A Jensen-type inequality in the framework of 2-convex systems

George Precupescu

Abstract

Let A_{S} be the solution set of the system $x_{1}+x_{2}+\ldots+x_{n}=n s, e\left(x_{1}\right)+e\left(x_{2}\right)+\ldots+e\left(x_{n}\right)=n k$, $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$, where $e: I \rightarrow \mathbb{R}$ is a (fully extended) strictly convex or concave function. We call such a system 2 -convex and prove the existence of two special points $\omega, \Omega \in A_{S}$ such that for all $x \in A_{S}$ and for all $f: I \rightarrow \mathbb{R}$ strictly 3-convex with respect to e, the following inequality holds: $\forall x \in A_{S} \Rightarrow E_{f}(\omega) \leq E_{f}(x) \leq$ $E_{f}(\Omega)$ where $E_{f}(x)=f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)$. This may be seen as a broader version of the equal variable method of V. Cîrtoaje. It follows that ω and Ω have at most three distinct components and we also give a detailed analysis of their structure.

1. Introduction

Let $I \subseteq \mathbb{R}$ be an interval. For any function $f: I \rightarrow \mathbb{R}$ we define $E_{f}: I^{n} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
E_{f}(x)=f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right) \forall x=\left(x_{1}, \ldots, x_{n}\right) \in I^{n} \tag{1.1}
\end{equation*}
$$

If $s \in I, \bar{s}=(s, \ldots, s)$ and $A=\left\{\left(x_{1}, \ldots, x_{n}\right) \in I^{n} \mid x_{1}+x_{2}+\ldots+x_{n}=n s\right\}$ then the well-known Jensen's inequality states that for any convex function $f: I \rightarrow \mathbb{R}$

$$
\begin{equation*}
x \in A \Rightarrow E_{f}(x) \geq E_{f}(\bar{s}) \tag{1.2}
\end{equation*}
$$

Our main objective is to get inequalities of type 1.2 when A is the solution set of a system defined by two equations (not only one, as in the above case of Jensen's inequality). For this, we define here both a general type of two equations system (2-convex systems) and a suitable class of functions f that satisfy the corresponding inequalities of type 1.2.

Such extensions of Jensen inequality have been previously studied by V. Cîrtoaje in [2] and [3] under the name of equal variable method. See also [4] for many applications and examples of the same author. Our main result 3.5 is a direct generalization of V. Cîrtoaje results to a broader type of systems (see Remark 1.2).

For $A \subseteq \mathbb{R}$ we denote by \bar{A} and \AA the closure set and, respectively, the interior set of A.
Definition 1.1. Let $I \subseteq \mathbb{R}$ be an interval. A continuous, convex function $e: I \rightarrow \mathbb{R}$ is called fully extended on I if it can no more be extended by continuity at any point of $\bar{I} \backslash I$.

Let $m=\inf (I) \in \overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}, M=\sup (I) \in \overline{\mathbb{R}}$ and $e: I \rightarrow \mathbb{R}$ fully extended on I. Using known properties of convex functions, we infer from the above definition that, if $m \notin I$, then either $m=-\infty$, or m is finite but $\lim _{x \rightarrow m} e(x)=+\infty$ (and similarly for M).

Definition 1.2. A 2-convex system is a system of the form $\left\{\begin{array}{l}x_{1}+x_{2}+\ldots+x_{n}=n s \\ e\left(x_{1}\right)+e\left(x_{2}\right)+\ldots+e\left(x_{n}\right)=n k \\ x_{1} \geq x_{2} \geq \ldots \geq x_{n}\end{array}\right.$ where $n \geq 3, e: I \rightarrow \mathbb{R}$ is a continuous, strictly convex, fully extended on \mathbf{I} function and
$s, k \in \mathbb{R}, s \in \stackrel{\circ}{I}$. We also denote it by $S(e, s, k, n)$ and the solution set by A_{S}. We consistently use the notation $I=I_{S}$ and $m=\inf \left(I_{S}\right) \in \overline{\mathbb{R}}, M=\sup \left(I_{S}\right) \in \overline{\mathbb{R}}$.

Remark 1.1. We also consider 2-concave systems $S(e, s, k, n)$ (for which the function e is strictly concave). For each system $S(e, s, k, n)$ we associate a dual one $S^{\prime}(-e, s,-k, n)$ and, clearly, $A_{S^{\prime}}=A_{S}$. The dual of a 2 -concave system is a 2 -convex system (and vice versa).

Remark 1.2. V. Cîrtoaje's original theorems correspond to the particular case of a system $S(e, s, k, n)$ where e is of the form $e(x)=x^{r}$ or $e(x)=\ln (x)$ and I_{S} is an appropriate interval of the type $[0, \infty),(0, \infty)$ or \mathbb{R} (see [2], [3]).

Definition 1.3. Let $f, e: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be to functions continuous on I and differentiable on I. We say that f is (strictly) 3 -convex with respect to e if there exists a (strictly) convex function $g: J \rightarrow \mathbb{R}$ with $e^{\prime}(I) \subseteq J$ such that $f^{\prime}=g \circ e^{\prime}$ on \check{I}.

Remark 1.3. In the particular case of $e(x)=x^{2}$ we get the definition of the usual 3-convex functions (in an equivalent form). See for example [8].

Remark 1.4. If f is 3 -convex with respect to e, then it is also 3 -convex with respect to $h=-e$. Indeed, we know that there exists a function $g: J \rightarrow \mathbb{R}$ strictly convex with $e^{\prime}\left(\stackrel{\circ}{S}_{S}\right) \subseteq J$ such that $f^{\prime}=g \circ e^{\prime}$. Let $g_{1}:-J \rightarrow \mathbb{R}, g_{1}(y)=g(-y)$ and it's clear that g_{1} is also strictly convex and $f^{\prime}(x)=g\left(e^{\prime}(x)\right)=g_{1}\left(-e^{\prime}(x)\right)=g_{1}\left(h^{\prime}(x)\right)$, hence $f^{\prime}=g_{1} \circ h^{\prime}$.

For $x \in \mathbb{R}^{n}$ and $1 \leq i \leq n$ we define $\left\{\begin{array}{l}T_{i}(x)=x_{1}+\ldots+x_{i} \\ B_{i}(x)=x_{i}+\ldots+x_{n}\end{array}\right.$ (the top and bottom sums). Using these notations, we can define the classical majorization relation \preccurlyeq like this: $x \preccurlyeq y \Leftrightarrow\left\{\begin{array}{l}T_{n}(x)=T_{n}(y) \\ T_{i}(x) \leq T_{i}(y) \forall i \in\{1,2, \ldots, n-1\}\end{array} \quad\right.$ (for any two decreasing n-tuples x, y).
Remark 1.5. The above condition $T_{i}(x) \leq T_{i}(y) \forall i \in\{1,2, \ldots, n-1\}$ can be replaced with:

$$
\exists p \in\{1,2, \ldots, n\} \text { such that } \begin{cases}T_{i}(x) \leq T_{i}(y) & \forall i \in\{1,2, \ldots p-1\} \\ B_{i}(x) \geq B_{i}(y) & \forall i \in\{p+1, \ldots, n\}\end{cases}
$$

because for $p+1 \leq i \leq n$ we have $B_{i}(x) \geq B_{i}(y) \Leftrightarrow T_{n}(x)-T_{i-1}(x) \geq T_{n}(y)-T_{i-1}(y) \Leftrightarrow$ $T_{i-1}(x) \leq T_{i-1}(y)$. Hence $T_{i}(x) \leq T_{i}(y) \forall i \in\{p, \ldots, n-1\}$ and these inequalities, together with $T_{i}(x) \leq T_{i}(y) \forall i \in\{1,2, \ldots, p-1\}$, give us $T_{i}(x) \leq T_{i}(y) \forall i \in\{1,2, \ldots, n-1\}$.

We state here the classical result of Hardy-Littlewood-Polya (HLP theorem - see [5]), also called the majorization inequality or Karamata inequality (see [6]):

Theorem 1.1. (HLP) Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a continuous convex function and $x, y \in I^{n}$. Then

$$
x \preccurlyeq y \Rightarrow E_{f}(x) \leq E_{f}(y)
$$

Moreover, if f is strictly convex, then the equality occurs if and only if $x=y$.
In the following, we will use this theorem extensively and, typically, the justification for the majorization step $x \preccurlyeq y$ will be based on the Remark 1.5.

2. Preliminary results

Lemma 2.1. Let $S(e, s, k, n)$ be a non-empty 2 -convex system, $m=\inf \left(I_{S}\right), M=\sup \left(I_{S}\right)$.
(a) If $M \notin I_{S}$ then there exists an $M_{0} \in I_{S}$ such that $\forall\left(x_{1}, \ldots, x_{n}\right) \in A_{S} \Rightarrow x_{1} \leq M_{0}$
(b) If $m \notin I_{S}$ then there exists an $m_{0} \in I_{S}$ such that $\forall\left(x_{1}, \ldots, x_{n}\right) \in A_{S} \Rightarrow x_{n} \geq m_{0}$

Proof. (a) Case 1. M is finite, hence $\lim _{t \rightarrow M} e(t)=+\infty$. We consider two subcases.
Subcase 1.1 m is finite. First, we will show that e is bounded below on I_{S}.
Assume $m \in I_{S}$. Because $\lim _{t \rightarrow M} e(t)=+\infty$ we find an $\varepsilon>0$ with $e(t) \geq 1 \forall t \in(M-$ $\varepsilon, M)$. Let $C=\inf _{t \in[m, M-\varepsilon]} e(t)$. Because e is continuous on the compact set $[m, M-\varepsilon]$ it follows that $C \in \mathbb{R}$. Thus $e(t) \geq C_{0}=\min \{1, C\}$ on I_{S}.

Assume now $m \notin I_{S}$. Because $\lim _{t \rightarrow m} e(t)=\lim _{t \rightarrow M} e(t)=+\infty$ there is an $\varepsilon>0$ with $e(t) \geq 1 \forall t \in(m, m+\varepsilon) \cup(M-\varepsilon, M)$ (and $m+\varepsilon<M-\varepsilon)$. Let $C=\inf _{t \in[m+\varepsilon, M-\varepsilon]} e(t)$ so $C \in \mathbb{R}$ and $e(t) \geq C_{0}=\min \{1, C\}$ on I_{S}. Thus, e is bounded below on I_{S} in all situations.

Now, since $\lim _{t \rightarrow M} e(t)=+\infty$ there is an $M_{0}<M$ such that $e(t)>n k-(n-1) C_{0}$ $\forall t \in\left(M_{0}, M\right)$. But $e\left(x_{1}\right)=n k-\left[e\left(x_{2}\right)+\ldots+e\left(x_{n}\right)\right] \leq n k-(n-1) C_{0}$ and so $x_{1} \leq M_{0}$.

Subcase $1.2 m=-\infty$. This subcase can be reduced to the previous one. Observe first that $x_{n}=n s-\left(x_{1}+\ldots+x_{n-1}\right) \geq n s-(n-1) M \stackrel{\text { def }}{=} m_{0}$ and, obviously, the system $S^{\prime}\left(e_{\left[m_{0}, M\right)}, s, k, n\right)$ has $A_{S^{\prime}}=A_{S}$. But for S^{\prime} we can apply the subcase 1.1 because m_{0} is finite etc.

Case 2. $M=+\infty$. Fix $t_{1}>s>t_{2}>m$ and consider the support lines given by $\varphi_{1}(t)=\alpha_{1} t+\beta_{1}, \varphi_{2}(t)=\alpha_{2} t+\beta_{2}$ where $\alpha_{1}=e_{+}^{\prime}\left(t_{1}\right), \alpha_{2}=e_{+}^{\prime}\left(t_{2}\right)$. From the strict convexity of e we infer that $\alpha_{1}>\alpha_{2}$ and $e(t) \geq \varphi_{1}(t), e(t) \geq \varphi_{2}(t) \forall t \in \mathbb{R}$. Thus,

$$
\begin{aligned}
n k & =e\left(x_{1}\right)+\left[e\left(x_{2}\right)+\ldots+e\left(x_{n}\right)\right] \geq \varphi_{1}\left(x_{1}\right)+\left[\varphi_{2}\left(x_{2}\right)+\ldots+\varphi_{2}\left(x_{n}\right)\right] \\
& =\alpha_{1} x_{1}+\beta_{1}+\alpha_{2}\left(x_{2}+\ldots+x_{n}\right)+(n-1) \beta_{2}=\alpha_{1} x_{1}+\beta_{1}+\alpha_{2}\left(n s-x_{1}\right)+(n-1) \beta_{2}
\end{aligned}
$$

Hence, $n k \geq x_{1}\left(\alpha_{1}-\alpha_{2}\right)+C$ where $C=n s \alpha_{2}+\beta_{1}+(n-1) \beta_{2}$ and so $x_{1} \leq M_{0} \stackrel{\text { def }}{=} \frac{n k-C}{\alpha_{1}-\alpha_{2}}$. (b) The proof is similar to (a).

Theorem 2.2. Let $S(e, s, k, n)$ be a 2-convex system. Then
(a) There exists a compact interval $I_{0}=\left[m_{0}, M_{0}\right] \subseteq I_{S}$ such that $A_{S} \subseteq I_{0}^{n}$.
(b) A_{S} is a compact set.

Proof. If A_{S} is empty the theorem is trivially true, hence we can suppose in the following that A_{S} is non-empty. If $M \in I_{S}$ we choose $M_{0}=M$. If not, we use Lemma 2.1 to find such an M_{0} and for the left side we proceed similarly. Next, we write A_{S} as $A_{1} \cap A_{2} \cap$ $E_{1} \ldots \cap E_{n-1}$ where
$E_{p}=\left\{x \in \mathbb{R}^{n} \mid x_{p+1}-x_{p} \leq 0\right\} \quad \forall 1 \leq p \leq n-1$
$A_{1}=\left\{x \in \mathbb{R}^{n} \mid x_{1}+x_{2}+\ldots x_{n}=n s\right\}$
$A_{2}=\left\{x \in I_{0}^{n} \mid e\left(x_{1}\right)+e\left(x_{2}\right)+\ldots e\left(x_{n}\right)=n k\right\}$
and, because all these sets are closed, we conclude that A_{S} is a compact set.
Remark 2.6. Hence, for every system $S(e, s, k, n)$ we can find an equivalent "compact" system $S_{0}\left(e_{\mid I_{S_{0}}}, s, k, n\right)$ with $I_{S_{0}}=\left[m_{0}, M_{0}\right] \subseteq I_{S}$ and $A_{S_{0}}=A_{S}$.

3. Main results

Lemma 3.2. Let $S(e, s, k, 3)$ be a non-empty 2-convex system and $x, y \in A_{S}$ such that $y_{1}>x_{1}$. Then

$$
y_{1}>x_{1} \geq x_{2}>y_{2} \geq y_{3}>x_{3}
$$

Proof. We only show that $x_{2}>y_{2}$ and $y_{3}>x_{3}$, the other inequalities being obvious. If $x_{3} \geq y_{3}$ then, using the fact that $x_{1}<y_{1}$, we deduce that $x \prec y$ (strictly majorization) and from HLP theorem we get $e\left(x_{1}\right)+e\left(x_{2}\right)+e\left(x_{3}\right)<e\left(y_{1}\right)+e\left(y_{2}\right)+e\left(y_{3}\right)$ so $3 k<3 k$, a contradiction. Thus $y_{3}>x_{3}$. Next, if $x_{2} \leq y_{2}$, then using $x_{1}<y_{1}$ we infer that $x_{1}+x_{2}<$ $y_{1}+y_{2}$ so $x \prec y$ (strictly majorization) and applying HLP theorem we get a contradiction exactly as above. So we also have $x_{2}>y_{2}$.

The next theorem is an extension of an interesting result from [1] (see also [9], [7], [8]).
Theorem 3.3. Let $S(e, s, k, 3)$ be a non-empty 2-convex system with $e \in C^{1}\left(I_{S}\right)$ and $f: I_{S} \rightarrow \mathbb{R}$ strictly 3-convex with respect to e. Then

$$
\forall x, y \in A_{S}, \quad x_{1}<y_{1} \Rightarrow f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)<f\left(y_{1}\right)+f\left(y_{2}\right)+f\left(y_{3}\right)
$$

Proof. f is strictly 3-convex with respect to e and so there exists $g: J \rightarrow \mathbb{R}$ strictly convex with $e^{\prime}\left(I_{S}\right) \subseteq J$ such that $f^{\prime}=g \circ e^{\prime}$. According to Lemma 3.2, if $y_{1}>x_{1}$ then $y_{1}>x_{1} \geq$ $x_{2}>y_{2} \geq y_{3}>x_{3}$ and, for enough large integers $p \geq p_{0}$, we define the intervals

$$
A_{1}^{p}=\left[x_{1}, y_{1}-\frac{1}{p}\right], A_{2}=\left[y_{2}, x_{2}\right], A_{3}^{p}=\left[x_{3}+\frac{1}{p}, y_{3}\right] \subset \circ \circ
$$

Because e^{\prime} is continuous strictly increasing and $A_{1}^{p}, A_{2}, A_{3}^{p}$ are compact sets with disjoint interiors we get also that $B_{1}^{p}=e^{\prime}\left(A_{1}^{p}\right), B_{2}=e^{\prime}\left(A_{2}\right), B_{1}^{p}=e^{\prime}\left(A_{1}^{p}\right)$ are compact intervals with disjoint interiors and their ordering on x-axis is exactly that of $A_{1}^{p}, A_{2}, A_{3}^{p}$.

Next, we consider the linear function $L: \mathbb{R} \rightarrow \mathbb{R}, L(r)=\alpha+\beta r$ that agree with g at the endpoints of B_{2} and, because g is convex, we have

$$
\begin{align*}
& g(r) \geq L(r) \forall r \in B_{1}^{p} \cup B_{3}^{p} \tag{3.3}\\
& g(r) \leq L(r) \forall r \in B_{2}
\end{align*}
$$

Since g is strictly convex we also have strict versions of these inequalities, for example

$$
\begin{equation*}
g(r)<L(r) \forall r \in \stackrel{\circ}{B}_{2} \tag{3.4}
\end{equation*}
$$

Using 3.3 we infer that

$$
\begin{equation*}
E_{1}^{p} \stackrel{\text { def }}{=} \int_{A_{1}^{p}} g\left(e^{\prime}(t)\right) d t+\int_{A_{3}^{p}} g\left(e^{\prime}(t)\right) d t \geq \int_{A_{1}^{p}} L\left(e^{\prime}(t)\right) d t+\int_{A_{3}^{p}} L\left(e^{\prime}(t)\right) d t \stackrel{\text { def }}{=} E_{2}^{p} \tag{3.5}
\end{equation*}
$$

But $g\left(e^{\prime}(t)=f^{\prime}(t)\right.$ so $E_{1}^{p}=f\left(y_{1}-\frac{1}{p}\right)-f\left(x_{1}\right)+f\left(y_{3}\right)-f\left(x_{3}+\frac{1}{p}\right)$ and because f is continuous on I_{S} it follows that

$$
\lim _{p \rightarrow \infty} E_{1}^{p}=f\left(y_{1}\right)-f\left(x_{1}\right)+f\left(y_{3}\right)-f\left(x_{3}\right)
$$

On the other hand, $E_{2}^{p}=\int_{A_{1}^{p}}\left[\alpha+\beta e^{\prime}(t)\right] d t+\int_{A_{3}^{p}}\left[\alpha+\beta e^{\prime}(t)\right] d t$

$$
=\alpha\left(l\left(A_{1}^{p}\right)+l\left(A_{3}^{p}\right)\right)+\beta\left(e\left(y_{1}-\frac{1}{p}\right)-e\left(x_{1}\right)\right)+\beta\left(e\left(y_{3}\right)-e\left(x_{3}+\frac{1}{p}\right)\right)
$$

and using the continuity of e and the initial $\left\{\begin{array}{l}x_{1}+x_{2}+x_{3}=y_{1}+y_{2}+y_{3} \\ e\left(x_{1}\right)+e\left(x_{2}\right)+e\left(x_{3}\right)=e\left(y_{1}\right)+e\left(y_{2}\right)+e\left(y_{3}\right)\end{array}\right.$ conditions, we infer that

$$
\begin{aligned}
\lim _{p \rightarrow \infty} E_{2}^{p} & =\alpha\left(y_{1}-x_{1}+y_{3}-x_{3}\right)+\beta\left(e\left(y_{1}\right)-e\left(x_{1}\right)+e\left(y_{3}\right)-e\left(x_{3}\right)\right) \\
& =\alpha\left(x_{2}-y_{2}\right)+\beta\left(e\left(x_{2}\right)-e\left(y_{2}\right)\right) \\
& =\alpha l\left(A_{2}\right)+\beta\left(e\left(x_{2}\right)-e\left(y_{2}\right)\right) \\
& =\int_{A_{2}} L\left(e^{\prime}(t)\right) d t
\end{aligned}
$$

But using 3.4 we can write further

$$
\int_{A_{2}} L\left(e^{\prime}(t)\right) d t>\int_{A_{2}} g\left(e^{\prime}(t)\right)=\int_{A_{2}} f^{\prime}(t) d t=f\left(x_{2}\right)-f\left(y_{2}\right)
$$

Thus, passing to the limit in 3.5 we get $\lim _{p \rightarrow \infty} E_{1}^{p} \geq \lim _{p \rightarrow \infty} E_{2}^{p}$, that is

$$
f\left(y_{1}\right)-f\left(x_{1}\right)+f\left(y_{3}\right)-f\left(x_{3}\right) \geq \int_{A_{2}} L\left(e^{\prime}(t)\right) d t>f\left(x_{2}\right)-f\left(y_{2}\right)
$$

and the conclusion follows.
Theorem 3.4. Let $S(e, s, k, 3)$ be a non-empty 2-convex system and a point $\left(x_{0}, y_{0}, z_{0}\right) \in A_{S}$.
(a) If $M>x_{0} \geq y_{0}>z_{0} \geq m$ then there is $x_{0}^{\prime} \in I_{S}, x_{0}^{\prime}>x_{0}$ such that

$$
\forall x \in\left(x_{0}, x_{0}^{\prime}\right) \exists y, z \in I_{S} \text { with }(x, y, z) \in A_{S}
$$

(b) If $M \geq x_{0}>y_{0} \geq z_{0}>m$ then there exists $z_{0}^{\prime} \in I_{S}, z_{0}^{\prime}<z_{0}$ such that

$$
\forall z \in\left(z_{0}^{\prime}, z_{0}\right) \exists x, y \in I_{S} \text { with }(x, y, z) \in A_{S}
$$

where $m=\inf \left(I_{S}\right), M=\sup \left(I_{S}\right)$.
Proof. (a) Let $\varepsilon_{0}^{\prime}=\min \left(M-x_{0}, y_{0}-z_{0}\right)$. We see that $M \geq x_{0}+\varepsilon \geq \frac{y_{0}+z_{0}-\varepsilon}{2} \geq m$ for all $\varepsilon \in\left[0, \varepsilon_{0}^{\prime}\right]$ and thus we can define the function $R:\left[0, \varepsilon_{0}^{\prime}\right] \rightarrow \mathbb{R}$ given by

$$
R(\varepsilon)=e\left(x_{0}+\varepsilon\right)+e\left(\frac{y_{0}+z_{0}-\varepsilon}{2}\right)+e\left(\frac{y_{0}+z_{0}-\varepsilon}{2}\right)
$$

By Jensen's inequality we get $R(0)=e\left(x_{0}\right)+2 e\left(\frac{y_{0}+z_{0}}{2}\right)<e\left(x_{0}\right)+e\left(y_{0}\right)+e\left(z_{0}\right)=3 k$ (the inequality being strict because $y_{0} \neq z_{0}$) and, using the continuity of R, we can fix an $0<\varepsilon_{0} \leq \varepsilon_{0}^{\prime}$ such that $R(\varepsilon)<3 k \forall \varepsilon \in\left[0, \varepsilon_{0}\right]$.

Now, for every fixed $0<\varepsilon \leq \varepsilon_{0}$ we define $I_{\varepsilon}=\left[0, \frac{y_{0}-z_{0}-\varepsilon}{2}\right]$ and observe that for $\theta \in I_{\varepsilon}$ we have $M \geq x_{0}+\varepsilon \geq y_{0}-\varepsilon-\theta \geq z_{0}+\theta \geq m$. Let $H_{\varepsilon}: I_{\varepsilon} \rightarrow \mathbb{R}$ given by

$$
H_{\varepsilon}(\theta)=e\left(x_{0}+\varepsilon\right)+e\left(y_{0}-\varepsilon-\theta\right)+e\left(z_{0}+\theta\right)
$$

and using HLP theorem for the strictly convex function e we get

$$
H_{\varepsilon}(0)=e\left(x_{0}+\varepsilon\right)+e\left(y_{0}-\varepsilon\right)+e\left(z_{0}\right)>e\left(x_{0}\right)+e\left(y_{0}\right)+e\left(z_{0}\right)=3 k
$$

(the inequality being strict because $\varepsilon>0$). On the other hand,

$$
H_{\varepsilon}\left(\frac{y_{0}-z_{0}-\varepsilon}{2}\right)=e\left(x_{0}+\varepsilon\right)+e\left(\frac{y_{0}+z_{0}-\varepsilon}{2}\right)+e\left(\frac{y_{0}+z_{0}-\varepsilon}{2}\right)=R(\varepsilon)<3 k
$$

and using the continuity of H_{ε} there exists $\theta=\theta_{\varepsilon} \in I_{\varepsilon}$ with $H_{\varepsilon}(\theta)=3 k$, that is

$$
\left(x_{0}+\varepsilon, y_{0}-\varepsilon-\theta, z_{0}+\theta\right) \in A_{S}
$$

and if we define $x_{0}^{\prime}=x_{0}+\varepsilon_{0}$ the conclusion follows.
(b) (sketch) As above, let $\varepsilon_{0}^{\prime}=\min \left(z_{0}-m, x_{0}-y_{0}\right)$ and $R:\left[0, \varepsilon_{0}^{\prime}\right] \rightarrow \mathbb{R}$ given by $R(\varepsilon)=e\left(\frac{x_{0}+y_{0}+\varepsilon}{2}\right)+e\left(\frac{x_{0}+y_{0}+\varepsilon}{2}\right)+e\left(z_{0}-\varepsilon\right)$. It follows that $R(0)<3 k$ and so we can fix an $0<\varepsilon_{0} \leq \varepsilon_{0}^{\prime}$ such that $R(\varepsilon)<3 k \forall \varepsilon \in\left[0, \varepsilon_{0}\right]$. For every fixed $0<\varepsilon \leq \varepsilon_{0}$ we define $I_{\varepsilon}=\left[0, \frac{x_{0}-y_{0}-\varepsilon}{2}\right]$ and let $H_{\varepsilon}: I_{\varepsilon} \rightarrow \mathbb{R}, H_{\varepsilon}(\theta)=e\left(x_{0}-\theta\right)+e\left(y_{0}+\varepsilon+\theta\right)+e\left(z_{0}-\varepsilon\right)$.

As above, we get $H_{\varepsilon}(0)>3 k, H_{\varepsilon}\left(\frac{x_{0}-y_{0}-\varepsilon}{2}\right)=R(\varepsilon)<3 k$. Using the continuity of H_{ε} there exists $\theta=\theta_{\varepsilon} \in I_{\varepsilon}$ with $H_{\varepsilon}(\theta)=3 k$, that is $\left(x_{0}-\theta, y_{0}+\varepsilon+\theta, z_{0}-\varepsilon\right) \in A_{S}$ etc.

Corollary 3.1. Let $S(e, s, k, 3)$ be a non-empty 2-convex system with $e \in C^{1}\left(\dot{I}_{S}\right)$ and $m=$ $\inf \left(I_{S}\right), M=\sup \left(I_{S}\right)$. Let $f: I_{S} \rightarrow \mathbb{R}$ be a strictly 3-convex function with respect to e.
(a) If E_{f} has a maximum value at the point $\left(c_{1}, c_{2}, c_{3}\right) \in A_{S}$ then $c_{1}=M$ or $c_{2}=c_{3}$.
(b) If E_{f} has a minimum value at the point $\left(c_{1}, c_{2}, c_{3}\right) \in A_{S}$ then $c_{1}=c_{2}$ or $c_{3}=m$.

Proof. We prove only (a), the (b) being similar. Assume that $M>c_{1} \geq c_{2}>c_{3}$. Then, according to the Theorem 3.4, there exist solutions $\left(c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right) \in A_{S}$ with $c_{1}^{\prime}>c_{1}$. On the other hand, by Theorem 3.3, it follows that $E_{f}\left(c^{\prime}\right)>E_{f}(c)$ and so we get a contradiction.

Theorem 3.5. Let $S(e, s, k, n)$ be a non-empty 2-convex (or 2-concave) system with $e \in C^{1}\left(\dot{I}_{S}\right)$. If $m=\inf \left(I_{S}\right), M=\sup \left(I_{S}\right)$ then
(a) There is an unique point $\Omega \in A_{S}$ of the form ($\underbrace{M, \ldots, M}_{0<r<n-2}, a, \underbrace{b, \ldots, b}_{n-r-1})$ with $M \geq a \geq b$ and an unique point $\omega \in A_{S}$ of the form $(\underbrace{a, \ldots, a}_{n-t-1}, b, \underbrace{m, \ldots, m}_{0 \leq t \leq n-2})$ with $a \geq b \geq m$.
(b) If $f: I_{S} \rightarrow \mathbb{R}$ is strictly 3-convex with respect to e then

$$
\forall x \in A_{S} \Rightarrow E_{f}(\omega) \leq E_{f}(x) \leq E_{f}(\Omega)
$$

The equality occurs if and only if $x=\omega$ (on left) or $x=\Omega$ (on right).
Proof. We will prove the theorem first for the case of a 2 -convex system.
(a) For the existence part we observe first that there exists at least a function $f_{0}: I_{S} \rightarrow \mathbb{R}$ strictly 3 -convex with respect to e. Indeed, it's easy to see that, for example, $f_{0}(t)=$ $\int_{t_{0}}^{t}\left(e^{\prime}(s)\right)^{2} d s$ is such a function. For this particular function f_{0} we consider $E_{f_{0}}: A_{S} \rightarrow \mathbb{R}$ (defined as in 1.1) and, because $E_{f_{0}}$ is continuous on the compact set A_{S}, we get a point $c \in A_{S}$ for which $E_{f_{0}}(c)=\sup _{A_{S}} E_{f_{0}}$. The ideea is to show that c is exactly of the desired form ($\underbrace{M, \ldots, M}_{0 \leq r \leq n-2}, a, \underbrace{b, \ldots, b}_{n-r-1})$ with $M \geq a \geq b$ and for this is enough to prove that for every $1 \leq i<j<k \leq n$ the triple (c_{i}, c_{j}, c_{k}) has $c_{i}=M$ or $c_{j}=c_{k}$. We consider the 3 variable system $S^{\prime}\left(e, s^{\prime}, k^{\prime}, 3\right)$ given by

$$
\left\{\begin{array}{l}
x_{1}^{\prime}+x_{2}^{\prime}+x_{3}^{\prime}=c_{i}+c_{j}+c_{k}=3 s^{\prime} \\
e\left(x_{1}^{\prime}\right)+e\left(x_{2}^{\prime}\right)+e\left(x_{3}^{\prime}\right)=e\left(c_{i}\right)+e\left(c_{j}\right)+e\left(c_{k}\right)=3 k^{\prime} \\
x_{1}^{\prime} \geq x_{2}^{\prime} \geq x_{3}^{\prime}
\end{array}\right.
$$

and we observe that $\left(c_{i}, c_{j}, c_{k}\right) \in A_{S^{\prime}}$ must also maximize the sum $f_{0}\left(x_{1}^{\prime}\right)+f_{0}\left(x_{2}^{\prime}\right)+f_{0}\left(x_{3}^{\prime}\right)$ over $A_{S^{\prime}}$ because, assuming the contrary, we get an $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \in A_{S^{\prime}}$ such that

$$
f_{0}\left(x_{1}^{\prime}\right)+f_{0}\left(x_{2}^{\prime}\right)+f_{0}\left(x_{3}^{\prime}\right)>f_{0}\left(c_{i}\right)+f_{0}\left(c_{j}\right)+f_{0}\left(c_{k}\right)
$$

and if we consider the n-tuple c^{\prime} constructed from c by replacing $\left(c_{i}, c_{j}, c_{k}\right)$ with $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ (and, if necessary, reordering it) it follows that $E_{f_{0}}\left(c^{\prime}\right)>E_{f_{0}}(c)$, impossible. Thus, we can apply Corollary 3.1 to $\left(c_{i}, c_{j}, c_{k}\right) \in A_{S^{\prime}}$ and conclude that $c_{i}=M$ or $c_{j}=c_{k}$, as desired.

Now, for the uniqueness part, let $c, c^{\prime} \in A_{S}$ of the same form

$$
c=(\underbrace{M, \ldots, M}_{0 \leq r \leq n-2}, a, \underbrace{b, \ldots, b}_{n-r-1}), c^{\prime}=(\underbrace{M, \ldots, M}_{0 \leq r^{\prime} \leq n-2}, a^{\prime}, \underbrace{b^{\prime}, \ldots, b^{\prime}}_{n-r^{\prime}-1})
$$

Assuming $r \geq r^{\prime}$, we consider first the case $r=r^{\prime}$, hence $c=(a, b \ldots, b), c^{\prime}=\left(a^{\prime}, b^{\prime} \ldots, b\right)$. If, for example, $a \geq a^{\prime}$ then $b \leq b^{\prime}$ and is clear that $\left\{\begin{array}{l}T_{1}(c) \geq T_{1}\left(c^{\prime}\right) \\ B_{i}(c) \leq B_{i}\left(c^{\prime}\right) \quad \forall 2 \leq i \leq n\end{array}\right.$. Thus, by Remark 1.5, $c \succcurlyeq c^{\prime}$. If $c \neq c^{\prime}$ then $c \succ c^{\prime}$ and, applying HLP theorem to the strictly convex function e, we get the contradiction $k n>k n$.

Consider now the case $r>r^{\prime}$ and write the equality

$$
\begin{gathered}
r M+a+(n-r-1) b=r^{\prime} M+a^{\prime}+\left(n-r^{\prime}-1\right) b^{\prime} \\
\text { as }\left(r-r^{\prime}-1\right)\left(M-b^{\prime}\right)+\left(M-a^{\prime}\right)+(a-b)=(n-r)\left(b^{\prime}-b\right)
\end{gathered}
$$

Since the left side is clearly positive, we get $b \leq b^{\prime}$ and so $\begin{cases}T_{i}(c) \geq T_{i}\left(c^{\prime}\right) & \forall 1 \leq i \leq r \\ B_{i}(c) \leq B_{i}\left(c^{\prime}\right) & \forall r+2 \leq i \leq n\end{cases}$ hence, by Remark 1.5, $c \succcurlyeq c^{\prime}$. If $c \neq c^{\prime}$ then $c \succ c^{\prime}$ and, applying HLP theorem to the strictly convex function e, we get again the contradiction $k n>k n$.

Therefore, there is a unique point $\Omega=c$ of de desired form and the ω case is similar.
(b) For this, there is practically nothing left to prove. Let $f: I_{S} \rightarrow \mathbb{R}$ be an arbitrarily strictly 3 -convex with respect to e. Because $E_{f}: A_{S} \rightarrow \mathbb{R}$ is continuous on the compact set A_{S}, we get a point $c \in A_{S}$ for which $E_{f}(c)=\sup _{A_{S}} E_{f}$. And, exactly as above for f_{0}, we find that c must be of the form $(M, \ldots, M, a, b, \ldots, b)$. On the other hand, according to (a), there is an unique point Ω of that form so we must have $c=\Omega$. For the minimum case the proof is similar.

Thus, we have proved (a) and (b) for the case of a 2 -convex system. If S is 2 -concave, then we consider the dual 2 -convex system $S^{\prime}\left(h, s, k^{\prime}, n\right)$ where $h=-e, k^{\prime}=-k$ and, clearly, $A_{S}=A_{S^{\prime}}$. On the other hand, according to Remark 1.4, f is also 3 -convex with respect to h and so, by the 2 -convex case, we get the unique points $\omega, \Omega \in A_{S^{\prime}}=A_{S}$ of the desired form, for which $E_{f}(\omega) \leq E_{f}(x) \leq E_{f}(\Omega) \forall x \in A_{S}$ and the conclusion follows.

Remark 3.7. If $M \notin I_{S}$ then $r=0$ and Ω is of the simpler form $\Omega=(a, b \ldots, b)$. Similarly, if $m \notin I_{S}$ then $t=0$ and ω gets the simpler form $\omega=(a, \ldots, a, b)$. We can see that, in general, to get the exact value of Ω (for example) we have to solve a two equations system with a, b as unknowns but also with that extra parameter r. But, as we will next see, this r can be estimated in advance and this fact, obviously, simplify solving the above system.

From now on we will assume I_{S} compact, hence $I_{S}=[m, M]$.
Lemma 3.3. Let $I=[m, M]$ a compact interval, $s \in I ̇ I$ and $C=\left\{x \in I^{n} \mid x_{1}+x_{2}+\ldots x_{n}=n s\right\}$. Then $\exists!\tilde{u} \in C$ of the form $\tilde{u}=(\underbrace{M, \ldots M}_{l_{0}}, \theta, \underbrace{m, \ldots m}_{n-l_{0}-1})$ where $0 \leq l_{0} \leq n-1$ and $\theta \in[m, M)$.

Proof. Let $\lambda=\frac{s-m}{M-m} \in(0,1), l_{0}=[n \lambda] \in\{0, \ldots n-1\}$ and $\theta=n s-l_{0} M-\left(n-l_{0}-1\right) m$. A straightforward calculation give us $\theta=m+\{n \lambda\}(M-m) \in[m, M)$ and, finally, we define $\tilde{u} \stackrel{\text { def }}{=}(\underbrace{M, \ldots M}_{l_{0}}, \theta, \underbrace{m, \ldots m}_{n-l_{0}-1}) \in C$. Next, if $u^{\prime}=(\underbrace{M, \ldots M}_{l_{0}^{\prime}}, \theta^{\prime}, \underbrace{m, \ldots m}_{n-l_{0}^{\prime}-1}) \in C$ with $0 \leq l_{0}^{\prime} \leq n-1$ and $\theta^{\prime} \in[m, M)$ then $\theta^{\prime}=n s-l_{0}^{\prime} M-\left(n-l_{0}^{\prime}-1\right) m$ and we immediately get $n \lambda-l_{0}^{\prime}=\frac{\theta^{\prime}-m}{M-m} \in[0,1)$ so $l_{0}^{\prime}=[n \lambda]=l_{0}$, hence \tilde{u} is unique.

Remark 3.8. If $A_{S} \neq \emptyset$ then $k \in[e(s), \tilde{k}]$, where $\tilde{k} \stackrel{\text { def }}{=} E(\tilde{u})$ and $E(x)=\frac{1}{n} \sum_{i=1}^{n} e\left(x_{i}\right)$. Indeed, by Jensen inequality, $E(\bar{x}) \geq E(\bar{s})$ and since $\tilde{u} \succcurlyeq \bar{x} \Rightarrow E(\bar{x}) \leq E(\tilde{u})$ (by HLP).

Moreover, if $k=\tilde{k}$ then $A_{S}=\{\tilde{u}\}$. Indeed, we get $l_{0} e(M)+e(\theta)+\left(n-l_{0}-1\right) e(m)=n k$ so $E(\tilde{u})=k$ and $\tilde{u} \in A_{S}$. Now, for an arbitrary $\bar{x}=\left(x_{1}, \ldots, x_{n}\right) \in A_{S}$ we see that $\bar{x} \preccurlyeq \tilde{u}$ and since $E(\bar{x})=k=\tilde{k}=E(\tilde{u})$ we deduce from HLP inequality applied to the strictly convex function e that $\bar{x}=\tilde{u}$. Thus $A_{S}=\{\tilde{u}\}$. Similarly, if $k=e(s)$ then $A_{S}=\{\bar{s}\}$.

Next, for every $1 \leq p \leq n-1$ we define $k_{p}=\left\{\begin{array}{l}\frac{p e(M)+(n-p) e\left(\delta_{p}\right)}{n} \text { if } p \leq l_{0} \\ \frac{p e\left(\gamma_{p}\right)+(n-p) e(m)}{n} \text { if } p>l_{0}\end{array} \quad\right.$ where δ_{p}, γ_{p} are given by $p M+(n-p) \delta_{p}=p \gamma_{p}+(n-p) m=n s$. By a straightforward calculation we get $\gamma_{1}>\gamma_{2}>\ldots>\gamma_{n-1}>s>\delta_{1}>\delta_{2}>\ldots>\delta_{n-1}$ and is also easy to verify that $\delta_{p} \in[m, s)$ (if $p \leq l_{0}$), respectively $\gamma_{p} \in(s, M]$ (if $p>l_{0}$), hence k_{p} is well defined.

Lemma 3.4. Under the above notations we have

$$
\begin{cases}\text { (a) } e(s)<k_{1}<\ldots<k_{l_{0}} \leq \tilde{k} & \text { if } l_{0} \geq 1 \\ \text { (b) } \tilde{k} \geq k_{l_{0}+1}>\ldots>k_{n-1}>e(s) & \text { if } l_{0}+1 \leq n-1\end{cases}
$$

Proof. (a) For $1 \leq p<p+1 \leq l_{0}$ we have the chain of majorization inequalities

$$
(s, \ldots, s) \prec(\underbrace{M, \ldots M}_{p}, \underbrace{\delta_{p}, \ldots \delta_{p}}_{n-p}) \prec(\underbrace{M, \ldots M}_{p+1}, \underbrace{\delta_{p+1}, \ldots \delta_{p+1}}_{n-p-1}) \preccurlyeq(\underbrace{M, \ldots M}_{l_{0}}, \theta, m, \ldots m)=\tilde{u}
$$

and applying HLP theorem to the strictly convex function e we get $e(s)<k_{p}<k_{p+1} \leq \tilde{k}$
(b) For $l_{0}+1 \leq p<p+1 \leq n-1$ the conclusion follows similarly using the chain

$$
\tilde{u}=(\underbrace{M, \ldots M}_{l_{0}}, \theta, m, \ldots m) \succcurlyeq(\underbrace{\gamma_{p}, \ldots \gamma_{p}}_{p}, \underbrace{m, \ldots m}_{n-p}) \succ(\underbrace{\gamma_{p+1}, \ldots \gamma_{p+1}}_{p+1}, \underbrace{m, \ldots m}_{n-p-1}) \succ(s, \ldots, s)
$$

In the following, we will exemplify only the Ω case (the other being similar). We start with some observations, grouped in the following remark.
Remark 3.9. Fix $p \leq l_{0}$ and let $\Omega=(\underbrace{M, \ldots, M}_{r}, a, b \ldots, b), Z=(\underbrace{M, \ldots, M}_{p}, \delta_{p}, \ldots, \delta_{p})$.
(a) $r M+a+(n-r-1) b=p M+(n-p) \delta_{p}=k n$. This is obvious.
(b) We have $r \leq l_{0}$. Indeed, assuming $r>l_{0}=\left[n \frac{s-m}{M-m}\right] \Rightarrow r>n \frac{s-m}{M-m} \Rightarrow(n-r) m>$ $a+(n-r-1) b$ and this is impossible because $a, b \geq m$.
(c) If $k<k_{p}\left(p \leq l_{0}\right)$ then $r<p$. Indeed, if $r \geq p$ then we observe by (a) that $b \leq \delta_{p}$ and so (by Remark 1.5) $\Omega \succcurlyeq Z$ and, applying HLP theorem to e, we get $k \geq k_{p}$, a contradiction.
(d) If $k>k_{p}\left(p \leq l_{0}\right)$ then $r \geq p$. Indeed, if $r<p$ then we infer using (a) that $\delta_{p} \leq b$. Thus, by Remark 1.5, $\Omega \preccurlyeq Z$ and so (by HLP theorem) we get $k \leq k_{p}$, a contradiction.

Now, we can evaluate r using the position of k in the sequence $e(s)<k_{1}<\ldots<k_{l_{0}}<\tilde{k}$. If $k=e(s)$ or $k=\tilde{k}$ then $A_{S}=\{\bar{s}\}$, respectively $A_{S}=\{\tilde{u}\}$ and everything is clear.
If $k=k_{p}$ for some $1 \leq p \leq l_{0}$ if follows that $Z \in A_{S}$. But Z and Ω are of the same form hence, by Theorem 3.5a, we infer that $\Omega=Z$ etc.

If $k \in\left(k_{l_{0}}, \tilde{k}\right)$ then, by Remark 3.9b and 3.9d, we get $r=l_{0}$.
If $k_{p-1}<k<k_{p}$ for some $2 \leq p \leq l_{0}$ then, by Remark 3.9c and 3.9d we get $r=p-1$.
Finally, if $e(s)<k<k_{1}$ then, by Remark 3.9c we get $r=0$.

References

[1] Bennett, G. p-free l_{p} inequalities. The American Mathematical Monthly 117 (2010), no. 4, 334-351.
[2] Cîrtoaje, V. The equal variable method. J. Ineq. Pure Appl. Math. 8 (2007), no. 1, Article 15, 21 pp.
[3] Cîrtoaje, V. On the equal variables method applied to real variables. Creat. Math. Inform. 24 (2015), no. 2, 145-154.
[4] Cîrtoaje, V. Algebraic Inequalities - Old and New Methods. GIL Publishing House, (2006).
[5] Hardy, G. H.; Littlewood, J. E.; Polya, G. Some simple inequalities satisfied by convex function. Messenger Math. 58 (1928/29), 145-152.
[6] Karamata, J. Sur une inégalité relative aux fonctions convexes. Publ. Math. Univ. Belgrade. 1 (1932), 145-148.
[7] Marinescu, Ş. D. Generalizări ale unor probleme de convexitate. Gazeta Matematică, 3 (1994), 334-351.
[8] Marinescu, Ş. D.; Monea, M. Some inequalities for convex and 3-convex functions with applications. Kragujev. J. Math. 39 (2015), no. 1, 83-91.
[9] Niculescu, C. P. On a result of G. Bennett. Bull. Math. Soc. Sci. Math. Roumanie (2011), 261-267.

