge B_i(y) \Leftrightarrow T_n(x) - T_{i-1}(x) \ge T_n(y) - T_{i-1}(y) \Leftrightarrow$ $T_{i-1}(x) \leq T_{i-1}(y)$. Hence $T_i(x) \leq T_i(y) \ \forall i \in \{p, \dots, n-1\}$ and these inequalities, together with $T_i(x) \leq T_i(y) \ \forall i \in \{1, 2, ..., p-1\}$, give us $T_i(x) \leq T_i(y) \ \forall i \in \{1, 2, ..., n-1\}$.

We state here the classical result of Hardy-Littlewood-Polya (HLP theorem - see [5]), also called the majorization inequality or Karamata inequality (see [6]):

Theorem 1.1. (*HLP*) Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a continuous convex function and $x, y \in I^n$. Then

$$x \preccurlyeq y \Rightarrow E_f(x) \le E_f(y)$$

Moreover, if f is strictly convex, then the equality occurs if and only if x = y.

In the following, we will use this theorem extensively and, typically, the justification for the majorization step $x \preccurlyeq y$ will be based on the Remark 1.5.

2. PRELIMINARY RESULTS

Lemma 2.1. Let S(e, s, k, n) be a non-empty 2-convex system, $m = \inf(I_S)$, $M = \sup(I_S)$.

- (a) If $M \notin I_S$ then there exists an $M_0 \in I_S$ such that $\forall (x_1, \ldots, x_n) \in A_S \Rightarrow x_1 \leq M_0$
- (b) If $m \notin I_S$ then there exists an $m_0 \in I_S$ such that $\forall (x_1, \ldots, x_n) \in A_S \Rightarrow x_n \ge m_0$

Proof. (a) *Case 1. M* is finite, hence $\lim_{t\to M} e(t) = +\infty$. We consider two subcases. *Subcase 1.1 m* is finite. First, we will show that *e* is bounded below on I_S .

Assume $m \in I_S$. Because $\lim_{t\to M} e(t) = +\infty$ we find an $\varepsilon > 0$ with $e(t) \ge 1 \forall t \in (M - \varepsilon, M)$. Let $C = \inf_{t \in [m, M - \varepsilon]} e(t)$. Because e is continuous on the compact set $[m, M - \varepsilon]$ it follows that $C \in \mathbb{R}$. Thus $e(t) \ge C_0 = \min\{1, C\}$ on I_S .

Assume now $m \notin I_S$. Because $\lim_{t\to m} e(t) = \lim_{t\to M} e(t) = +\infty$ there is an $\varepsilon > 0$ with $e(t) \ge 1 \forall t \in (m, m + \varepsilon) \cup (M - \varepsilon, M)$ (and $m + \varepsilon < M - \varepsilon$). Let $C = \inf_{t \in [m + \varepsilon, M - \varepsilon]} e(t)$ so $C \in \mathbb{R}$ and $e(t) \ge C_0 = \min\{1, C\}$ on I_S . Thus, e is bounded below on I_S in all situations.

Now, since $\lim_{t\to M} e(t) = +\infty$ there is an $M_0 < M$ such that $e(t) > nk - (n-1)C_0$ $\forall t \in (M_0, M)$. But $e(x_1) = nk - [e(x_2) + \ldots + e(x_n)] \le nk - (n-1)C_0$ and so $x_1 \le M_0$. Subcase 1.2 $m = -\infty$. This subcase can be reduced to the previous one. Observe first

that $x_n = ns - (x_1 + \ldots + x_{n-1}) \ge ns - (n-1)M \stackrel{def}{=} m_0$ and, obviously, the system $S'(e_{|[m_0,M]}, s, k, n)$ has $A_{S'} = A_S$. But for S' we can apply the subcase 1.1 because m_0 is finite etc.

Case 2. $M = +\infty$. Fix $t_1 > s > t_2 > m$ and consider the support lines given by $\varphi_1(t) = \alpha_1 t + \beta_1$, $\varphi_2(t) = \alpha_2 t + \beta_2$ where $\alpha_1 = e'_+(t_1)$, $\alpha_2 = e'_+(t_2)$. From the strict convexity of e we infer that $\alpha_1 > \alpha_2$ and $e(t) \ge \varphi_1(t)$, $e(t) \ge \varphi_2(t) \forall t \in \mathbb{R}$. Thus,

$$nk = e(x_1) + [e(x_2) + \ldots + e(x_n)] \ge \varphi_1(x_1) + [\varphi_2(x_2) + \ldots + \varphi_2(x_n)]$$

= $\alpha_1 x_1 + \beta_1 + \alpha_2(x_2 + \ldots + x_n) + (n-1)\beta_2 = \alpha_1 x_1 + \beta_1 + \alpha_2(ns - x_1) + (n-1)\beta_2$

Hence, $nk \ge x_1(\alpha_1 - \alpha_2) + C$ where $C = ns\alpha_2 + \beta_1 + (n-1)\beta_2$ and so $x_1 \le M_0 \stackrel{def}{=} \frac{nk-C}{\alpha_1 - \alpha_2}$. (b) The proof is similar to (a).

Theorem 2.2. Let S(e, s, k, n) be a 2-convex system. Then

- (a) There exists a compact interval $I_0 = [m_0, M_0] \subseteq I_S$ such that $A_S \subseteq I_0^n$.
- (b) A_S is a compact set.

Proof. If A_S is empty the theorem is trivially true, hence we can suppose in the following that A_S is non-empty. If $M \in I_S$ we choose $M_0 = M$. If not, we use Lemma 2.1 to find such an M_0 and for the left side we proceed similarly. Next, we write A_S as $A_1 \cap A_2 \cap E_1 \ldots \cap E_{n-1}$ where

- $E_p = \{ x \in \mathbb{R}^n | x_{p+1} x_p \le 0 \} \quad \forall 1 \le p \le n-1$ $A_1 = \{ x \in \mathbb{R}^n | x_1 + x_2 + \dots + x_n = ns \}$
- $A_2 = \{x \in I_0^n | e(x_1) + e(x_2) + \dots + e(x_n) = nk\}$

and, because all these sets are closed, we conclude that A_S is a compact set.

Remark 2.6. Hence, for every system S(e, s, k, n) we can find an equivalent "compact" system $S_0(e_{|I_{S_0}}, s, k, n)$ with $I_{S_0} = [m_0, M_0] \subseteq I_S$ and $A_{S_0} = A_S$.

3. MAIN RESULTS

Lemma 3.2. Let S(e, s, k, 3) be a non-empty 2–convex system and $x, y \in A_S$ such that $y_1 > x_1$. Then

$$y_1 > x_1 \ge x_2 > y_2 \ge y_3 > x_3$$

Proof. We only show that $x_2 > y_2$ and $y_3 > x_3$, the other inequalities being obvious. If $x_3 \ge y_3$ then, using the fact that $x_1 < y_1$, we deduce that $x \prec y$ (strictly majorization) and from HLP theorem we get $e(x_1) + e(x_2) + e(x_3) < e(y_1) + e(y_2) + e(y_3)$ so 3k < 3k, a contradiction. Thus $y_3 > x_3$. Next, if $x_2 \le y_2$, then using $x_1 < y_1$ we infer that $x_1 + x_2 < y_1 + y_2$ so $x \prec y$ (strictly majorization) and applying HLP theorem we get a contradiction exactly as above. So we also have $x_2 > y_2$.

The next theorem is an extension of an interesting result from [1] (see also [9], [7], [8]).

Theorem 3.3. Let S(e, s, k, 3) be a non-empty 2–convex system with $e \in C^1(I_S)$ and $f: I_S \to \mathbb{R}$ strictly 3–convex with respect to e. Then

$$\forall x, y \in A_S, \ x_1 < y_1 \Rightarrow f(x_1) + f(x_2) + f(x_3) < f(y_1) + f(y_2) + f(y_3)$$

Proof. f is strictly 3–convex with respect to e and so there exists $g : J \to \mathbb{R}$ strictly convex with $e'(I_S) \subseteq J$ such that $f' = g \circ e'$. According to Lemma 3.2, if $y_1 > x_1$ then $y_1 > x_1 \ge x_2 > y_2 \ge y_3 > x_3$ and, for enough large integers $p \ge p_0$, we define the intervals

$$A_1^p = [x_1, y_1 - \frac{1}{p}], \ A_2 = [y_2, x_2], \ A_3^p = [x_3 + \frac{1}{p}, y_3] \subset \mathring{I}_S$$

Because e' is continuous strictly increasing and A_1^p , A_2 , A_3^p are compact sets with disjoint interiors we get also that $B_1^p = e'(A_1^p)$, $B_2 = e'(A_2)$, $B_1^p = e'(A_1^p)$ are compact intervals with disjoint interiors and their ordering on x-axis is exactly that of A_1^p , A_2 , A_3^p .

Next, we consider the linear function $L : \mathbb{R} \to \mathbb{R}$, $L(r) = \alpha + \beta r$ that agree with g at the endpoints of B_2 and, because g is convex, we have

$$g(r) \ge L(r) \ \forall r \in B_1^p \cup B_3^p$$

$$g(r) \le L(r) \ \forall r \in B_2$$

$$(3.3)$$

Since *g* is *strictly* convex we also have strict versions of these inequalities, for example

$$g(r) < L(r) \ \forall r \in \mathring{B}_2 \tag{3.4}$$

Using 3.3 we infer that

$$E_1^p \stackrel{def}{=} \int_{A_1^p} g(e'(t))dt + \int_{A_3^p} g(e'(t))dt \ge \int_{A_1^p} L(e'(t))dt + \int_{A_3^p} L(e'(t))dt \stackrel{def}{=} E_2^p$$
(3.5)

But g(e'(t) = f'(t) so $E_1^p = f(y_1 - \frac{1}{p}) - f(x_1) + f(y_3) - f(x_3 + \frac{1}{p})$ and because f is continuous on I_S it follows that

$$\lim_{p \to \infty} E_1^p = f(y_1) - f(x_1) + f(y_3) - f(x_3)$$

On the other hand, $E_2^p = \int_{A_1^p} [\alpha + \beta e'(t)] dt + \int_{A_3^p} [\alpha + \beta e'(t)] dt$ = $\alpha (l(A_1^p) + l(A_3^p)) + \beta (e(y_1 - \frac{1}{p}) - e(x_1)) + \beta (e(y_3) - e(x_3 + \frac{1}{p}))$

and using the continuity of e and the initial $\begin{cases} x_1 + x_2 + x_3 = y_1 + y_2 + y_3 \\ e(x_1) + e(x_2) + e(x_3) = e(y_1) + e(y_2) + e(y_3) \end{cases}$ conditions, we infer that

$$\lim_{p \to \infty} E_2^p = \alpha(y_1 - x_1 + y_3 - x_3) + \beta(e(y_1) - e(x_1) + e(y_3) - e(x_3))$$
$$= \alpha(x_2 - y_2) + \beta(e(x_2) - e(y_2))$$
$$= \alpha l(A_2) + \beta(e(x_2) - e(y_2))$$
$$= \int_{A_2} L(e'(t))dt$$

But using 3.4 we can write further

$$\int_{A_2} L(e'(t))dt > \int_{A_2} g(e'(t)) = \int_{A_2} f'(t)dt = f(x_2) - f(y_2)$$

A Jensen-type inequality in the framework of 2-convex systems

Thus, passing to the limit in 3.5 we get $\lim_{p\to\infty} E_1^p \ge \lim_{p\to\infty} E_2^p$, that is

$$f(y_1) - f(x_1) + f(y_3) - f(x_3) \ge \int_{A_2} L(e'(t))dt > f(x_2) - f(y_2)$$

and the conclusion follows.

Theorem 3.4. Let S(e, s, k, 3) be a non-empty 2–convex system and a point $(x_0, y_0, z_0) \in A_S$.

(a) If $M > x_0 \ge y_0 > z_0 \ge m$ then there is $x'_0 \in I_S$, $x'_0 > x_0$ such that

 $\forall x \in (x_0, x'_0) \exists y, z \in I_S \text{ with } (x, y, z) \in A_S$

(b) If $M \ge x_0 > y_0 \ge z_0 > m$ then there exists $z'_0 \in I_S$, $z'_0 < z_0$ such that

$$\forall z \in (z'_0, z_0) \exists x, y \in I_S \text{ with } (x, y, z) \in A_S$$

where $m = \inf(I_S)$, $M = \sup(I_S)$.

Proof. (a) Let $\varepsilon'_0 = \min(M - x_0, y_0 - z_0)$. We see that $M \ge x_0 + \varepsilon \ge \frac{y_0 + z_0 - \varepsilon}{2} \ge m$ for all $\varepsilon \in [0, \varepsilon'_0]$ and thus we can define the function $R : [0, \varepsilon'_0] \to \mathbb{R}$ given by

$$R(\varepsilon) = e\left(x_0 + \varepsilon\right) + e\left(\frac{y_0 + z_0 - \varepsilon}{2}\right) + e\left(\frac{y_0 + z_0 - \varepsilon}{2}\right)$$

By Jensen's inequality we get $R(0) = e(x_0) + 2e\left(\frac{y_0+z_0}{2}\right) < e(x_0) + e(y_0) + e(z_0) = 3k$ (the inequality being strict because $y_0 \neq z_0$) and, using the continuity of R, we can fix an $0 < \varepsilon_0 \le \varepsilon'_0$ such that $R(\varepsilon) < 3k \ \forall \varepsilon \in [0, \varepsilon_0]$.

Now, for every fixed $0 < \varepsilon \le \varepsilon_0$ we define $I_{\varepsilon} = \begin{bmatrix} 0, \frac{y_0 - z_0 - \varepsilon}{2} \end{bmatrix}$ and observe that for $\theta \in I_{\varepsilon}$ we have $M \ge x_0 + \varepsilon \ge y_0 - \varepsilon - \theta \ge z_0 + \theta \ge m$. Let $H_{\varepsilon} : I_{\varepsilon} \to \mathbb{R}$ given by

$$H_{\varepsilon}(\theta) = e(x_0 + \varepsilon) + e(y_0 - \varepsilon - \theta) + e(z_0 + \theta)$$

and using HLP theorem for the strictly convex function e we get

$$H_{\varepsilon}(0) = e(x_0 + \varepsilon) + e(y_0 - \varepsilon) + e(z_0) > e(x_0) + e(y_0) + e(z_0) = 3k$$

(the inequality being strict because $\varepsilon > 0$). On the other hand,

$$H_{\varepsilon}\left(\frac{y_0 - z_0 - \varepsilon}{2}\right) = e\left(x_0 + \varepsilon\right) + e\left(\frac{y_0 + z_0 - \varepsilon}{2}\right) + e\left(\frac{y_0 + z_0 - \varepsilon}{2}\right) = R(\varepsilon) < 3k$$

and using the continuity of H_{ε} there exists $\theta = \theta_{\varepsilon} \in I_{\varepsilon}$ with $H_{\varepsilon}(\theta) = 3k$, that is

$$(x_0 + \varepsilon, y_0 - \varepsilon - \theta, z_0 + \theta) \in A_S$$

and if we define $x'_0 = x_0 + \varepsilon_0$ the conclusion follows.

(b) (sketch) As above, let $\varepsilon'_0 = \min(z_0 - m, x_0 - y_0)$ and $R : [0, \varepsilon'_0] \to \mathbb{R}$ given by $R(\varepsilon) = e\left(\frac{x_0 + y_0 + \varepsilon}{2}\right) + e\left(\frac{x_0 + y_0 + \varepsilon}{2}\right) + e\left(z_0 - \varepsilon\right)$. It follows that R(0) < 3k and so we can fix an $0 < \varepsilon_0 \le \varepsilon'_0$ such that $R(\varepsilon) < 3k \ \forall \varepsilon \in [0, \varepsilon_0]$. For every fixed $0 < \varepsilon \le \varepsilon_0$ we define $I_{\varepsilon} = \left[0, \frac{x_0 - y_0 - \varepsilon}{2}\right]$ and let $H_{\varepsilon} : I_{\varepsilon} \to \mathbb{R}, \ H_{\varepsilon}(\theta) = e(x_0 - \theta) + e(y_0 + \varepsilon + \theta) + e(z_0 - \varepsilon)$.

As above, we get $H_{\varepsilon}(0) > 3k$, $H_{\varepsilon}(\frac{x_0-y_0-\varepsilon}{2}) = R(\varepsilon) < 3k$. Using the continuity of H_{ε} there exists $\theta = \theta_{\varepsilon} \in I_{\varepsilon}$ with $H_{\varepsilon}(\theta) = 3k$, that is $(x_0 - \theta, y_0 + \varepsilon + \theta, z_0 - \varepsilon) \in A_S$ etc. \Box

Corollary 3.1. Let S(e, s, k, 3) be a non-empty 2–convex system with $e \in C^1(I_S)$ and $m = \inf(I_S)$, $M = \sup(I_S)$. Let $f : I_S \to \mathbb{R}$ be a strictly 3–convex function with respect to e.

- (a) If E_f has a maximum value at the point $(c_1, c_2, c_3) \in A_S$ then $c_1 = M$ or $c_2 = c_3$.
- (b) If E_f has a minimum value at the point $(c_1, c_2, c_3) \in A_S$ then $c_1 = c_2$ or $c_3 = m$.

197

Proof. We prove only (a), the (b) being similar. Assume that $M > c_1 \ge c_2 > c_3$. Then, according to the Theorem 3.4, there exist solutions $(c'_1, c'_2, c'_3) \in A_S$ with $c'_1 > c_1$. On the other hand, by Theorem 3.3, it follows that $E_f(c') > E_f(c)$ and so we get a contradiction.

Theorem 3.5. Let S(e, s, k, n) be a non-empty 2–convex (or 2-concave) system with $e \in C^1(I_S)$. If $m = \inf(I_S)$, $M = \sup(I_S)$ then

- (a) There is an unique point $\Omega \in A_S$ of the form $(\underbrace{M, \dots, M}_{0 \le r \le n-2}, a, \underbrace{b, \dots, b}_{n-r-1})$ with $M \ge a \ge b$ and an unique point $\omega \in A_S$ of the form $(\underbrace{a, \dots, a}_{n-t-1}, b, \underbrace{m, \dots, m}_{0 \le t \le n-2})$ with $a \ge b \ge m$.
- (b) If $f: I_S \to \mathbb{R}$ is strictly 3–convex with respect to e then

$$\forall x \in A_S \Rightarrow E_f(\omega) \le E_f(x) \le E_f(\Omega)$$

The equality occurs if and only if $x = \omega$ *(on left) or* $x = \Omega$ *(on right).*

Proof. We will prove the theorem first for the case of a 2–convex system.

(a) For the *existence* part we observe first that there exists at least a function $f_0: I_S \to \mathbb{R}$ strictly 3–convex with respect to e. Indeed, it's easy to see that, for example, $f_0(t) = \int_{t_0}^t (e'(s))^2 ds$ is such a function. For this particular function f_0 we consider $E_{f_0}: A_S \to \mathbb{R}$ (defined as in 1.1) and, because E_{f_0} is continuous on the compact set A_S , we get a point $c \in A_S$ for which $E_{f_0}(c) = \sup_{A_S} E_{f_0}$. The ideea is to show that c is exactly of the desired form $(\underbrace{M, \ldots, M}_{0 \le r \le n-2}, a, b, \ldots, b)$ with $M \ge a \ge b$ and for this is enough to prove that

for every $1 \le i < j < k \le n$ the triple (c_i, c_j, c_k) has $c_i = M$ or $c_j = c_k$. We consider the 3 variable system S'(e, s', k', 3) given by

$$\begin{cases} x'_1 + x'_2 + x'_3 = c_i + c_j + c_k = 3s' \\ e(x'_1) + e(x'_2) + e(x'_3) = e(c_i) + e(c_j) + e(c_k) = 3k' \\ x'_1 \ge x'_2 \ge x'_3 \end{cases}$$

and we observe that $(c_i, c_j, c_k) \in A_{S'}$ must also maximize the sum $f_0(x'_1) + f_0(x'_2) + f_0(x'_3)$ over $A_{S'}$ because, assuming the contrary, we get an $(x'_1, x'_2, x'_3) \in A_{S'}$ such that

$$f_0(x_1') + f_0(x_2') + f_0(x_3') > f_0(c_i) + f_0(c_j) + f_0(c_k)$$

and if we consider the n-tuple c' constructed from c by replacing (c_i, c_j, c_k) with (x'_1, x'_2, x'_3) (and, if necessary, reordering it) it follows that $E_{f_0}(c') > E_{f_0}(c)$, impossible. Thus, we can apply Corollary 3.1 to $(c_i, c_j, c_k) \in A_{S'}$ and conclude that $c_i = M$ or $c_j = c_k$, as desired.

Now, for the *uniqueness* part, let $c, c' \in A_S$ of the same form

$$c = (\underbrace{M, \dots, M}_{0 \le r \le n-2}, a, \underbrace{b, \dots, b}_{n-r-1}), c' = (\underbrace{M, \dots, M}_{0 \le r' \le n-2}, a', \underbrace{b', \dots, b'}_{n-r'-1})$$

Assuming $r \ge r'$, we consider first the case r = r', hence $c = (a, b \dots, b)$, $c' = (a', b' \dots, b)$. If, for example, $a \ge a'$ then $b \le b'$ and is clear that $\begin{cases} T_1(c) \ge T_1(c') \\ B_i(c) \le B_i(c') & \forall 2 \le i \le n \end{cases}$. Thus, by Remark 1.5, $c \succcurlyeq c'$. If $c \ne c'$ then $c \succ c'$ and, applying HLP theorem to the strictly convex function e, we get the contradiction kn > kn.

Consider now the case r > r' and write the equality

$$rM + a + (n - r - 1)b = r'M + a' + (n - r' - 1)b'$$
 as $(r - r' - 1)(M - b') + (M - a') + (a - b) = (n - r)(b' - b)$

Since the left side is clearly positive, we get $b \le b'$ and so $\begin{cases} T_i(c) \ge T_i(c') & \forall 1 \le i \le r \\ B_i(c) \le B_i(c') & \forall r+2 \le i \le n \end{cases}$ hence, by Remark 1.5, $c \succcurlyeq c'$. If $c \ne c'$ then $c \succ c'$ and, applying HLP theorem to the strictly convex function e, we get again the contradiction kn > kn.

Therefore, there is a unique point $\Omega = c$ of de desired form and the ω case is similar.

(b) For this, there is practically nothing left to prove. Let $f : I_S \to \mathbb{R}$ be an arbitrarily strictly 3–convex with respect to e. Because $E_f : A_S \to \mathbb{R}$ is continuous on the compact set A_S , we get a point $c \in A_S$ for which $E_f(c) = \sup_{A_S} E_f$. And, exactly as above for f_0 , we find that c must be of the form $(M, \ldots, M, a, b, \ldots, b)$. On the other hand, according to (a), there is an unique point Ω of that form so we must have $c = \Omega$. For the minimum case the proof is similar.

Thus, we have proved (a) and (b) for the case of a 2–convex system. If *S* is 2–concave, then we consider the dual 2–convex system S'(h, s, k', n) where h = -e, k' = -k and, clearly, $A_S = A_{S'}$. On the other hand, according to Remark 1.4, *f* is also 3–convex with respect to *h* and so, by the 2–convex case, we get the unique points $\omega, \Omega \in A_{S'} = A_S$ of the desired form, for which $E_f(\omega) \leq E_f(\Omega) \forall x \in A_S$ and the conclusion follows. \Box

Remark 3.7. If $M \notin I_S$ then r = 0 and Ω is of the simpler form $\Omega = (a, b, ..., b)$. Similarly, if $m \notin I_S$ then t = 0 and ω gets the simpler form $\omega = (a, ..., a, b)$. We can see that, in general, to get the exact value of Ω (for example) we have to solve a two equations system with a, b as unknowns but also with that extra parameter r. But, as we will next see, this r can be estimated in advance and this fact, obviously, simplify solving the above system.

From now on we will assume I_S compact, hence $I_S = [m, M]$.

Lemma 3.3. Let I = [m, M] a compact interval, $s \in \mathring{I}$ and $C = \{x \in I^n | x_1 + x_2 + ... x_n = ns\}$. Then $\exists ! \tilde{u} \in C$ of the form $\tilde{u} = (\underbrace{M, \ldots M}_{l_0}, \theta, \underbrace{m, \ldots m}_{n - l_0 - 1})$ where $0 \le l_0 \le n - 1$ and $\theta \in [m, M]$.

 $\begin{array}{l} \textit{Proof. Let } \lambda = \frac{s-m}{M-m} \in (0,1), l_0 = [n\lambda] \in \{0, \ldots n-1\} \text{ and } \theta = ns - l_0M - (n-l_0-1)m. \\ \textit{A straightforward calculation give us } \theta = m + \{n\lambda\}(M-m) \in [m,M) \text{ and, finally, we} \\ \textit{define } \tilde{u} \stackrel{def}{=} (\underbrace{M, \ldots M}_{l_0}, \theta, \underbrace{m, \ldots m}_{n-l_0-1}) \in C. \text{ Next, if } u' = (\underbrace{M, \ldots M}_{l'_0}, \theta', \underbrace{m, \ldots m}_{n-l'_0-1}) \in C \text{ with } \\ 0 \leq l'_0 \leq n-1 \text{ and } \theta' \in [m,M) \text{ then } \theta' = ns - l'_0M - (n-l'_0-1)m \text{ and we immediately} \\ \textit{get } n\lambda - l'_0 = \frac{\theta'-m}{M-m} \in [0,1) \text{ so } l'_0 = [n\lambda] = l_0, \text{ hence } \tilde{u} \text{ is unique.} \end{array}$

Remark 3.8. If $A_S \neq \emptyset$ then $k \in [e(s), \tilde{k}]$, where $\tilde{k} \stackrel{def}{=} E(\tilde{u})$ and $E(x) = \frac{1}{n} \sum_{i=1}^{n} e(x_i)$. Indeed, by Jensen inequality, $E(\bar{x}) \geq E(\bar{s})$ and since $\tilde{u} \succeq \bar{x} \Rightarrow E(\bar{x}) \leq E(\tilde{u})$ (by HLP).

Moreover, if $k = \tilde{k}$ then $A_S = {\tilde{u}}$. Indeed, we get $l_0e(M) + e(\theta) + (n - l_0 - 1)e(m) = nk$ so $E(\tilde{u}) = k$ and $\tilde{u} \in A_S$. Now, for an arbitrary $\bar{x} = (x_1, \dots, x_n) \in A_S$ we see that $\bar{x} \preccurlyeq \tilde{u}$ and since $E(\bar{x}) = k = \tilde{k} = E(\tilde{u})$ we deduce from HLP inequality applied to the strictly convex function e that $\bar{x} = \tilde{u}$. Thus $A_S = {\tilde{u}}$. Similarly, if k = e(s) then $A_S = {\bar{s}}$.

Next, for every $1 \le p \le n-1$ we define $k_p = \begin{cases} \frac{pe(M)+(n-p)e(\delta_p)}{n} & \text{if } p \le l_0 \\ \frac{pe(\gamma_p)+(n-p)e(m)}{n} & \text{if } p > l_0 \end{cases}$ where δ_p, γ_p are given by $pM + (n-p)\delta_p = p\gamma_p + (n-p)m = ns$. By a straightforward calculation we get $\gamma_1 > \gamma_2 > \ldots > \gamma_{n-1} > s > \delta_1 > \delta_2 > \ldots > \delta_{n-1}$ and is also easy to verify that $\delta_p \in [m, s)$ (if $p \le l_0$), respectively $\gamma_p \in (s, M]$ (if $p > l_0$), hence k_p is well defined.

Lemma 3.4. *Under the above notations we have*

$$\begin{cases} (a) \ e(s) < k_1 < \ldots < k_{l_0} \le \tilde{k} & \text{if } l_0 \ge 1 \\ (b) \ \tilde{k} \ge k_{l_0+1} > \ldots > k_{n-1} > e(s) & \text{if } l_0 + 1 \le n-1 \end{cases}$$

Proof. (a) For $1 \le p we have the chain of majorization inequalities$

$$(s,\ldots,s)\prec(\underbrace{M,\ldots M}_{p},\underbrace{\delta_{p},\ldots \delta_{p}}_{n-p})\prec(\underbrace{M,\ldots M}_{p+1},\underbrace{\delta_{p+1},\ldots \delta_{p+1}}_{n-p-1})\preccurlyeq(\underbrace{M,\ldots M}_{l_{0}},\theta,m,\ldots m)=\tilde{u}$$

and applying HLP theorem to the strictly convex function e we get $e(s) < k_p < k_{p+1} \le \tilde{k}$ (b) For $l_0 + 1 \le p the conclusion follows similarly using the chain$

$$\tilde{u} = (\underbrace{M, \dots, M}_{l_0}, \theta, m, \dots, m) \succcurlyeq (\underbrace{\gamma_p, \dots, \gamma_p}_{p}, \underbrace{m, \dots, m}_{n-p}) \succ (\underbrace{\gamma_{p+1}, \dots, \gamma_{p+1}}_{p+1}, \underbrace{m, \dots, m}_{n-p-1}) \succ (s, \dots, s)$$

In the following, we will exemplify only the Ω case (the other being similar). We start with some observations, grouped in the following remark.

Remark 3.9. Fix
$$p \leq l_0$$
 and let $\Omega = (\underbrace{M, \ldots, M}_{r}, a, b \ldots, b), Z = (\underbrace{M, \ldots, M}_{p}, \delta_p, \ldots, \delta_p).$

(a)
$$rM + a + (n - r - 1)b = pM + (n - p)\delta_p = kn$$
. This is obvious.

(b) We have $r \leq l_0$. Indeed, assuming $r > l_0 = \left[n \frac{s-m}{M-m}\right] \Rightarrow r > n \frac{s-m}{M-m} \Rightarrow (n-r)m > a + (n-r-1)b$ and this is impossible because $a, b \geq m$.

(c) If $k < k_p$ ($p \le l_0$) then r < p. Indeed, if $r \ge p$ then we observe by (a) that $b \le \delta_p$ and so (by Remark 1.5) $\Omega \succcurlyeq Z$ and, applying HLP theorem to e, we get $k \ge k_p$, a contradiction.

(*d*) If $k > k_p$ ($p \le l_0$) then $r \ge p$. Indeed, if r < p then we infer using (*a*) that $\delta_p \le b$. Thus, by Remark 1.5, $\Omega \preccurlyeq Z$ and so (by HLP theorem) we get $k \le k_p$, a contradiction.

Now, we can evaluate r using the *position of* k in the sequence $e(s) < k_1 < \ldots < k_{l_0} < \tilde{k}$. If k = e(s) or $k = \tilde{k}$ then $A_S = \{\bar{s}\}$, respectively $A_S = \{\tilde{u}\}$ and everything is clear. If $k = k_p$ for some $1 \le p \le l_0$ if follows that $Z \in A_S$. But Z and Ω are of the same form

hence, by Theorem 3.5a, we infer that $\Omega = Z$ etc.

If $k \in (k_{l_0}, \tilde{k})$ then , by Remark 3.9b and 3.9d, we get $r = l_0$. If $k_{p-1} < k < k_p$ for some $2 \le p \le l_0$ then, by Remark 3.9c and 3.9d we get r = p - 1. Finally, if $e(s) < k < k_1$ then, by Remark 3.9c we get r = 0.

REFERENCES

- [1] Bennett, G. p-free l_p inequalities. The American Mathematical Monthly **117** (2010), no. 4, 334–351.
- [2] Cîrtoaje, V. The equal variable method. J. Ineq. Pure Appl. Math. 8 (2007), no. 1, Article 15, 21 pp.
- [3] Cîrtoaje, V. On the equal variables method applied to real variables. Creat. Math. Inform. 24 (2015), no. 2, 145–154.
- [4] Cîrtoaje, V. Algebraic Inequalities Old and New Methods. GIL Publishing House, (2006).
- [5] Hardy, G. H.; Littlewood, J. E.; Polya, G. Some simple inequalities satisfied by convex function. Messenger Math. 58 (1928/29), 145–152.
- [6] Karamata, J. Sur une inégalité relative aux fonctions convexes. Publ. Math. Univ. Belgrade. 1 (1932), 145–148.
- [7] Marinescu, Ş. D. Generalizări ale unor probleme de convexitate. *Gazeta Matematică*, **3** (1994), 334–351.
- [8] Marinescu, S. D.; Monea, M. Some inequalities for convex and 3-convex functions with applications. *Kragujev. J. Math.* 39 (2015), no. 1, 83–91.
- [9] Niculescu, C. P. On a result of G. Bennett. Bull. Math. Soc. Sci. Math. Roumanie (2011), 261–267.

SIBIU, ROMANIA Email address: gelprec@gmail.com

200