Automorphisms of Automorphism Group of Dihedral Groups

Sadanandan Sajikumar, Sivadasan Vinod and Gopinadhan Sathikumari biju

Abstract

The automorphism group of a Dihedral group of order $2 n$ is isomorphic to the holomorph of a cyclic group of order n. The holomorph of a cyclic group of order n is a complete group when n is odd. Hence automorphism groups of Dihedral groups of order $2 n$ are its own automorphism groups whenever n is odd. In this paper, we prove that the result is also true for those Dihedral groups of order $2 n$ where n is twice a prime number.

1. Introduction

An automorphism on a group G is a bijection $f: G \rightarrow G$ which preserves the binary operation on G. The set of all automorphisms on a group G under the composition of mappings forms a group, which is denoted by $\operatorname{Aut}(G)$. The topic of automorphism group of a group has been of interest to many researchers for a long time. The automorphism group of abelian groups has been analyzed fairly well [2,13], but the case of non-abelian groups is more complicated and is still an active research area. Finite groups whose automorphism group is abelian were first considered by G. A. Miller [10], who studied a group of order 64 with an abelian automorphism group of order 128. In general, the problem of classification of non-abelian groups with abelian automorphism group still remains an open problem, though solutions exist for a few special cases [1, 4, 6, 12].

The automorphism group of $D_{2 n}$, the dihedral group of order $2 n$, is isomorphic to the holomorph of \mathbb{Z}_{n}, the cyclic group of order n [14]. It is known that the holomorph of a cyclic group of order n is a complete group only when n is odd [9]. Since the automorphism group of a complete group is the group itself, it follows that $\operatorname{Aut}\left(\operatorname{Aut} D_{2 n}\right)$ is isomorphic to $A u t D_{2 n}$ whenever n is odd. In this paper, we prove the result is also true for those Dihedral group of order $2 n$ where n is twice a prime number.

Most of the notations, definitions and results we mention in this paper are as in [7] and [5]. For a group G, let $|G|$ the order of G and $o(g)$ denote the order of the element g in G. For integers m and n, the greatest common divisor of m and n is denoted by (m, n).

For any given natural number n let:

$$
\begin{aligned}
& \varphi(n)=\text { the number of non-negative integers less than } n \text { and relatively } \\
& \text { prime to } n .
\end{aligned}
$$

Also, for $n \geq 1, \mathbb{Z}_{n}$ denotes the group of integers modulo n and \mathbb{Z}_{n}^{*} denotes the multiplicative group of integers group modulo n.
Definition 1.1. [7] A subgroup H of a group G is said to be a characteristic subgroup of G if $\phi(H)=H$ for all automorphisms ϕ on G.

Theorem 1.1. [5] The group $\operatorname{Aut}\left(S_{n}\right) \cong S_{n}$ for all $n \geq 3$ and $n \neq 6$.

[^0]Theorem 1.2. [5] Let G be a group and H be a unique subgroup(cyclic) of given order. Then H is a characteristic subgroup.
Theorem 1.3. [8] The group \mathbb{Z}_{n}^{*} is cyclic if and only if $n=1,2,4, p^{k}$ or $2 p^{k}$ where p is an odd prime.

For each natural number $n \geq 3$, define

$$
G_{n}=\left\{\left[\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right]: a \in \mathbb{Z}_{n}^{*}, b \in \mathbb{Z}_{n}\right\}
$$

Then G_{n} is a group of order $n \varphi(n)$ with respect to matrix multiplication. the identity element of G_{n} is $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and the inverse of $\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right]$ is $\left[\begin{array}{cc}a^{-1} & -b a^{-1} \\ 0 & 1\end{array}\right]$.
Theorem 1.4. [3] The group G_{n} is isomorphic to $\operatorname{Aut}\left(D_{2 n}\right)$ for all positive integer $n \geq 3$.
2. Automorphism groups of Automorphism groups $D_{2 n}$

Now we characterize automorphism groups of $\operatorname{Aut}\left(D_{2 n}\right)$.
Theorem 2.5. Let $n=1,2,4, p^{k}$ or $2 p^{k}$ where p is an odd prime. Then

$$
1+t+t^{2}+\ldots+t^{\varphi(n)-1} \equiv 0 \bmod (n)
$$

for all $t \in \mathbb{Z}_{n}^{*}$ and $o(t)=\varphi(n)$.
Proof. The case $n=1,2$ and 4 are trivial. So assume that $n=p^{k}$ or $2 p^{k}, t \in \mathbb{Z}_{n}^{*}$ and $o(t)=\varphi(n)$. Therefore

$$
\begin{equation*}
\left(1+t+t^{2}+\ldots+t^{\varphi(n)-1}\right)(t-1)=t^{\varphi(n)}-1 \equiv 0 \bmod (n) \tag{2.1}
\end{equation*}
$$

Claim that $t-1$ is not congruent to $0 \bmod (p)$. Suppose $t-1 \equiv 0 \bmod (p)$. Then

$$
t=1+r p \text { for some } r \in \mathbb{Z}
$$

$$
\Longrightarrow t^{p^{k-1}}=(1+r p)^{p^{k-1}}=1+\left\{p^{k-1} C_{1}(r p)+{ }^{p^{k-1}} C_{2}(r p)^{2}+\ldots+(r p)^{p^{k-1}}\right\}
$$

Each term in the bracket is congruent to zero $\bmod p^{k}$. Hence

$$
\begin{equation*}
t^{p^{k-1}} \equiv 1 \bmod \left(p^{k}\right) \tag{2.2}
\end{equation*}
$$

If $n=2 p^{k}$, then t is odd and hence

$$
\begin{equation*}
t^{p^{k-1}} \equiv 1 \bmod (2) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
1+t+t^{2}+\ldots+t^{\varphi(n)-1} \equiv 0 \bmod (2) \tag{2.4}
\end{equation*}
$$

From (2.2) and (2.3), we get

$$
\begin{aligned}
t^{t^{k-1}} & \equiv 1 \bmod (n), \text { when } n=p^{k} \text { or } n=2 p^{k} \\
\Longrightarrow o(t) \text { in } \mathbb{Z}_{n}^{*} & \leq p^{k-1}<p^{k-1}(p-1)=\varphi(n),
\end{aligned}
$$

a contradiction to the choice of t. Hence

$$
\begin{equation*}
t-1 \equiv 0 \bmod (p) \tag{2.5}
\end{equation*}
$$

From (2.1), (2.3) and (2.5), we have

$$
1+t+t^{2}+\ldots+t^{\varphi(n)-1} \equiv 0 \bmod (n)
$$

when $n=p^{k}$ or $2 p^{k}$.

Theorem 2.6. Let $n=p$ or $2 p$ where p is an odd prime. Then

$$
1+z+z^{2}+\ldots+z^{p-2} \equiv 0 \bmod (n)
$$

for all $z \in \mathbb{Z}_{n}^{*}$ and $z \neq 1$.
Proof. Let $z \in \mathbb{Z}_{n}^{*}$ and $z \neq 1$.Then

$$
\begin{equation*}
z-1 \text { is not congruent to } 0 \bmod (p) \tag{2.6}
\end{equation*}
$$

Now,

$$
\begin{equation*}
\left(1+z+z^{2}+\ldots+z^{p-2}\right)(z-1)=z^{p-1} \equiv 0 \bmod (n) \tag{2.7}
\end{equation*}
$$

Hence by (2.6),

$$
\begin{equation*}
1+z+z^{2}+\ldots+z^{p-2} \equiv 0 \bmod (p) \tag{2.8}
\end{equation*}
$$

If $n=2 p$, then z is odd and hence

$$
\begin{equation*}
1+z+z^{2}+\ldots+z^{p-2} \equiv 0 \bmod (2) \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9) we get

$$
\begin{equation*}
1+z+z^{2}+\ldots+z^{p-2} \equiv 0 \bmod (n) \tag{2.10}
\end{equation*}
$$

for all $z \in \mathbb{Z}_{n}^{*}$ and $z \neq 1$ when $n=p$ or $2 p$.
Theorem 2.7. Let $n=2,4, p^{k}$ or $2 p^{k}$ where p is an odd prime. Let $a=\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right], b=\left[\begin{array}{ll}t & y \\ 0 & 1\end{array}\right]$ where $x, t \in \mathbb{Z}_{n}^{*}, y \in \mathbb{Z}_{n}$ and $o(t)=\varphi(n)$. Then
(i) $o(a)=n$
(ii) $o(b)=\varphi(n)$
(iii) $b^{-1} a^{i} b=a^{i t^{-1}}$ for all $i \in \mathbb{N}$
(iv) $b^{-k} a^{i} b^{k}=a^{i t^{-k}}$ for all $i, k \in \mathbb{N}$
(v) $\langle a\rangle$ is normal in G_{n} and $\langle a\rangle \cap\langle b\rangle=\{I\}$
(vi) $G=\langle a, b\rangle=\left\{b^{i} a^{j} \quad: 0 \leq i \leq \varphi(n)-1,0 \leq j \leq n-1\right\}$.

Proof. (i) For any $k \in \mathbb{N}$,

$$
a^{k}=\left[\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right]^{k}=\left[\begin{array}{cc}
1 & k x \\
0 & 1
\end{array}\right]
$$

Therefore $o(a)$ in $G_{n}=o(x)$ in $\mathbb{Z}_{n}=n$.
(ii) For any $k \in \mathbb{N}$,

$$
b^{k}=\left[\begin{array}{ll}
t & y \\
0 & 1
\end{array}\right]^{k}=\left[\begin{array}{cc}
t^{k} & \left(1+t+t^{2}+\ldots+t^{k-1}\right) y \\
0 & 1
\end{array}\right]
$$

Now, $b^{k}=I \Longrightarrow t^{k}=1 \Longrightarrow k \geq \varphi(n)$.
Also,

$$
\begin{aligned}
b^{\varphi(n)} & =\left[\begin{array}{ll}
t & y \\
0 & 1
\end{array}\right]^{\varphi(n)}=\left[\begin{array}{cc}
t^{\varphi(n)} & \left(1+t+t^{2}+\ldots+t^{\varphi(n)-1}\right) y \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad ; \text { by theorem 2.5 }
\end{aligned}
$$

Therefore $o(b)$ in $G_{n}=\varphi(n)$.
(iii)

$$
\begin{aligned}
b^{-1} a^{i} b & =\left[\begin{array}{ll}
t & y \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]^{i}\left[\begin{array}{ll}
t & y \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
t^{-1} & -y t^{-1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & i x \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
t & y \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
t^{-1} & t^{-1} i x-y t^{-1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
t & y \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & t^{-1} i x \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right]=a^{i t^{-1}}
\end{aligned}
$$

(iv) Let $i \in \mathbb{N}$. Then $b^{-1} a^{i} b=a^{i t^{-1}}$. Hence the result is true for $k=1$. Suppose the result is true for $k=n$. Then

$$
\begin{aligned}
b^{-(n+1)} a^{i} b^{n+1} & =b^{-1}\left(b^{-n} a^{i} b^{n}\right) b=b^{-1} a^{i t^{-n}} b=a^{i t^{-n} t^{-1}} \quad ; \text { by }(i i i) \\
& =a^{i t^{-(n+1)}}
\end{aligned}
$$

Hence the result is true for all $i, k \in \mathbb{N}$.
(v) Let $g=\left[\begin{array}{lr}z & d \\ 0 & 1\end{array}\right] \in G_{n}$ and $a^{i} \in\langle a\rangle$. Then

$$
\begin{gathered}
g a^{i} g^{-1}=\left[\begin{array}{ll}
z & d \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right]^{i}\left[\begin{array}{cc}
z^{-1} & -d z^{-1} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
z & d \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & i x \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
z^{-1} & -d z^{-1} \\
0 & 1
\end{array}\right] \\
=\left[\begin{array}{cc}
z z^{-1} & -z d z^{-1}+i z x+d \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & i z x \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right]^{i z}=a^{i z} \in\langle a\rangle
\end{gathered}
$$

Hence $\langle a\rangle$ is normal in G_{n}.
Let $z \in\langle a\rangle \cap\langle b\rangle$. Then

$$
\begin{aligned}
z & =a^{i}=b^{j} \text { for some } 0 \leq i \leq n-1, \quad \text { and } 0 \leq j \leq \varphi(n)-1 . \\
\Longrightarrow z & =\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]^{i}=\left[\begin{array}{lr}
t & y \\
0 & 1
\end{array}\right]^{j} \\
\Longrightarrow t^{j} & =1 \text { for some } 0 \leq j \leq \varphi(n)-1 .
\end{aligned}
$$

Since $o(t)=\varphi(n)$, we have $j=0$. Therefore $z=b^{0}=I$. Hence $\langle a\rangle \cap\langle b\rangle=\{I\}$.
(vi) By (v) we have,

$$
G=\langle b\rangle\langle a\rangle=\left\{b^{i} a^{j}: 0 \leq i \leq \varphi(n)-1,0 \leq j \leq n-1\right\}=\langle a, b\rangle
$$

Theorem 2.8. Let $n=p$ or $2 p$ where p is an odd prime. Then $\left\langle\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right\rangle$ is a characteristic subgroup of G_{n}.
Proof. Let $g=\left[\begin{array}{ll}z & d \\ 0 & 1\end{array}\right] \in G_{n}$. If $z \neq 1$, then
$g^{p-1}=\left[\begin{array}{ll}z & d \\ 0 & 1\end{array}\right]^{p-1}=\left[\begin{array}{cc}z^{p-1} & \left(1+z+z^{2}+\ldots+z^{p-2}\right) d \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad ; \quad$ by theorem 2.6
Therefore $o(g)$ in $G_{n} \leq p-1<n$.
Let $z=1$. Then

$$
g^{k}=\left[\begin{array}{ll}
1 & d \\
0 & 1
\end{array}\right]^{k}=\left[\begin{array}{cc}
1 & k d \\
0 & 1
\end{array}\right] \Longrightarrow o(g) \text { in } G_{n}=o(d) \text { in } \mathbb{Z}_{n}
$$

Hence the elements of order n in G_{n} are $\left\{\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]: 0 \leq x \leq n-1,(x, n)=1\right\}$. Therefore, there are $\varphi(n)$ elements of order n. Since $o\left(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right)=n$, we have $\left\langle\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right\rangle$ is the unique cyclic subgroup of G_{n} of order n. Hence $\left\langle\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right\rangle$ is the characteristic subgroup of G_{n}.

Theorem 2.9. Let $n=p$ or $2 p$ where p is an odd prime. Then $\left|A u t\left(G_{n}\right)\right|=n \varphi(n)$.
Proof. Take $a=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $b=\left[\begin{array}{ll}t & 0 \\ 0 & 1\end{array}\right]$ where $t \in \mathbb{Z}^{*}$ such that $o(t)=\varphi(n)=p-1$. Let $\phi: G_{n} \rightarrow G_{n}$ be an automorphism. Since $\langle a\rangle$ is a characteristic subgroup of G_{n} and a has order n, we have $\phi(\langle a\rangle)=\langle a\rangle$ and $\phi(a)=a^{i}$ for some $0 \leq i \leq n-1$ and $(i, n)=1$. Assume $\phi(b)=b^{l} a^{m}$ for some $0 \leq l \leq \varphi(n)-1$ and $0 \leq m \leq n-1$. By theorem 2.7, we have $b^{-1} a b=a^{t^{-1}}$.

Therefore

$$
\begin{aligned}
& \phi\left(b^{-1} a b\right)=\phi\left(a^{t^{-1}}\right) \Longrightarrow(\phi(b))^{-1} \phi(a) \phi(b)=(\phi(a))^{t^{-1}} \\
& \Longrightarrow\left(b^{l} a^{m}\right)^{-1}\left(a^{i}\right)\left(b^{l} a^{m}\right)=\left(a^{i}\right)^{t^{-1}} \Longrightarrow a^{-m} b^{-l} a^{i} b^{l} a^{m}=a^{i t^{-1}} \\
& \Longrightarrow a^{-m}\left(b^{-l} a^{i} b^{l}\right) a^{m}=a^{i t^{-1}} \Longrightarrow a^{-m}\left(a^{\left.i\left(t^{-1}\right)^{l}\right)}\right) a^{m}=a^{i t^{-1}} \\
& \Longrightarrow a^{i\left(t^{-1}\right)^{l}}=a^{i t^{-1}} \Longrightarrow a^{i\left(t^{-1}\right)\left(\left(t^{-1}\right)^{l-1}-1\right)}=I \\
& \Longrightarrow i\left(t^{-1}\right)\left(\left(t^{-1}\right)^{l-1}-1\right) \equiv 0 \bmod (n) \quad ; \text { since } o(a)=n \\
& \Longrightarrow\left(t^{-1}\right)^{l-1}-1 \equiv 0 \bmod (n) \Longrightarrow\left(t^{-1}\right)^{l-1} \equiv 1 \bmod (n) \\
& \Longrightarrow l-1=0 \quad ; \text { since } o\left(t^{-1}\right) \text { in } \mathbb{Z}_{n}^{*}=\varphi(n) \text { and } l-1<\varphi(n)
\end{aligned}
$$

Hence $\phi(b)=b a^{j}$ for some $0 \leq j \leq n-1$. Consequently, there are at most $n \varphi(n)$ automorphisms on G_{n} and hence

$$
\left|A u t\left(G_{n}\right)\right| \leq n \varphi(n)
$$

Conversely, suppose for each $0 \leq i \leq n-1$ and $0 \leq j \leq \varphi(n)-1$, define a map $\phi_{i, j}: G_{n} \rightarrow G_{n}$ by

$$
\phi_{i, j}\left(b^{l} a^{m}\right)=\hat{b}^{l} \hat{a}^{m}
$$

where $\hat{b}=b a^{j}, \hat{a}=a^{i}$ and $0 \leq l \leq \varphi(n)-1$ and $0 \leq m \leq n-1$. We show that $\phi_{i, j}$ is an automorphism.

Let $b^{l} a^{m}, b^{k} a^{s} \in G_{n}$. Then

$$
\begin{aligned}
b^{l} a^{m} b^{k} a^{s} & =b^{l}\left(a^{m} b^{k}\right) a^{s}=b^{l}\left(b^{k} a^{m\left(t^{-1}\right)^{k}}\right) a^{s} \quad ; \text { by Theorem } 2.7 \\
& =b^{l+k} a^{m\left(t^{-1}\right)^{k}+s} \\
\therefore \phi_{i, j}\left(b^{l} a^{m} b^{k} a^{s}\right) & =\phi_{i, j}\left(b^{l+k} a^{m\left(t^{-1}\right)^{k}+s}\right)=(\hat{b})^{l+k}(\hat{a})^{m\left(t^{-1}\right)^{k}+s}=(\hat{b})^{l}(\hat{b})^{k}(\hat{a})^{m(1 / t)^{k}}(\hat{a})^{s} \\
& =(\hat{b})^{l}(\hat{a})^{m}(\hat{b})^{k}(\hat{a})^{s}=\phi_{i, j}\left(b^{l} a^{m}\right) \phi_{i, j}\left(b^{k} a^{s}\right)
\end{aligned}
$$

Hence $\phi_{i, j}$ is a homomorphism. By Theorem 2.7, we have $\langle\hat{a} \hat{b}\rangle=G_{n}$. Hence $\phi_{i, j}$ is onto. Since G_{n} is finite, $\phi_{i, j}$ is one-one also. Therefore $\phi_{i, j}$ is an automorphism.

Next we will prove that $\phi_{i, j}$ are different. Suppose $\phi_{i, j}=\phi_{k, s}$ where $0 \leq i, k \leq n-1$ and $0 \leq j, s \leq \varphi(n)-1$. Then

$$
\phi_{i, j}(a)=\phi_{k, s}(a) \Longrightarrow a^{i}=a^{k} \Longrightarrow i=k
$$

Again,

$$
\phi_{i, j}(b)=\phi_{k, s}(b) \Longrightarrow b a^{j}=b a^{s} \Longrightarrow a^{j}=a^{s} \Longrightarrow j=s
$$

Consequently there are at least $n \varphi(n)$ automorphisms on G_{n}. Hence

$$
\left|\operatorname{Aut}\left(G_{n}\right)\right|=n \varphi(n)
$$

Take $a=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $b=\left[\begin{array}{ll}t & 0 \\ 0 & 1\end{array}\right]$ where $t \in \mathbb{Z}_{n}^{*}(n=p$ or $2 p)$ and $o(t)=\varphi(n)=p-1$. There is a unique automorphism on G_{n} which map $a \rightarrow a^{i}$ and $b \rightarrow b a^{j}$ where $0 \leq i, j \leq$ $n-1$ and $(i, n)=1$. Denote this automorphism by $\phi_{i, j}$, called automorphism induced by the map $a \rightarrow a^{i}$ and $b \rightarrow b a^{j}$. Hence

$$
\operatorname{Aut}\left(G_{n}\right)=\left\{\phi_{i, j}: 0 \leq i, j \leq n-1,(i, n)=1\right\}
$$

Theorem 2.10. $\operatorname{Aut}\left(G_{n}\right)$ is isomorphic to G_{n} for $n=p$ or $2 p$ where p is an odd prime.
Proof. Define $\psi: \operatorname{Aut}\left(G_{n}\right) \rightarrow G_{n}$ by

$$
\psi\left(\phi_{i, j}\right)=\left[\begin{array}{ll}
i & j \\
0 & 1
\end{array}\right], 0 \leq i, j \leq n-1,(i, n)=1
$$

Now,

$$
\phi_{i, j} \circ \phi_{k, s}(a)=\phi_{i, j}\left(a^{k}\right)=a^{i k}
$$

and

$$
\phi_{i, j} \circ \phi_{k, s}(b)=\phi_{i, j}\left(b a^{k}\right)=\phi_{i, j}(b) \phi_{i, j}\left(a^{k}\right)=b a^{j} a^{i k}=b a^{i k+j}
$$

Hence $\phi_{i, j} \circ \phi_{k, s}=\phi_{l, m}$ where $l \equiv i k \bmod (n)$ and $m \equiv(i k+j) \bmod (n)$.
So,

$$
\begin{aligned}
\psi\left(\phi_{i, j} \circ \phi_{k, s}\right) & =\psi\left(\phi_{l, m}\right)=\left[\begin{array}{cc}
l & m \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
i k \bmod (n) & (j+i s) \bmod (n) \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
i & j \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
k & s \\
0 & 1
\end{array}\right]=\psi\left(\phi_{i, j}\right) \psi\left(\phi_{k, s}\right)
\end{aligned}
$$

Clearly ψ is one-one and onto. Hence ψ is an isomorphism from $\operatorname{Aut}\left(G_{n}\right)$ onto G_{n}.
It well known that D_{4} is the only abelian Dihedral group and that its group of automorphisms is the symmetric group of order $6\left(S_{3}\right)$. Thus $\operatorname{Aut}\left(A u t D_{4}\right) \cong A u t S_{3} \cong S_{3} \cong A u t D_{4}$. $\operatorname{Aut}\left(A u t D_{8}\right)$ is isomorphic to G_{4} which is a non-abelian group of order 8. D_{8} has 4 inner automorphisms in which every element has order 2 except trivial automorphism. Hence $A u t D_{8} \cong D_{8}$. So $\operatorname{Aut}\left(\right.$ Aut $\left.D_{8}\right) \cong \operatorname{Aut} D_{8}$.

Hence we have the following.
Theorem 2.11. Let $n=p$ or $2 p$ where p is prime. Then $\operatorname{Aut}\left(\operatorname{Aut}\left(D_{2 n}\right)\right)$ is isomorphic to Aut $\left(D_{2 n}\right)$.

3. Conclusion

In this paper, it is proved that $\operatorname{Aut}\left(\operatorname{Aut}\left(D_{2 n}\right)\right)$ is isomorphic to $\operatorname{Aut}\left(D_{2 n}\right)$ whenever n is twice a prime number. The case when n is even and not twice a prime number will be considered in future work.

References

[1] Adney, J. E.; Yen, T. Automorphisms of p-group. Illinois J. Math. 9 (1965), 137-143.
[2] Christopher, H.; Darren, R. Automorphisms of finite abelian groups. Amer. Math. Monthly 114 (2007), no. 10, 917-923.
[3] Conrad, K. Dihedral groups-II, http://www.math.uconn.edu/kconrad/blurbs/grouptheory/dihedral2. pdf, 2009.
[4] Curran, M. J. Semidirect product groups with abelian automorphism groups. J. Austral. Math. Soc. Ser. A. 42 (1987), no. 1, 84-91.
[5] Dummit, D. S.; Foote, R. M. Abstract algebra. Wiley Hoboken, 2003.
[6] Earn ley, B. E. On finite groups whose group of automorphisms is abelian. PhD thesis, Wayne State University, Detroit, Michigan, 1975.
[7] Gallian, J. A. Contemporary Abstract Algebra. D. C. Heath and Company, 1994.
[8] Guichard, D. R. When is $U(n)$ cyclic? An algebraic approach. Math. Mag. 72 (1999), no. 2, 139-142.
[9] Miller, GA. On the holomorph of a cyclic group. Trans. Amer. Math. Soc. 4 (1903), no. 2, 153-160.
[10] Miller, G. A. A non-abelian group whose group of isomorphism is abelian. Messenger Math. 43 (1913), 124-125.
[11] Miller, G. A. Automorphisms of the dihedral groups. Proc. Nat. Acad. Sci. U.S.A. 28 (1942), no. 9, 368-371.
[12] Morigi, M. On p-groups with abelian automorphism group. Rend. Sem. Mat. Univ. Padova 92 (1994), 47-58.
[13] Ranum, A. The Group of Classes of Congruent Matrices with Application to the Group of Isomorphisms of any Abelian Group. Trans. Amer. Math. Soc. 8 (1907), 71-91.
[14] Walls, G. L. Automorphism groups. The Amer. Math. Monthly. 93 (1986), no. 6, 459-462.

```
Department of Mathematics
College of Engineering Trivandrum
Thiruvananthapuram-695016, Kerala, India
Email address: sajikumar.s@cet.ac.in
Email address: wenod76@gmail.com
Email address: gsbiju@cet.ac.in
```


[^0]: Received: 22.09.2022. In revised form: 03.04.2023. Accepted: 10.04.2023
 2000 Mathematics Subject Classification. 20D45, 20 F28.
 Key words and phrases. automorphism group, Dihedral group, characteristic subgroup.
 Corresponding author: Vinod S.; wenod76@gmail.com

